

ardware

Manu

M16C/80 Group Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M16C/80 SERIES

Before using this material, please visit our website to verify that this is the most updated document available.

Rev. 1.00 Revision date: Aug. 02, 2005 RenesasTechnology www.renesas.com

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

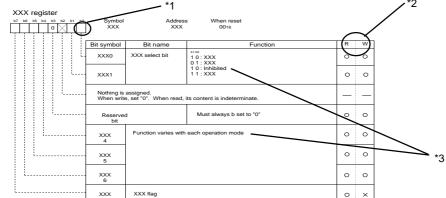
Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


How to Use This Manual

1.Introduction

This hardware manual provides detailes information on the M16C/80 group microcomputers. Users are exoected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2.Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank: Set to "0" or "1" according to intended use

- 0: Set to "0"
- 1: Set to "1"
- X: Nothing is assigned
- *2

R: Read

- O.....Possible to read
- X.....Impossible to read
- -....Nothing is assigned
- W: Write
 - O.....Possible to write
 - X.....Written value is invalid
 - When write, value can be "0" or "1"
 - -....Nothing is assigned

*3

Terms to use here are explained as follows.

Nothing is assigned

Nothing is assigned to the bit concerned. When write, set "0" for new function in future plan.

Inhibited

Not select. The operation at having selected is not guaranteed.

Reserved bit

Reserved bit. Set the specified value.

• Function varies with each operation mode

Bit function changes according to the mode of peripheral functions.

• Must be fixed to "0" in A mode

Set the bit concerned to "0" in A mode.

• Invalid in A mode

The bit concerned has no function in A mode. Set the specified value.

• Valid when bit A="0"

When bit A is "1", the bit concerned has no function. When bit A is "0", the bit concerned has function.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents
Short Sheet	Hardware overview
Data Sheet	Hardware overview and electrical characteristics
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral
	specifications, electrical characteristics, timing charts)
Software Manual	Detailed description of assembly instructions and microcomputer perfor-
	mance of each instruction
Application Note	 Application examples of peripheral functions
	Sample programs
	 Introduction to the basic functions in the M16C family
	 Programming method with Assembly and C languages
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.

NOTES :

1. Before using this material, please visit the our website to verify that this is the most updated document available.

Table of Contents

Quick Reference by Address	B-1
1. Overview	1
1.1 Features	
1.2 Applications	1
1.3 Pin Configuration	2
1.4 Block Diagram	5
1.5 Performance Outline	6
1.6 Pin Description (1)	9
2. Memory	12
3. Central Processing Unit (CPU)	13
4. Reset	18
5. SFR	22
6. Processor Mode	26
7. Bus	30
7.1 Bus Settings	
7.2 Bus Control	
8. Clock Generating Circuit	43
8.1 Example of oscillator circuit	
8.2 Clock Control	
8.3 Clock Output	
8.4 Stop Mode	
8.5 Wait Mode	50
8.6 Status Transition of BCLK	51
8.7 Power Saving	53
8.8 Protection	55
9. Interrupt Outline	56
9.1 Types of Interrupts	56
9.2 Software Interrupts	57
9.3 Hardware Interrupts	58
9.4 High-speed interrupts	59
9.5 Interrupts and Interrupt Vector Tables	59

9.6 Interrupt control registers	62
9.7 Interrupt Enable Flag (I Flag)	64
9.8 Interrupt Request Bit	64
9.9 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL) 64
9.10 Rewrite the interrupt control register	65
9.11 Interrupt Sequence	66
9.12 Interrupt Response Time	
9.13 Changes of IPL When Interrupt Request Acknowledged	
9.14 Saving Registers	
9.15 Return from Interrupt Routine	
9.16 Interrupt Priority	
9.17 Interrupt Resolution Circuit	
9.18 INT Interrupts	
9.19 NMI Interrupt	
9.20 Key Input Interrupt	
9.21 Address Match Interrupt	
9.22 Precautions for Interrupts	/4
10. Watchdog Timer	_ 78
11. DMAC	80
12. Timer	_ 92
13. Timer A	_ 94
14. Timer B	106
15. Three-phase motor control timers' functions	_112
16. Serial I/O	124
17. Clock synchronous serial I/O mode	136
18. Clock asynchronous serial I/O (UART) mode	144
19. Clock-asynchronous serial I/O mode (compliant with the SIM interface)	_ 151
20. UARTi Special Mode Register (i = 2 to 4)	155
21. A/D Converter	166
22. D/A Converter	
23. CRC Calculation Circuit	
24. XY Converter	180

25. DRAM Controller	183
26. Programmable I/O Ports	190
27. Usage Precaution	208
28. Electrical characteristics	225
29. Flash Memory Version	271
30. CPU Rewrite Mode	274
31. Parallel I/O Mode	290
 32. Standard serial I/O mode	
Package Dimension	326
Register Index	328
Revision History	C-1

	Desister	Symbol	0200		Desister	Oursels al	paga
Address	Register	Symbol	page	Address 006016	Register	Symbol	page
000016 000116				006016			
000116				006116			
000218				006316			
	Processor mode register 0	PM0	27	006416			
	Processor mode register 1	PM1	28	006516			
	System clock control register 0	CM0	46	006616			
	System clock control register 1	CM1	-	006716			
000816	Wait control register	WCR	40	006816	DMA0 interrupt control register	DM0IC	63
000916	Address match interrupt enable register		73	006916	Timer B5 interrupt control register	TB5IC	-
000A16	Protect register	PRCR	55	006A16	DMA2 interrupt control register	DM2IC	-
000B16	External data bus width control register	DS	31	006B16	UART2 receive/ACK interrupt control register	S2RIC	-
000C16	Main clock division register	MCD	47	006C16	Timer A0 interrupt control register	TA0IC	_
000D16					UART3 receive/ACK interrupt control register	S3RIC	
	Watchdog timer start register	WDTS	79	006E16	Timer A2 interrupt control register	TA2IC	_
	Watchdog timer control register	WDC			UART4 receive/ACK interrupt control register	S4RIC	_
001016			70		Timer A4 interrupt control register	TA4IC	_
	Address match interrupt register 0	RMAD0	73		Bus collision detection(UART3) interrupt control register	BCN3IC	_
001216				007216	UART0 receive interrupt control register	SORIC	_
001316				007316	A/D conversion interrupt control register	ADIC	_
001416	Address match interrupt register 4		73		UART1 receive interrupt control register	S1RIC	
	Address match interrupt register 1	RMAD1		007516		TB1IC	
001616				007616	Timer B1 interrupt control register	TRUC	63
001716						TDOLO	00
001816 001916	Address match interrupt register 2		73	007816	Timer B3 interrupt control register	TB3IC	63
001916 001A16	Address match interrupt register 2	RIVIADZ		007916 007A16			00
001A16				007A16	INT5 interrupt control register	INT5IC	63
001D16					INT3 interrupt control register	INITOLO	63
	Address match interrupt register 3	RMAD3	73	007C16		INT3IC	03
001E16	· · · · · · · · · · · · · · · · · · ·						63
001E10				007E16	INT1 interrupt control register	INT1IC	03
002016	L			008016			
	Emulator interrupt vector table register	EIAD		008116			
002216				008216			
	Emulator interrupt detect register *	EITD		008316			
		EPRR		008416			
002516				008516			
002616				008616			
002716				008716			
002816				008816	DMA1 interrupt control register	DM1IC	63
002916				008916	UART2 transmit/NACK interrupt control register	S2TIC	-
002A16					DMA3 interrupt control register	DM3IC	-
002B16				008B16	UART3 transmit/NACK interrupt control register	S3TIC	-
002C16				008C16	Timer A1 interrupt control register	TATIC	-
002D16				008D16	UART4 transmit/NACK interrupt control register	S4TIC	-
002E16				008E16	Timer A3 interrupt control register	TA3IC	-
002F16				008F16	Bus collision detection(UART2) interrupt control register		-
	5	ROA		009016	UART0 transmit interrupt control register	S0TIC	-
	<u> </u>	DBA		009116	Bus collision detection(UART4) interrupt control register	BCN4IC	
		EXA0		009216	UART1 transmit interrupt control register	S1TIC	
		EXA1		009316	Key input interrupt control register	KUPIC	_
		EXA2			Timer B0 interrupt control register	TB0IC	
	Expansion area set register 3 *	EXA3		009516			
003616					Timer B2 interrupt control register	TB2IC	63
003716				009716			
003816				009816 009916	Timer B4 interrupt control register	TB4IC	63
003916 003A16							
003A16 003B16				009A16 009B16	INT4 interrupt control register	INT4IC	63
003B16 003C16					INTO interrupt partial register		60
003C16				009C16	INT2 interrupt control register	INT2IC	63
003D16							63
003E16				009E16	INT0 interrupt control register Exit priority register	INT0IC	49
		DRAMCONT	183	009F16		RLVL	49
004016	DDAM control register		100	000010			
0011	DRAM control register		195	00A116			
004116	DRAM control register DRAM refresh interval set register	REFCNT	185	00A116			
004116 004216			185	00A216			
004116			185				

	Register	Symbol	page
Address 02C016		-	
02C116	X0 register, Y0 register	X0R,Y0R	181
02C216 02C316	X1 register, Y1 register	X1R,Y1R	
02C416 02C516	X2 register ,Y2 register	X2R,Y2R	
02C616 02C716	X3 register,Y3 register	X3R,Y3R	
02C816 02C916	X4 register , Y4 register	X4R,Y4R	
02CA16 02CB16	X5 register, Y5 register	X5R,Y5R	
02CC16 02CD16	X6 register, Y6 register	X6R,Y6R	
02CE16 02CF16	X7 register ,Y7 register	X7R,Y7R	
02D016 02D116	X8 register , Y8 register	X8R,Y8R	
02D216 02D316	X9 register,Y9 register	X9R,Y9R	
02D016 02D416 02D516	X10 register, Y10 register	X10R,Y10R	
02D616 02D716	X11 register, Y11 register	X11R,Y11R	
02D816 02D916	X12 register, Y12 register	X12R,Y12R	
02DA16 02DB16	X13 register, Y13 register	X13R,Y13R	
02DC16 02DD16	X14 register, Y14 register	X14R,Y14R	
02DE16 02DF16	X15 register, Y15 register	X15R,Y15R	
	XY control register	XYC	180
102EU16			100
02E016 02E116		×10	100
			100
02E116			
02E116 02E216 02E316 02E416			
02E116 02E216 02E316 02E416 02E516			
02E116 02E216 02E316 02E416 02E516 02E616			
02E116 02E216 02E316 02E416 02E516 02E616 02E716			
02E116 02E216 02E316 02E416 02E516 02E616			
02E116 02E216 02E316 02E416 02E516 02E616 02E716 02E816			
02E116 02E216 02E316 02E416 02E516 02E616 02E716 02E816 02E916			
02E116 02E216 02E316 02E516 02E616 02E716 02E916 02E916 02EA16			
02E116 02E216 02E316 02E416 02E516 02E716 02E816 02E916 02EB16 02EC16 02ED16			
02E116 02E216 02E316 02E516 02E516 02E616 02E716 02E916 02E916 02EB16 02EC16 02EE16			
02E116 02E216 02E316 02E516 02E516 02E616 02E716 02E916 02E916 02EA16 02EC16 02ED16 02EE16 02EF16			
02E116 02E216 02E316 02E416 02E516 02E616 02E716 02E816 02E916 02E816 02ED16 02EE16 02EF16 02EF16			
02E116 02E216 02E316 02E416 02E516 02E616 02E716 02E816 02E916 02E816 02E16 02E16 02EF16 02EF16 02F116			
02E116 02E216 02E316 02E416 02E516 02E616 02E716 02E816 02E916 02E816 02ED16 02EE16 02EF16 02EF16			
02E116 02E216 02E316 02E416 02E516 02E616 02E716 02E816 02E916 02E816 02E16 02E16 02EF16 02F116 02F116			
02E116 02E216 02E316 02E46 02E516 02E516 02E716 02E816 02E916 02E816 02E16 02E16 02E716 02F16 02F116 02F316 02F416		U4SMR3	
02E116 02E216 02E316 02E416 02E516 02E716 02E716 02E916 02E916 02E16 02E16 02E716 02E716 02F116 02F316 02F316 02F316	UART4 special mode register 3 UART4 special mode register 2		
022116 022216 022316 022516 022516 022716 022716 022916 022916 022916 022016 022016 022716 022716 022716 022716 022716 022716 022716	UART4 special mode register 3	U4SMR3	136 135 134
022116 022216 022316 022516 022516 022716 022716 022916 022916 022916 022016 022016 022716 022716 022716 022716 022716 022716 022716	UART4 special mode register 3 UART4 special mode register 2 UART4 special mode register UART4 special mode register UART4 transmit/receive mode register	U4SMR3 U4SMR2	136
022116 022216 022316 022516 022516 022716 022716 022916 022916 022916 022016 022016 022716 022716 022716 022716 022716 022716 022716	UART4 special mode register 3 UART4 special mode register 2 UART4 special mode register 2	U4SMR3 U4SMR2 U4SMR	136 135 134
02E116 02E216 02E316 02E46 02E516 02E516 02E716 02E716 02E916 02E916 02E16 02E16 02E716 02F16 02F16 02F316 02F416 02F516 02F716 02F316	UART4 special mode register 3 UART4 special mode register 2 UART4 special mode register UART4 special mode register UART4 transmit/receive mode register	U4SMR3 U4SMR2 U4SMR U4SMR	136 135 134 130 129
02E116 02E216 02E316 02E416 02E516 02E516 02E716 02E716 02E916 02E916 02E16 02E16 02E716 02F16 02F16 02F16 02F316 02F416 02F416 02F416 02F416 02F416 02F416 02F416 02F416 02F416 02F416 02F416 02F416 02F416	UART4 special mode register 3 UART4 special mode register 2 UART4 special mode register UART4 special mode register UART4 transmit/receive mode register UART4 bit rate generator	U4SMR3 U4SMR2 U4SMR2 U4SMR U4MR U4BRG U4TB	136 135 134 130 129
02E116 02E216 02E316 02E416 02E516 02E516 02E716 02E716 02E916 02E916 02E16 02E16 02F16 02F16 02F16 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516	UART4 special mode register 3 UART4 special mode register 2 UART4 special mode register UART4 special mode register UART4 transmit/receive mode register UART4 transmit buffer register	U4SMR3 U4SMR2 U4SMR2 U4SMR U4BRG U4TB U4C0	136 135 134 130 129
02E116 02E216 02E316 02E416 02E516 02E516 02E716 02E716 02E916 02E916 02E16 02E16 02F16 02F16 02F16 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516 02F516	UART4 special mode register 3 UART4 special mode register 2 UART4 special mode register 2 UART4 special mode register UART4 transmit/receive mode register UART4 transmit/receive mode register UART4 transmit buffer register UART4 transmit/receive control register 0	U4SMR3 U4SMR2 U4SMR2 U4SMR U4MR U4BRG U4TB U4C0	136 135 134 130 129

Address	Register	Symbol	page
030016	Timer B3, 4, 5 count start flag	TBSR	107
030116			
030216	-	TA 4 4	114
030316	Timer A1-1 register	TA11	114
030416	T : AAAAAAAAAAAAA	T A 04	
030516	Timer A2-1 register	TA21	
030616			
030716	Timer A4-1 register	TA41	
030816	Three-phase PWM control register 0	INVC0	112
	Three-phase PWM control register 1	INVC1	
	Three-phase output buffer register 0	IDB0	113
	Thrree-phase output buffer register 1	IDB1	
	Dead time timer	DTT	
	Timer B2 interrupt occurrence frequency set counter		
030E16		-	
030F16			
031016			
031116	Timer B3 register	TB3	107
031216			
031316	Timer B4 register	TB4	
031416			
031516	Timer B5 register	TB5	
031616			
031716			
031816			
031916			
031A16			
	Timer D2 mede register	TDOMD	106
031010	Timer B3 mode register	TB3MR	100
	Timer B4 mode register	TB4MR	
031D16	Timer B5 mode register	TB5MR	
		IFSR	71
	Interrupt cause select register	IFSK	11
032016			
032116			
032216			
032316			
032416			400
	UART3 special mode register 3	U3SMR3	
	UART3 special mode register 2	U3SMR2	
	UART3 special mode register	U3SMR	-
	UART3 transmit/receive mode register	U3MR	130
	UART3 bit rate generator	U3BRG	129
032A16	UART3 transmit buffer register	U3TB	129
		110.00	
032C16	UART3 transmit/receive control register 0		132
	UART3 transmit/receive control register 1	U3C1	133
032E16		U3C1 U3RB	133
032E16 032F16			
032E16 032F16 033016			
032E16 032F16 033016 033116			
032E16 032F16 033016 033116 033216			
032E16 032F16 033016 033116 033216 033316			
032E16 032F16 033016 033116 033216 033316 033316	UART3 receive buffer register	U3RB	129
032E16 032F16 033016 033116 033216 033316 033416 033516	UART3 receive buffer register	U3RB U2SMR3	129
032E16 032F16 033016 033116 033216 033316 033416 033516 033616	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2	U3RB U2SMR3 U2SMR2	129 136 135
032E16 032F16 033016 033116 033216 033316 033416 033516 033616 033716	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register	U3RB U2SMR3	129 136 135 134
032E16 032F16 033016 033116 033216 033316 033416 033516 033616 033716	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2	U2SMR3 U2SMR2 U2SMR U2SMR U2SMR	129 136 135 134 130
032E16 032F16 033016 033116 033216 033316 033516 033516 033616 033716 033816	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 transmit/receive mode register UART2 bit rate generator	U3RB U2SMR3 U2SMR2 U2SMR	129 136 135 134
032E16 032F16 033016 033116 033216 033316 033516 033516 033616 033716 033816	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 transmit/receive mode register UART2 bit rate generator	U3RB U2SMR3 U2SMR2 U2SMR U2SMR U2MR U2BRG	129 136 135 134 130
032E16 032F16 033016 033116 033216 033316 033516 033516 033616 033716 033816	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 transmit/receive mode register	U2SMR3 U2SMR2 U2SMR U2SMR U2SMR	129 136 135 134 130
032E16 032F16 033016 033116 033216 033316 033316 033516 033616 033716 033816 033916 033816	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 transmit/receive mode register UART2 bit rate generator	U3RB U2SMR3 U2SMR2 U2SMR U2SMR U2MR U2BRG	129 136 135 134 130
032E16 032F16 033016 03316 033216 033316 033516 033516 033716 033816 033916 033A16 033B16 033C16	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 transmit/receive mode register UART2 bit rate generator UART2 transmit buffer register	U3RB U2SMR3 U2SMR2 U2SMR U2SMR U2BRG U2TB	129 136 135 134 130 129
032E16 032F16 033016 03316 033216 033316 033516 033516 033716 033816 033916 033A16 033B16 033C16	UART3 receive buffer register UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 transmit/receive mode register UART2 bit rate generator UART2 transmit buffer register UART2 transmit buffer register UART2 transmit/receive control register 0 UART2 transmit/receive control register 1	U3RB U2SMR3 U2SMR2 U2SMR U2SMR U2BRG U2TB U2TB U2C0	129 136 135 134 130 129

Blank spaces are reserved. No access is allowed.

	Register	Symbol	page
034016	Count start flag	TABSR	95
034116	Clock prescaler reset flag	CPSRF	96
034216	One-shot start flag	ONSF	
	Trigger select register	TRGSR	
034416		UDF	95
034516	Op-down hag		35
034616			0.5
034716	Timer A0 register	TA0	95
034816			
034916	Timer A1 register	TA1	
034A16			
034B16	Timer A2 register	TA2	
034C16			
034D16	Timer A3 register	TA3	
034E16			
034F16	Timer A4 register	TA4	
035016			
035116	Timer B0 register	TB0	107
035116	-		
035216	Timer B1 register	TB1	
035316	-		
035416	Timer B2 register	TB2	
		TAOM	0.4
	Timer A0 mode register	TA0MR TA1MR	94
035716	Timer A1 mode register		
	Timer A2 mode register	TA2MR	
	Timer A3 mode register	TA3MR	
035A16	Timer A4 mode register	TA4MR	
	Timer B0 mode register	TBOMR	106
	Timer B1 mode register	TB1MR	
	Timer B2 mode register	TB2MR	
035E16			
035F16			
036016	UART0 transmit/receive mode register	U0MR	130
	UART0 bit rate generator	U0BRG	129
036216	UART0 transmit buffer register	UOTB	129
036316	-		
036416	UART0 transmit/receive control register 0	10000	131
		0000	
036516	UART0 transmit/receive control register 1	U0C1	133
036516 036616	UART0 transmit/receive control register 1	U0C1	
036516 036616 036716	UART0 transmit/receive control register 1 UART0 receive buffer register	U0C1 U0RB	133 129
036516 036616 036716 036816	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register	U0C1	
036516 036616 036716 036816 036916	UART0 transmit/receive control register 1	U0C1 U0RB	129 130
036516 036616 036716 036816 036916	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator	U0C1 U0RB U1MR U1BRG	129 130
036516 036616 036716 036816 036916 036A16 036B16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register	U0C1 U0RB U1MR	129 130
036516 036616 036716 036816 036916 036A16 036B16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator	U0C1 U0RB U1MR U1BRG	129 130
036516 036616 036716 036816 036916 036A16 036B16 036C16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register	U0C1 U0RB U1MR U1BRG U1TB	129 130 129 131
036516 036616 036716 036816 036916 036A16 036B16 036C16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1	129 130 129 131 133
036516 036616 036716 036816 036916 036A16 036B16 036C16 036D16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0	U0C1 U0RB U1MR U1BRG U1TB U1C0	129 130 129 131 133 129
036516 036616 036716 036816 036916 036816 036816 036616 036616 036E16 036F16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1	129 130 129 131 133
036516 036616 036716 036816 036916 036816 036816 036616 036616 036E16 036F16	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB	129 130 129 131 133 129
036516 036616 036716 036816 036916 036816 036816 036616 036616 036616 036F16 037016	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB	129 130 129 131 133 129
036516 036616 036716 036816 036916 036916 036816 036816 036616 036616 036616 036616 037016	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB	129 130 129 131 133 129
036516 036616 036716 036816 036916 036816 036816 036616 036616 036616 036616 036616 037016 037116	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB	129 130 129 131 133 129
036516 036616 036716 036816 036916 036416 036616 036616 036616 036616 036616 037016 037116 037216	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB	129 130 129 131 133 129
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 037016 037116 03716 037316 037316	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 transmit/receive control register 2	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB	129 130 129 131 133 129 134
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 036816 037016 03716 03716 037316 037516 037616	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 transmit/receive control register 2 Flash memory control register 1	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON	129 130 129 131 133 129
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 037016 037116 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON FMR1 FMR1 FMR0	129 130 129 131 133 129 134
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 037016 03716 037716 037516 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0 DMA0 request cause select register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON FMR1 FMR1 FMR0 DM0SL	129 130 129 131 133 129 134 276
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 037016 037116 037716 037716 037716 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0 DMA0 request cause select register DMA1 request cause select register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON FMR1 FMR1 FMR0 DM0SL DM1SL	129 130 129 131 133 129 134 276
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 036816 037016 03716 037716 037716 037716 037716 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 receive buffer register UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0 DMA0 request cause select register DMA1 request cause select register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON UCON FMR1 FMR1 FMR0 DM0SL DM1SL DM2SL	129 130 129 131 133 129 134 276
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 037016 03716 037716 037716 037716 037716 037716 037716 037716 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0 DMA0 request cause select register DMA1 request cause select register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON FMR1 FMR1 FMR0 DM0SL DM1SL	129 130 129 131 133 129 134 276 82
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 036816 037016 03716 037716 037716 037716 037716 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 receive buffer register 2 UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0 DMA0 request cause select register DMA1 request cause select register DMA2 request cause select register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON UCON FMR1 FMR1 FMR0 DM0SL DM1SL DM2SL	129 130 129 131 133 129 134 276
036516 036616 036716 036816 036916 036816 036816 036816 036816 036816 036816 036816 036816 037016 03716 037716 037716 037716 037716 037716 037716 037716 037716 037716 037716 037716 037716 037716	UART0 transmit/receive control register 1 UART0 receive buffer register UART1 transmit/receive mode register UART1 bit rate generator UART1 transmit buffer register UART1 transmit/receive control register 0 UART1 transmit/receive control register 1 UART1 receive buffer register UART1 receive buffer register 2 UART1 transmit/receive control register 2 Flash memory control register 1 Flash memory control register 0 DMA0 request cause select register DMA1 request cause select register DMA2 request cause select register	U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON U1C1 U1RB UCON FMR1 FMR0 DM0SL DM1SL DM2SL DM3SL	129 130 129 131 133 129 134 276 82

Address	Register Symbol	pag
038016	A/D register 0 AD0	169
038116	-	103
038216	A/D register 1 AD1	
038316		
038416	A/D register 2 AD2	
038516		
038616	A/D register 3 AD3	
038716		
038816	A/D register 4 AD4	
038916		
038A16	A/D register 5 AD5	1
038B16		
038C16	A/D register 6 AD6	1
038D16		
038E16	A/D register 7 AD7	1
038F16		
039016		
039116		
039216		
039316		
039416	A/D control register 2 ADCON2	169
039516		103
039616	A/D control register 0 ADCON0	168
	A/D control register 1 ADCON1	100
	D/A register 0 DA0	177
039916		171
039A16	D/A register 1 DA1	177
039B16		171
	D/A control register DACON	17
039D16		177
039E16		
039F16		
03A016		
03A116		
03A216		
03A316		
03A416		
03A516		
03A616		
03A716		
03A816		
03A916		
03A916		
03AB16		
03AB16 03AC16		
03AD16 03AE16		
	Function select register C PSC	203
	Function select register A0PS0Function select register A1PS1	200
		0.00
	Function select register B0 PSL0	202
U3B316	Function select register B1 PSL1	<u> </u>
	Function select register A2 PS2	201
	Function select register A3 PS3	
	Function select register B2 PSL2	202
	Function select register B3 PSL3	203
03B816		
03B916		
03BA16		
03BB16		
03BC16		
03BD16		
03BE16		

Blank spaces are reserved. No access is allowed.

<100-pin version>

	Register	Symbol	page
03C016	Port P6	P6	197
03C116	Port P7	P7	
03C216	Port P6 direction register	PD6	195
	Port P7 direction register	PD7	
	Port P8	P8	197
	Port P9	P9	
	Port P8 direction register	PD8	195
	Port P9 direction register	PD9	
	Port P10	P10	197
03C916			107
	Port P10 direction register	PD10	195
03CB16			100
03CC16			
03CD16			
03CE16			
03CF16			
03D016			
03D116			
03D216			
03D316			
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-up control register 2	PUR2	204
	Pull-up control register 3	PUR3	205
03DC16			
03DD16			
03DE16			
03DF16			
	Port P0	P0	197
	Port P1	P1	
	Port P0 direction register	PD0	195
	Port P1 direction register	PD1	100
	Port P2	P2	197
		P3	137
	Port P3	PD2	195
032740	Port P2 direction register	PD2 PD3	190
0000116	Port P3 direction register		107
	Port P4	P4	197
U3E916	Port P5	P5	405
	Lieut Did allus atlans us slatau		195
	Port P4 direction register	PD4	100
03EB16	Port P5 direction register	PD4 PD5	100
03EB16 03EC16	Port P5 direction register		100
03EB16 03EC16 03ED16	Port P5 direction register		100
03EB16 03EC16 03ED16 03EE16	Port P5 direction register		
03EB16 03EC16 03ED16 03EE16 03EF16	Port P5 direction register	PD5	
03EB16 03EC16 03ED16 03EE16 03EF16	Port P5 direction register Pull-up control register 0	PD5	204
03EB16 03EC16 03ED16 03EE16 03EF16	Port P5 direction register Pull-up control register 0	PD5	
03EB16 03EC16 03ED16 03EE16 03EF16 03F016	Port P5 direction register Pull-up control register 0	PD5	
03EB16 03EC16 03ED16 03EE16 03EF16 03F016 03F116	Port P5 direction register Pull-up control register 0	PD5	
03EB16 03EC16 03ED16 03EF16 03EF16 03F016 03F116 03F216	Port P5 direction register Pull-up control register 0	PD5	
03EB16 03EC16 03ED16 03EF16 03EF16 03F016 03F116 03F216	Port P5 direction register Pull-up control register 0	PD5	204
03EB16 03EC16 03ED16 03EE16 03F16 03F116 03F116 03F216 03F316	Port P5 direction register Pull-up control register 0	PD5	204
03EB16 03EC16 03ED16 03EE16 03F16 03F16 03F216 03F316 03F316	Port P5 direction register Pull-up control register 0	PD5	204

<144-pin version>

Address	Register	Symbol	page
03C016	Port P6	P6	197
03C116	Port P7	P7	1
	Port P6 direction register	PD6	195
	Port P7 direction register	PD7	
	Port P8	P8	197
	Port P9	P9	
	Port P8 direction register	PD8	195
	Port P9 direction register	PD9	
	Port P10	P10	197
	Port P11	P11	198
	Port P10 direction register	PD10	195
	Port P11 direction register	PD11	196
	Port P12	P12	197
	Port P13	P13	
03CE16	Port P12 direction register	PD12	195
	Port P13 direction register	PD13	100
	Port P14	P14	198
	Port P15	P15	197
	Port P14 direction register	PD14	196
	Port P15 direction register	PD15	195
03D416		. 2.0	
03D516			
03D616			
03D716			
03D816			
03D916			
	Pull-up control register 2	PUR2	204
	Pull-up control register 3	PUR3	205
	Pull-up control register 4	PUR4	200
03DD16	· · · · · · · · · · · · · · · · · · ·		
03DE16			
03DE16			
	Port P0	P0	197
	Port P1		197
	Port P1 Port P0 direction register	P1 PD0	195
			195
	Port P1 direction register	PD1	407
032416	Port P2 (P2)	P2	197
	Port P3 (P3)	P3	105
	Port P2 direction register	PD2	195
	Port P3 direction register	PD3	107
	Port P4	P4	197
	Port P5	P5	405
	Port P4 direction register	PD4	195
	Port P5 direction register	PD5	
03EC16			
03ED16			
03EE16			
03EF16			00.1
	Pull-up control register 0	PUR0	204
03F116	Pull-up control register 1	PUR1	
03F216			
03F316			
3			~
03FC16			
03FD16			
03FE16	Port control register		

Blank spaces are reserved. No access is allowed.

1. Overview

The M16C/80 group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/80 Series CPU core and are packaged in a 100-pin and 144-pin plastic molded QFP. The peripheral functions of 100-pin and 144-pin are common. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 16M bytes of address space, they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.

1.1 Features

Memory capacity	
	RAM 10 to 24 Kbytes
Shortest instruction execution time	
Supply voltage	4.2 to 5.5V (f(XIN)=20MHz)
	Mask ROM, external ROM and flash memory versions
	2.7 to 5.5V (f(XIN)=10MHz)
	Mask ROM, external ROM and flash memory versions
Low power consumption	45mA (M30800MC-XXXFP)
	(f(XIN) = 20MHz without software wait, Vcc=5V)
Interrupts	29 internal and 8 external interrupt sources, 5 software interrupt
	sources; 7 levels (including key input interrupt)
Multifunction 16-bit timer	5 output timers + 6 input timers
• Serial I/O	5 channels for UART or clock synchronous
• DMAC	4 channels (trigger: 31 sources)
• DRAMC	Used for EDO, FP, CAS before RAS refresh, self-refresh
A/D converter	10 bits X 8 channels (Expandable up to 10 channels)
D/A converter	8 bits X 2 channels
CRC calculation circuit	1 circuit
• XY converter	1 circuit
Watchdog timer	1 line
Programmable I/O	87 lines:100-pin version, 123 lines:144-pin version
Input port	1 line (P85 shared with MII pin)
Memory expansion	Available (16M bytes)
Chip select output	4 lines
Clock generating circuit	2 built-in clock generation circuits
	(built-in feedback resistance, and external ceramic or quartz oscillator)
	· · · · · · · · · · · · · · · · · · ·

1.2 Applications

Audio, cameras, office equipment, communications equipment, portable equipment, etc.

1.3 Pin Configuration

Figures 1.1 and 1.2 show the pin configuration (top view) for 100-pin and Figure 1.3 shows the pin configuration (top view) for 144-pin.

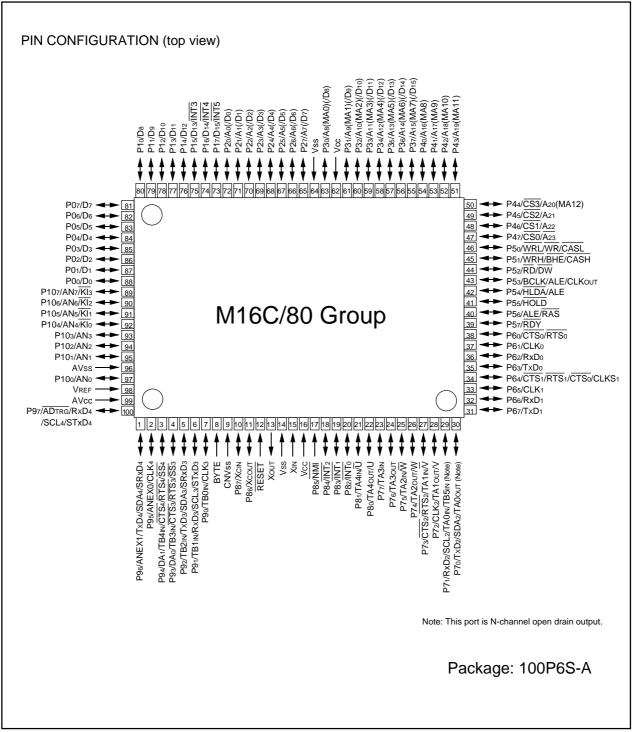


Figure 1.1 Pin configuration for 100-pin version (top view) (1)

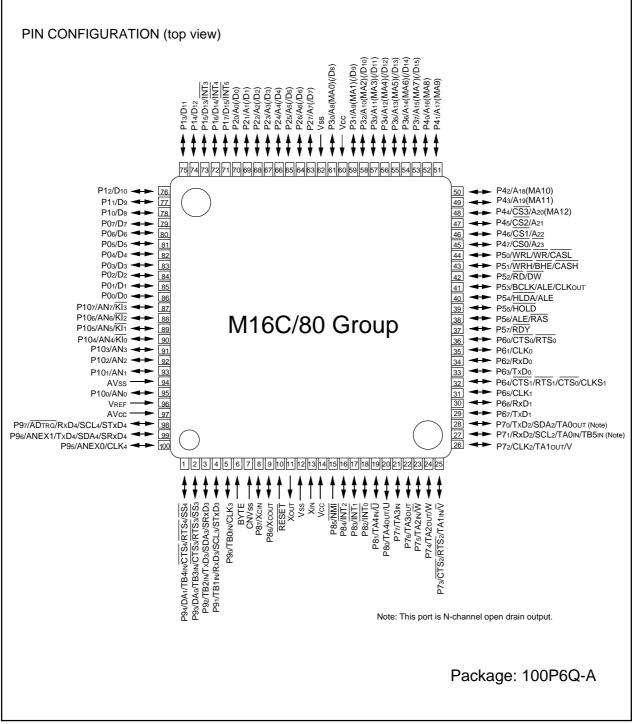


Figure 1.2 Pin configuration for 100-pin version (top view) (2)

RENESAS

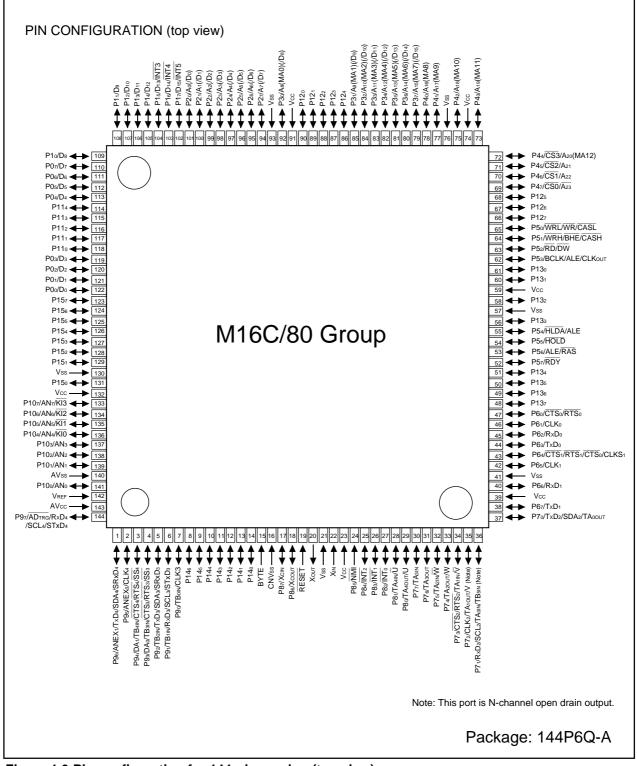


Figure 1.3 Pin configuration for 144-pin version (top view)

RENESAS

1.4 Block Diagram

Figure 1.4 is a block diagram of the M16C/80 group.

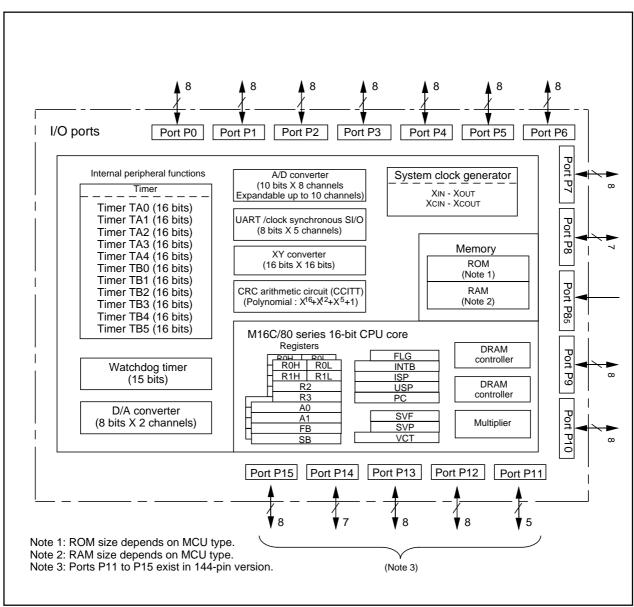
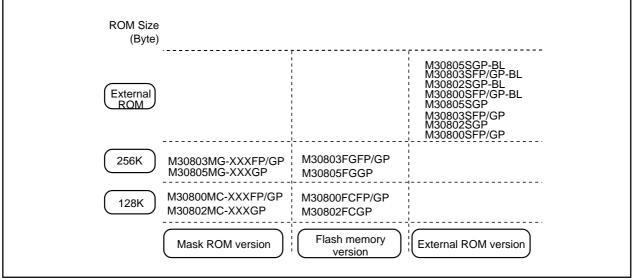


Figure 1.4 Block diagram of the M16C/80 group

1.5 Performance Outline

Table 1.1 is a performance outline of M16C/80 group.


 Table 1.1 Performance outline of M16C/80 group

Item		Performance		
Number of bas	sic instructions	106 instructions		
Shortest instruction execution time		50ns(f(XIN)=20MHz)		
Memory	ROM	See ROM expansion figure.		
capacity	RAM	10 to 24 K bytes		
I/O port	100-pin	P0 to P10 (except P85) 8-bit x 10, 7-bit x 1		
	144-pin	P0 to P15 (except P85) 8-bit x 13, 7-bit x 2, 5-bit x 1		
Input port	P85	1 bit x 1		
Multifunction	TA0, TA1, TA2, TA3, TA4	16 bits x 5		
timer	TB0, TB1, TB2, TB3, TB4, TB5	16 bits x 6		
Serial I/O	UART0, UART1, UART2,	(UART or clock synchronous) x 5		
	UART3, UART4			
A/D converter		10 bits x (8 + 2) channels		
D/A converter		8 bits x 2		
DMAC		4 channels		
DRAM control	er	CAS before RAS refresh, self-refresh, EDO, FP		
CRC calculation	on circuit	CRC-CCITT		
XY converter		16 bits X 16 bits		
Watchdog time	er	15 bits x 1 (with prescaler)		
Interrupt		29 internal and 8 external sources, 5 software sources, 7		
		levels		
Clock generati	ng circuit	2 built-in clock generation circuits		
		(built-in feedback resistance, and external ceramic or		
		quartz oscillator)		
Supply voltage	9	4.2 to 5.5V (f(XIN)=20MHz) Mask ROM, external ROM		
		and flash memory versions		
		2.7 to 5.5V (f(XIN)=10MHz) Mask ROM, external ROM		
		and flash memory versions		
Power consum	nption	45mA (f(XIN) = 20MHz without software wait,Vcc=5V)		
		Mask ROM 128 Kbytes version		
I/O	I/O withstand voltage 5V			
characteristics Output current 5mA		5mA		
Memory expar	ision	Available (up to 16M bytes)		
Operating amb	pient temperature	-40 to 85°C		
Device configu	Iration	CMOS high performance silicon gate		
Package		100-pin and 144-pin plastic mold QFP		

RENESAS

Renesas plans to release the following products in the M16C/80 group:

- (1) Support for mask ROM version, external ROM version and flash memory version
- (2) ROM capacity
- (3) Package
 - 100P6S-A : Plastic molded QFP (mask ROM version and flash memory version)
 - 100P6Q-A : Plastic molded QFP (mask ROM version and flash memory version)
 - 144P6Q-A : Plastic molded QFP (mask ROM version and flash memory version)

The M16C/80 group products currently supported are listed in Table 1.2.

Table 1.2 M16C/80 group

Type No	ROM capacity	RAM capacity	Package type	Remarks
M30800MC-XXXFP	128K bytes	10K bytes	100P6S-A	Mask ROM version
M30800MC-XXXGP			100P6Q-A	
M30802MC-XXXGP			144P6Q-A	-
M30803MG-XXXFP	256K bytes	20K bytes	100P6S-A	-
M30803MG-XXXGP			100P6Q-A	-
M30805MG-XXXGP			144P6Q-A	
M30800FCFP	128K bytes	10K bytes	100P6S-A	Flash memory version
M30800FCGP			100P6Q-A	
M30802FCGP			144P6Q-A	
M30803FGFP	256K bytes	20K bytes	100P6S-A	
M30803FGGP			100P6Q-A	
M30805FGGP			144P6Q-A	
M30800SFP		10K bytes	100P6S-A	External ROM version
M30800SGP			100P6Q-A	
M30802SGP			144P6Q-A	
M30803SFP		24K bytes	100P6S-A	
M30803SGP			100P6Q-A	
M30805SGP			144P6Q-A	-
M30800SFP-BL		10K bytes	100P6S-A	External ROM version
M30800SGP-BL			100P6Q-A	with built-in boot loader
M30802SGP-BL			144P6Q-A	
M30803SFP-BL		24K bytes	100P6S-A	
M30803SGP-BL			100P6Q-A	
M30805SGP-BL			144P6Q-A	

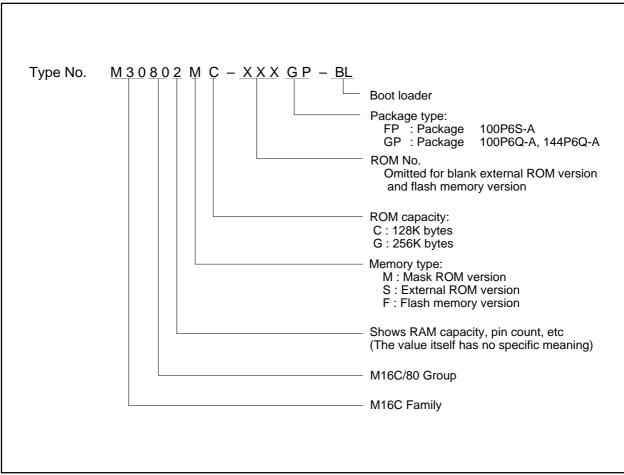


Figure 1.6 Product Numbering System

1.6 Pin Description (1)

Pin name	Signal name	I/O type	Function	
Vcc, Vss	Power supply input		Supply 4.2 (2.7) to 5.5 V to the Vcc pin. Supply 0 V to the Vss pin.	
CNVss	CNVss	I	This pin switches between processor modes. Connect it to the Vss when operating in single-chip or memory expansion mode after reset Connect it to the Vcc when in microprocessor mode after reset.	
RESET	Reset input	I	An "L" on this input resets the microcomputer.	
Xin Xout	Clock input Clock output	 0	These pins are provided for the main clock generating circuit. Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To	
X001	Clock output		use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.	
BYTE	External data bus width select input	I	This pin selects the width of an data bus in the external area 3. A 16- bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". When not using the external bus, connect this pin to VSS.	
AVcc	Analog power supply input		This pin is a power supply input for the A/D converter. Connect this pin to Vcc.	
AVss	Analog power supply input		This pin is a power supply input for the A/D converter. Connect this pin to Vss.	
Vref	Reference voltage input	I	This pin is a reference voltage input for the A/D converter.	
P00 to P07	I/O port P0	I/O This is an 8-bit CMOS I/O port. It has an input/output por register that allows the user to set each pin for input or ou individually. When set for input in single chip mode, the u specify in units of four bits via software whether or not the a pull-up resistance. In memory expansion and micropro- mode, an built-in pull-up resistance cannot be used. How possible to select pull-up resistance presence to the usab O port by setting.		
Do to D7	-	I/O	When set as a separate bus, these pins input and output data (Do-D7)	
P10 to P17	I/O port P1	I/O	This is an 8-bit I/O port equivalent to P0. P15 to P17 also function as external interrupt pins as selected by software.	
D8 to D15		I/O	When set as a separate bus, these pins input and output data (D8-D15	
P20 to P27	I/O port P2	I/O	This is an 8-bit I/O port equivalent to P0.	
Ao to A7		0	These pins output 8 low-order address bits (A0-A7).	
Ao/Do to A7/D7		I/O	If a multiplexed bus is set, these pins input and output data (D0–D7) and output 8 low-order address bits (A0–A7) separated in time by multiplexing.	
P30 to P37	I/O port P3	I/O	This is an 8-bit I/O port equivalent to P0.	
A8 to A15		0	These pins output 8 middle-order address bits (A8–A15).	
A8/D8 to A15/D15		I/O	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D8–D15) and output 8 middle-order address bits (A8–A15) separated in time by multiplexing.	
MA0 to MA7		0	If accessing to DRAM area, these pins output row address and column address separated in time by multiplexing.	

Pin Description (2)

Pin name	Signal name	I/O type	Function	
P40 to P47	I/O port P4	I/O	This is an 8-bit I/O port equivalent to P0.	
A16 to A22, A23	-	0	These pins output 8 high-order address bits (A ₁₆ –A ₂₂ , $\overline{A_{23}}$). Highest address bit ($\overline{A_{23}}$) outputs inversely.	
$\overline{CS_0}$ to $\overline{CS_3}$	-	0	These pins output $\overline{CS_0}$ – $\overline{CS_3}$ signals. $\overline{CS_0}$ – $\overline{CS_3}$ are chip select signals used to specify an access space.	
MA8 to MA12		0	If accessing to DRAM area, these pins output row address and column address separated in time by multiplexing.	
P50 to P57	I/O port P5	I/O	This is an 8-bit I/O port equivalent to P0. P53 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by software.	
WRL / WR, WRH / BHE, RD, BCLK, HLDA, HOLD, ALE, RDY		0 0 0 0 -	 Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE signals. WRL and WRH, and BHE and WR can be switched using software control. WRL, WRH, and RD selected With a 16-bit external data bus, data is written to even addresses when the WRL signal is "L" and to the odd addresses when the WRH signal is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". Data is read when RD is "L". Odd addresses are accessed when BHE is "L". Use this mode when using an 8-bit external data bus. While the input level at the HOLD pin is "L", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs an "L" level. ALE is used to latch the address. While the input level of the RDY pin is "L", the bus of microcomputer is in the wait state. 	
DW, CASL, CASH, RAS		0 0 0 0	When accessing to DRAM area while DW signal is "L", write to DRAM CASL and CASH show timing when latching to line address. When CASL accesses to even address, and CASH to odd, these two pins become "L". RAS signal shows timing when latching to row address.	
P60 to P67	I/O port P6	I/O	This is an 8-bit I/O port equivalent to P0. When set for input in single chip mode, microprocessor mode and memory expansion mode the user can specify in units of four bits via software whether or not they are tied to a pull-up resistance. Pins in this port also function as UART0 and UART1 I/O pins as selected by software.	
P70 to P77	I/O port P7	I/O	This is an 8-bit I/O port equivalent to P6 (P70 and P71 are N-channel open drain output). Pins in this port also function as timer A0–A3, timer B5 or UART2 I/O pins as selected by software.	
P80 to P84, P86, P87, P85	I/O port P8 I/O port P85	I/O I/O I/O I	P80 to P84, P86, and P87 are I/O ports with the same functions as P6. Using software, they can be made to function as the I/O pins for timer A4 and the input pins for external interrupts. P86 and P87 can be set using software to function as the I/O pins for a sub clock generation circuit. In this case, connect a quartz oscillator between P86 (XCOUT pin) and P87 (XCIN pin). P85 is an input-only port that also functions for NMI. The NMI interrupt is generated when the input at this pin changes from "H" to "L". The NMI function cannot be canceled using software. The pull-up cannot be set for this pin.	
P90 to P97	I/O port P9	I/O	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as UART3 and UART4 I/O pins, Timer B0–B4 input pins, D/A converter output pins, A/D converter extended input pins, or A/D trigger input pins as selected by software.	
P100 to P107	I/O port P10	I/O	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A/D converter input pins. Furthermore, P104–P107 also function as input pins for the key input interrupt function.	

Pin name	Signal name	I/O type	Function
P110 to P114 (Note)	I/O port P11	II/O	This is an 5-bit I/O port equivalent to P6.
P120 to P127 (Note)	I/O port P12	II/O	This is an 8-bit I/O port equivalent to P6.
P130 to P137 (Note)	I/O port P13	II/O	This is an 8-bit I/O port equivalent to P6.
P140 to P146 (Note)	I/O port P14	II/O	This is an 7-bit I/O port equivalent to P6.
P150 to P157 (Note)	I/O port P15	II/O	This is an 8-bit I/O port equivalent to P6.

Pin Description (3)

Note : Port P11 to P15 exist in 144-pin version.

Operation of Functional Blocks

The M16C/80 group accommodates certain units in a single chip. These units include ROM and RAM to store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations. Also included are peripheral units such as timers, serial I/O, D/A converter, DMAC, CRC calculation circuit, A/D converter, DRAM controller and I/O ports. The following explains each unit.

2. Memory

Figure 2.1 is a memory map of the M16C/80 group. The address space extends the 16 Mbytes from address 00000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30800MC-XXXFP, there is 128K bytes of internal ROM from FE000016 to FFFFFF16. The vector table for fixed interrupts such as the reset and NMI are mapped to FFFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details.

From 00040016 up is RAM. For example, in the M30800MC-XXXFP, 10 Kbytes of internal RAM is mapped to the space from 00040016 to 002BFF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR area is mapped to 00000016 to 0003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A/D converter, serial I/O, and timers, etc. Figures 5.1 to 5.4 are location of peripheral unit control registers. Any part of the SFR area that is not occupied is reserved and cannot be used for other purposes.

The special page vector table is mapped to FFFE0016 to FFFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps.

In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be used. For example, in the M30800MC-XXXFP, the following spaces cannot be used.

- The space between 002C0016 and 00800016 (Memory expansion and microprocessor modes)
- The space between F0000016 and FDFFF16 (Memory expansion mode)

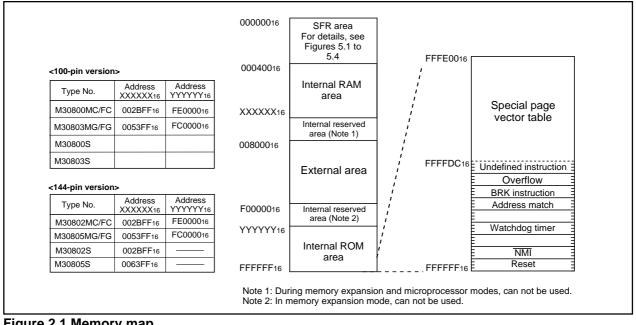


Figure 2.1 Memory map

3. Central Processing Unit (CPU)

The CPU has a total of 28 registers shown in Figure 3.1. Eight of these registers (R0, R1, R2, R3, A0, A1, SB and FB) come in two sets; therefore, these have two register banks.

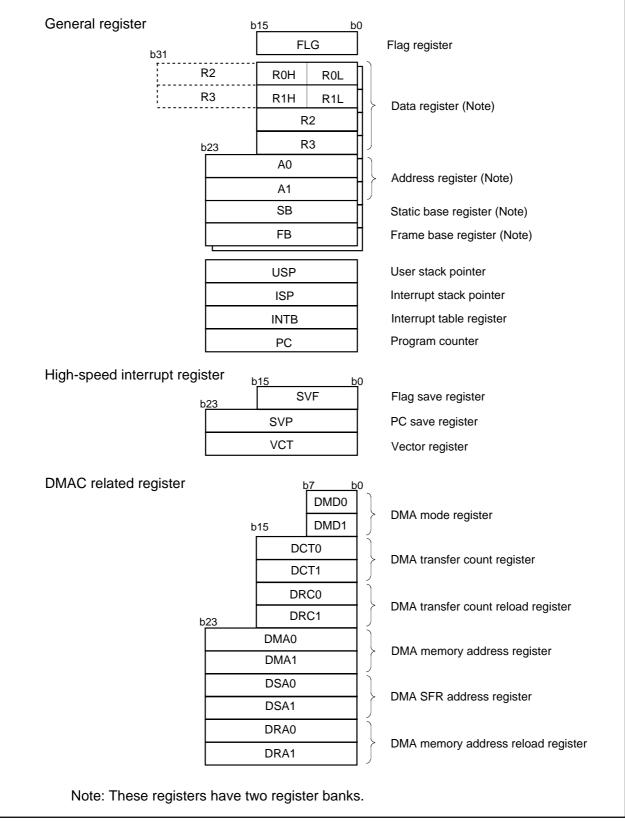


Figure 3.1 Central processing unit register

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, R3, R2R0 and R3R1)

Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations.

Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H), and low-order bits as (R0L/R1L). Registers R2 and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0/R3R1).

(2) Address registers (A0 and A1)

Address registers (A0 and A1) are configured with 24 bits, and have functions equivalent to those of data registers. These registers can also be used for address register indirect addressing and address register relative addressing.

(3) Static base register (SB)

Static base register (SB) is configured with 24 bits, and is used for SB relative addressing.

(4) Frame base register (FB)

Frame base register (FB) is configured with 24 bits, and is used for FB relative addressing.

(5) Program counter (PC)

Program counter (PC) is configured with 24 bits, indicating the address of an instruction to be executed.

(6) Interrupt table register (INTB)

Interrupt table register (INTB) is configured with 24 bits, indicating the start address of an interrupt vector table.

(7) User stack pointer (USP), interrupt stack pointer (ISP)

Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 24 bits.

Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag). This flag is located at the position of bit 7 in the flag register (FLG).

Set USP and ISP to an even number so that execution efficiency is increased.

(8) Save flag register (SVF)

This register consists of 16 bits and is used to save the flag register when a high-speed interrupt is generated.

(9) Save PC register (SVP)

This register consists of 24 bits and is used to save the program counter when a high-speed interrupt is generated.

(10) Vector register (VCT)

This register consists of 24 bits and is used to indicate the jump address when a high-speed interrupt is generated.

(11) DMA mode registers (DMD0/DMD1)

These registers consist of 8 bits and are used to set the transfer mode, etc. for DMA.

(12) DMA transfer count registers (DCT0/DCT1)

These registers consist of 16 bits and are used to set the number of DMA transfers performed.

(13) DMA transfer count reload registers (DRC0/DRC1)

These registers consist of 16 bits and are used to reload the DMA transfer count registers.

(14) DMA memory address registers (DMA0/DMA1)

These registers consist of 24 bits and are used to set a memory address at the source or destination of DMA transfer.

(15) DMA SFR address registers (DSA0/DSA1)

These registers consist of 24 bits and are used to set a fixed address at the source or destination of DMA transfer.

(16) DMA memory address reload registers (DRA0/DRA1)

These registers consist of 24 bits and are used to reload the DMA memory address registers.

(17) Flag register (FLG)

Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 3.2 shows the flag register (FLG). The following explains the function of each flag:

• Bit 0: Carry flag (C flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

• Bit 1: Debug flag (D flag)

This flag enables a single-step interrupt.

When this flag is "1", a single-step interrupt is generated after instruction execution. This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 2: Zero flag (Z flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, cleared to "0".

• Bit 3: Sign flag (S flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, cleared to "0".

• Bit 4: Register bank select flag (B flag)

This flag chooses a register bank. Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

• Bit 5: Overflow flag (O flag)

This flag is set to "1" when an arithmetic operation resulted in overflow; otherwise, cleared to "0".

• Bit 6: Interrupt enable flag (I flag)

This flag enables a maskable interrupt.

An interrupt is disabled when this flag is "0", and is enabled when this flag is "1". This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 7: Stack pointer select flag (U flag)

Interrupt stack pointer (ISP) is selected when this flag is "0"; user stack pointer (USP) is selected when this flag is "1".

This flag is cleared to "0" when a hardware interrupt is acknowledged or an INT instruction of software interrupt Nos. 0 to 31 is executed.

Bits 8 to 11: Reserved area

• Bits 12 to 14: Processor interrupt priority level (IPL)

Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

• Bit 15: Reserved area

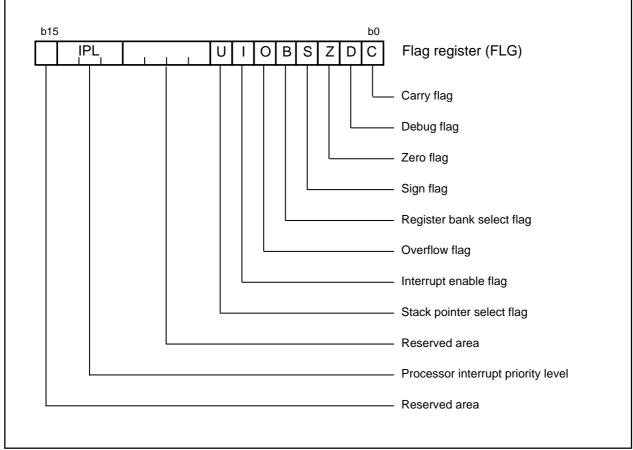
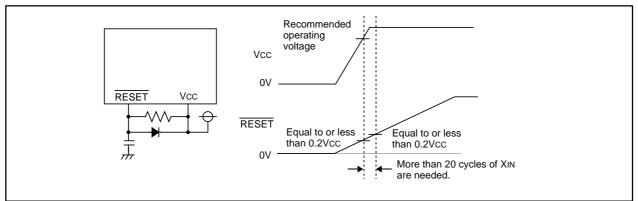


Figure 3.2 Flag register (FLG)



4. Reset

There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See "Software Reset" for details of software resets.) This section explains on hardware resets.

When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the reset pin level "L" (0.2Vcc max.) for at least 20 cycles. When the reset pin level is then returned to the "H" level while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table.

Figure 4.1 shows the example reset circuit. Figure 4.2 shows the reset sequence.

Figure 4.1 Example reset circuit

XIN	MANNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Microprocessor mode BYTE = "H"	
RESET	40 to 45 BCLK cycles
BCLK	
Address	X FFFFFC16 X FFFFFE16 X FFFFF16 X X
RD	
WR	
CS0	
Microprocessor mode BYTE = "L"	Content of reset vector
Address	FFFFC16 FFFFE16
RD	
WR	
CS0	
Single chip mode	FFFFC16 Content of reset vector
Address	
ure 4.2 Res	et sequence

Table 4.1 shows the statuses of the other pins while the RESET pin level is "L". Figures 4.3 and 4.4 show the internal status of the microcomputer immediately after the reset is cancelled.

	Status				
Pin name	CNVss = Vss	CNVs	CNVss = Vcc		
	CINV55 = V55	BYTE = Vss	BYTE = Vcc		
P0	Input port (floating)	Data input (floating)	Data input (floating)		
P1	Input port (floating)	Data input (floating)	Input port (floating)		
P2, P3, P4	Input port (floating)	Address output (undefined)	Address output (undefined)		
P50	Input port (floating)	WR output ("H" level is output)	WR output ("H" level is output)		
P51	Input port (floating)	BHE output (undefined)	BHE output (undefined)		
P52	Input port (floating)	RD output ("H" level is output)	RD output ("H" level is output)		
P53	Input port (floating)	BCLK output	BCLK output		
P54	Input port (floating)	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)		
P55	Input port (floating)	HOLD input (floating)	HOLD input (floating)		
P56	Input port (floating)	RAS output	RAS output		
P57	Input port (floating)	RDY input (floating)	RDY input (floating)		
P6, P7, P80 to P84, P86, P87, P9, P10,	Input port (floating)	Input port (floating)	Input port (floating)		
P11, P12, P13, P14, P15 (Note)	Input port (floating)	Input port (floating)	Input port (floating)		

Table 4.1 Pin status when RESET pin level is "L"

Note :Port P11 to P15 exist in 144-pin vrsion.

(1) Processor mode register 0 (Note1)	(000416) 8016	(30) Timer B3 interrupt control register	
	(000516) 0016	(31) INT5 interrupt control register	
(2) Processor mode register 1(3) System clock control register 0		(32) INT3 interrupt control register	$(007A_{16})$ \times \times 0 0 2 0 0 0
			$(007C_{16})$
(4) System clock control register 1	(000716) 2016	(33) INT1 interrupt control register	(007E16) 0 0 ? 0 0 0
 (5) Wait control register Address match interrupt 	(000816) FF16	(34) DMA1 interrupt control register (35) UART2 transmit/NACK interrupt	
(b) enable register		control register	(008916)
 (7) Protect register (8) External data bus width control 	(000A16)	(36) DMA3 interrupt control register	(008A16)
register (Note 2)	(000B16)	(37) UART3 transmit/NACK interrupt control register	(008B16)
(9) Main clock divided register	(000C16)	(38) Timer A1 interrupt control register (39) UART4 receive/NACK interrupt	(008C16)
(10) Watchdog timer control register	(000F16)···· 0 0 0 ? ? ? ? ? ?	control register	(008D16)
(11) Address match interrupt register 0	(001016) 0016	(40) Timer A3 interrupt control register	(008E16)
	(001116) 0016	(41) Bus collision detection(UART2) interrupt control register	(008F16)
	(001216) 0016	(42) UART0 transmit interrupt control register	(009016)
(12) Address match interrupt register 1	(001416)0016	(43) interrupt control register	(009116)
	(001516) 0016	(44) UART1 transmit interrupt control register	(009216)
	(001616) 0016	(45) Key input interrupt control register	(009316)
(13) Address match interrupt register 2	(001816) 0016	(46) Timer B0 interrupt control register	(009416)
	(001916) 0016	(47) Timer B2 interrupt control register	(009616)
	(001A16)···· 0016	(48) Timer B4 interrupt control register	(009816)
(14) Address match interrupt register 3	(001C16)···· 0016	(49) INT4 interrupt control register	(009A16)
	(001D16)···· 0016	(50) INT2 interrupt control register	(009C16)
	(001E16)···· 0016	(51) INT0 interrupt control register	(009E16)
(15) DMAM control register	(004016)???????	(52) Exit priority register	(009F16)
(16) DMA0 interrupt control register	(006816)	(53) XY control register	(02E016)
(17) Timer B5 interrupt control register	(006916)	(54) UART4 special mode register 3	(02F516) 0016
(18) DMA2 interrupt control register	(006A16)	(55) UART4 special mode register 2	(02F616)···· 0016
(19) UART2 receive/ACK interrupt control register	(006B16)	(56) UART4 special mode register	(02F716) 0016
(20) Timer A0 interrupt control register	(006C16)	(57) UART4 transmit/receive mode register	(02F816) 0016
(21) UART3 receive/ACK interrupt control register	(006D16)	(58) UART4 transmit/receive control register 0	(02FC16) 0816
(22) Timer A2 interrupt control register	(006E16)	(59) UART4 transmit/receive control register 1	(02FD16) 0216
(23) UART4 receive/ACK interrupt control register	(006F16)	(60) Timer B3,4,5 count start flag	(030016) 0 0 0
(24) Timer A4 interrupt control register	(007016)	(61) Three-phase PWM control register 0	(030816) 0016
(25) Bus collision detection(UART3) interrupt control register	(007116)	(62) Three-phase PWM control register 1	(030916)0000?000
(26) UART0 receive interrupt control	(007216)	(63) Three-phase output buffer register 0	(030A16)
(27) A/D conversion interrupt control register	(007316)	(64) Three-phase output buffer register 1	(030B16) 3F16
(28) UART1 receive interrupt control	(007416)	(65) Timer B3 mode register	(031B16) 0 0 ? ? 0 0 0 0
register (29) Timer B1 interrupt control register	(007616)	(66) Timer B4 mode register	(031C16) 00? 0000
-		(67) Timer B5 mode register	(031D16) 00? 0000
	x : Nothing is mapped to this b ? : Undefined	it	
The content of other rec must therefore be set.	gisters and RAM is undefined when	the microcomputer is reset. The initial values	
Note 1: When the VCC I	evel is applied to the CNVss pin, it i	s 0316 at a reset. the BYTE pin is "H", the third bit is "0".	

Note 2: When the BYTE pin is "L", the third bit is "1". When the BYTE pin is "H", the third bit is "0".

Figure 4.3 Device's internal status after a reset is cleared

(68	3) Interrupt cause select register	(031F16) 0 0 0 0 0 0	(112) Function select register A0	(03B016)…	0 0 0 0 0 0 0 0
(69	9) UART3 special mode register 3	(032516) 0016	(113) Function select register A1	(03B116)···	\times 0000000
(70	0) UART3 special mode register 2	(032616) 0016	(114) Function select register B0	(03B216)···	
(71	I) UART3 special mode register	(032716) 0016	(115) Function select register B1	(03B316)	
(72	2) UART3 transmit/receive mode register	(032816) 0016	(116) Function select register A2	(03B416)···	
(73	3) UART3 transmit/receive control register 0	(032C16) 0816	(117) Function select register A3	(03B516)	0016
(74	 UART3 transmit/receive control register 1 	(032D16) 0216	(118) Function select register B2	(03B616)	
(75	5) UART2 special mode register 3	(033516) 0 0 0	(119) Function select register B3	(03B716)…	00000000
(76	o) UART2 special mode register 2	(033616) 0016	(120) Port P6 direction register	(03C216)	0016
(77	y) UART2 special mode register	(033716) 0016	(121) Port P7 direction register	(03C316)	0016
(78) UART2 transmit/receive mode register	(033816) 0016	(122) Port P8 direction register	(03C616)	0000000
(79) UART2 transmit/receive control register 0	(033C16)00000000	(123) Port P9 direction register	(03C716)…	0016
(80) UART2 transmit/receive control register 1	(033D16) 0216	(124) Port P10 direction register	(03CA16)	0016
(81) Count start flag	(034016) 0016	(125) Port P11 direction register (Note 2)	(03CB16)	
(82	2) Clock prescaler reset flag	(034116) 0	(126) Port P12 direction register (Note 2)	(03CE16)	0016
(83	 One-shot start flag 	(034216) 0016	(127) Port P13 direction register (Note 2)	(03CF16)	0016
(84	t) Trigger select flag	(034316) 0016	(128) Port P14 direction register (Note 2)	(03D216)···	
(85	5) Up-down flag	(034416) 0016	(129) Port P15 direction register (Note 2)	(03D316)····	0016
(86	6) Timer A0 mode register	(035616) 0 0 0 0 0 ? 0 0	(130) Pull-up control register 2	(03DA16)	0016
(87	r) Timer A1 mode register	(035716)00000?00	(131) Pull-up control register 3 (Note 2)	(03DB16)	0016
(88)	3) Timer A2 mode register	(035816) 0 0 0 0 0 ? 0 0	(132) Pull-up control register 4 (Note 2)	(03DC16)	X016
(89	a) Timer A3 mode register	(035916) 0 0 0 0 0 ? 0 0	(133) Port P0 direction register	(03E216)···	0016
(90)) Timer A4 mode register	(035A16)00000?00	(132) Port P1 direction register	(03E316)···	0016
(91) Timer B0 mode register	(035B16)00??0000	(135) Port P2 direction register	(03E616)····	0016
(92	2) Timer B1 mode register	(035C16) 0 0 ? 0 0 0 0	(136) Port P3 direction register	(03E716)····	0016
(93	 Timer B2 mode register 	(035D16) 0 0 ? 0 0 0 0	(137) Port P4 direction register	(03EA16)	0016
(94	 UART0 transmit/receive mode register 	(036016) 0016	(138) Port P5 direction register	(03EB16)····	0016
(95	5) UART0 transmit/receive control register 0	(036416) 0816	(139) Pull-up control register 0	(03F016)	0016
(96	6) UART0 transmit/receive control register 1	(036516) 0216	(140) Pull-up control register 1	(03F116)····	X016
(97	7) UART1 transmit/receive mode register	(036816) 0016	(141) Port control register	(03FF16)…	
(98	3) UART1 transmit/receive control register 0	(036C16) 0816	(142) Data registers (R0/R1/R2/R3)	. ,	000016
(99) UART1 transmit/receive control register 1	(036D16) 0216	(143) Address registers (A0/A1)		00000016
(100) UART transmit/receive control register 2	(037016) 0 0 0 0 0 0	(144) Static base register (SB)		00000016
(101) Flash memory control register 1 (Note 1)	(037616)?????0???	(145) Frame base register (FB)		00000016
	 P) Flash memory control register 0 (Note 1) 	(037716) 0 0 0 0 0 1	(146) Interrupt table register (INTB)		00000016
	B) DMA0 cause select register	(037816) 0 0 0 0 0 0 0	(147) User stack pointer (USP)		00000016
	 DMA1 cause select register 	(037916) 0 0 0 0 0 0 0	(148) Interrupt stack pointer (ISP)		00000016
	5) DMA2 cause select register	(037A16)0000000	(149) Flag register (FLG)		000016
	6) DMA3 cause select register	(037B16)0\000000	(150) DMA mode register (DMD0/DMD1)		0016
	7) A/D control register 2	(039416)0000	(151) DMA transfer count register (DCT0/D	CT1)	??
	3) A/D control register 0	(039616)00000???	(152) DMA transfer count reload register	,	??
	 A/D control register 1 	(039716) 0016	(153) DMA memory address register (DMA	.0/DMA1)	??
	D/A control register	(039C16) 0016	(154) DMA SFR address register (DSA0/D		??
	 D/A control register Function select register C 	(03AF16) 0 0016	(155) DMA memory address reload registe		??
(,		(DRA0/DRA1)		···
	he content of other registers and RAM is und ust therefore be set.	efined when the microcomputer is r	eset. The initial values x : Nothing ? : Undefir	is mapped t	o this bit
			Ondeni		

Note 1:This register exists in the flash memory version. Note 2:This register exists in 144-pin version.

Figure 4.4 Device's internal status after a reset is cleared

RENESAS

5. SFR

000016		006016	
000116		006116	
000216		006216	
000316		006316	
000416	Processor mode register 0 (PM0)	006416 006516	
000516	Processor mode register 1(PM1) System clock control register 0 (CM0)	006516	
000016	System clock control register 1 (CM1)	006716	
000816	Wait control register (WCR)	006816	DMAQ interrupt control register (DMQIC)
000916	Address match interrupt enable register (AIER)	006916	DMA0 interrupt control register (DM0IC) Timer B5 interrupt control register (TB5IC)
000A16	Protect register (PRCR)	006A16	DMA2 interrupt control register (DM2IC)
000B16	External data bus width control register (DS)	006B16	UART2 receive/ACK interrupt control register (S2RIC)
000C16	Main clock division register (MCD)	006C16	Timer A0 interrupt control register (TA0IC)
000D16		006D16	UART3 receive/ACK interrupt control register (S3RIC)
000E16	Watchdog timer start register (WDTS)	006E16	Timer A2 interrupt control register (TA2IC)
000F16	Watchdog timer control register (WDC)	006F16	UART4 receive/ACK interrupt control register (S4RIC)
001016		007016	Timer A4 interrupt control register (TA4IC)
001116	Address match interrupt register 0 (RMAD0)	007116	Bus collision detection(UART3) interrupt control register (BCN3IC)
001216		007216	UART0 receive interrupt control register (S0RIC)
001316		007316	A/D conversion interrupt control register (ADIC)
001416		007416	UART1 receive interrupt control register (S1RIC)
001516	Address match interrupt register 1 (RMAD1)	007516	
001616		007616	Timer B1 interrupt control register (TB1IC)
001716		007716	
001816		007816	Timer B3 interrupt control register (TB3IC)
001916	Address match interrupt register 2 (RMAD2)	007916	
001A16		007A16	INT5 interrupt control register (INT5IC)
001B16		007B16	
001C16	Address match interrupt register 3 (RMAD3)	007C16	INT3 interrupt control register (INT3IC)
001D16	Address match interrupt register 3 (RMAD3)	007D16	
001E16		007E16	INT1 interrupt control register (INT1IC)
0012016		007F16	
002016	Emulator interrupt vector table register (EIAD) *	008016 008116	
002216		008116	
002316	Emulator interrupt detect register (EITD) *	008316	
002416	Emulator protect register (EPRR) *	008416	
002516		008516	
002616		008616	
002716		008716	
002816		008816	DMA1 interrupt control register (DM1IC)
002916		008916	UART2 transmit/NACK interrupt control register (S2TIC)
002A16		008A16	DMA3 interrupt control register (DM3IC)
002B16		008B16	UART3 transmit/NACK interrupt control register (S3TIC)
002C16		008C16	Timer A1 interrupt control register (TA1IC)
002D16		008D16	UART4 transmit/NACK interrupt control register (S4TIC)
002E16		008E16	Timer A3 interrupt control register (TA3IC)
002F16		008F16	Bus collision detection(UART2) interrupt control register (BCN2IC)
003016	ROM areaset register (ROA) *	009016	UART0 transmit interrupt control register (S0TIC)
003116	Debug monitor area set register (DBA) *	009116	Bus collision detection(UART4) interrupt control register (BCN4IC)
003216	Expansion area set register 0 (EXA0) *	009216	UART1 transmit interrupt control register (S1TIC)
003316	Expansion area set register 1 (EXA1) *	009316	Key input interrupt control register (KUPIC)
003416	Expansion area set register 2 (EXA2) *	009416	Timer B0 interrupt control register (TB0IC)
003516	Expansion area set register 3 (EXA3) *	009516	Times D0 interrupt control as (1.1.4. (TD010)
003616 003716		009616	Timer B2 interrupt control register (TB2IC)
003716		009716 009816	Timer B4 interrupt control register (TB4IC)
003916		009816	
003A16		009916 009A16	INITA interrupt control register (INITALO)
003B16		009A16	INT4 interrupt control register (INT4IC)
003C16		009D16	INT2 interrupt control register (INT2IC)
003D16		009D16	
003E16		009E16	INT0 interrupt control register (INT0IC)
003F16		009F16	Exit priority register (RLVL)
004016	DRAM control register (DRAMCONT)	00A016	
004116	DRAM refresh interval set register (REFCNT)	00A116	
004216	DIAM TELESIT INCEIVAL SELTEGISLEL (REFONT)	00A216	
004316		00A316	
004416		00A416	
l		1	

* As this register is used exclusively for debugger purposes, user cannot use this. Do not access to the register. (The blank area is reserved and cannot be used by user.)

RENESAS

Figure 5.1 Location of peripheral unit control registers (1)

02C016 02C116	X0 register (X0R) Y0 register (Y0R)
02C216	X1 register (X1R) Y1 register (Y1R)
02C316 02C416	
02C516 02C616	X2 register (X2R) Y2 register (Y2R)
02C016 02C716	X3 register (X3R) Y3 register (Y3R)
02C816 02C916	X4 register (X4R) Y4 register (Y4R)
02CA16 02CB16	X5 register (X5R) Y5 register (Y5R)
02CC16 02CD16	X6 register (X6R) Y6 register (Y6R)
02CE16 02CF16	X7 register (X7R) Y7 register (Y7R)
02D016	X8 register (X8R) Y8 register (Y8R)
02D116 02D216	X9 register (X9R) Y9 register (Y9R)
02D316 02D416	
02D516 02D616	X10 register (X10R) Y10 register (Y10R)
02D716	X11 register (X11R) Y11 register (Y11R)
02D816 02D916	X12 register (X12R) Y12 register (Y12R)
02DA16 02DB16	X13 register (X13R) Y13 register (Y13R)
02DC16 02DD16	X14 register (X14R) Y14 register (Y14R)
02DE16 02DF16	X15 register (X15R) Y15 register (Y15R)
02E016	XY control register (XYC)
02E116	
02E216	
02E316 02E416	
02E516	
02E616	
02E716	
02E816	
02E916	
02EA16 02EB16	
02ED16	
02ED16	
02EE16	
02EF16	
02F016	
02F116	
02F216	
02F316	
02F416	
02F516	UART4 special mode register 3 (U4SMR3)
02F616	UART4 special mode register 2 (U4SMR2)
02F716	UART4 special mode register (U4SMR)
02F816	UART4 transmit/receive mode register (U4MR)
02F916 02FA16	UART4 bit rate generator (U4BRG)
02FA16 02FB16	UART4 transmit buffer register (U4TB)
02FB16 02FC16	
02FC16 02FD16	UART4 transmit/receive control register 0 (U4C0) UART4 transmit/receive control register 1 (U4C1)
02FE16	
02FF16	UART4 receive buffer register (U4RB)

030016	Timer B3, 4, 5 count start flag (TBSR)
030116	Timer Bo, 4, 6 boart start hag (TBOR)
030216	
030316	Timer A1-1 register (TA11)
030416	Timor A2 1 register (TA21)
030516	Timer A2-1 register (TA21)
030616	Timer A4-1 register (TA41)
	• • • •
	Three-phase PWM control register 0(INVC0)
	Three-phase PWM control register 1(INVC1)
	Three-phase output buffer register 0(IDB0)
	Thrree-phase output buffer register 1(IDB1) Dead time timer(DTT)
	Timer B2 interrupt occurrence frequency set counter(ICTB2)
030E16	······································
030F16	
031016	
031116	Timer B3 register (TB3)
031216	Timer D4 register (TD4)
031316	Timer B4 register (TB4)
031416	Timer B5 register (TB5)
J31516	
031616	
031716	
031816	
031916 031A16	
	Timer B3 mode register (TB3MR)
_	Timer B4 mode register (TB4MR)
	Timer B5 mode register (TB5MR)
031E16	
031F16	Interrupt cause select register (IFSR)
032016	· · · ·
032116	
032216	
032316	
032416	
	UART3 special mode register 3 (U3SMR3)
	UART3 special mode register 2 (U3SMR2) UART3 special mode register (U3SMR)
	UART3 transmit/receive mode register (U3MR)
	UART3 bit rate generator (U3BRG)
132416	
032B16	UART3 transmit buffer register (U3TB)
032C16	UART3 transmit/receive control register 0 (U3C0)
	UART3 transmit/receive control register 1 (U3C1)
132E16	UART3 receive buffer register (U3RB)
032F16	
033016	
033116	
033216	
033316	
033416	
	UART2 special mode register 3 (U2SMR3) UART2 special mode register 2 (U2SMR2)
	UART2 special mode register (U2SMR2)
	UART2 transmit/receive mode register (U2MR)
	UART2 transmitteeeve mode register (02MR)
033A16	· · · ·
033B16	UART2 transmit buffer register (U2TB)
-	UART2 transmit/receive control register 0 (U2C0)
	UART2 transmit/receive control register 1 (U2C1)
033E16	UART2 receive buffer register (U2RB)
	UTITIZ IEUEIVE DUIIEI IEUISIEI (UZKD)
033F16	č (,

(The blank area is reserved and cannot be used by user.)

Figure 5.2 Location of peripheral unit control registers (2)

034016 034116 034216	Count start flag (TABSR) Clock prescaler reset flag (CPSRF)		
034216			
	One about start flag (ONOE)		
034316	One-shot start flag (ONSF)		
034416	Trigger select register (TRGSR)		
034516	Up-down flag (UDF)		
034616			
034716	Timer A0 register (TA0)		
034816			
034916	Timer A1 register (TA1)		
034A16			
034B16	Timer A2 register (TA2)		
034C16			
034D16	Timer A3 register (TA3)		
034E16			
034F16	Timer A4 register (TA4)		
035016			
035116	Timer B0 register (TB0)		
035216			
035316	Timer B1 register (TB1)		
035416			
035516	Timer B2 register (TB2)		
035616	Timer A0 mode register (TA0MR)		
035716	Timer A1 mode register (TA1MR)		
035816	Timer A2 mode register (TA2MR)		
035916	Timer A3 mode register (TA3MR)		
035A16	Timer A4 mode register (TA4MR)		
035B16	Timer B0 mode register (TB0MR)		
035C16	Timer B1 mode register (TB1MR)		
035D16	Timer B2 mode register (TB2MR)		
035E16			
035F16			
036016	UART0 transmit/receive mode register (U0MR)		
036116	UART0 bit rate generator (U0BRG)		
036216	UART0 transmit buffer register (U0TB)		
036316			
036416 036516	UART0 transmit/receive control register 0 (U0C0)		
036616	UART0 transmit/receive control register 1 (U0C1)		
036716	UART0 receive buffer register (U0RB)		
036816			
036916	UART1 transmit/receive mode register (U1MR)		
036A16	UART1 bit rate generator (U1BRG)		
036B16	UART1 transmit buffer register (U1TB)		
036C16	UART1 transmit/receive control register 0 (U1C0)		
036D16	UART1 transmit/receive control register 0 (01C0)		
036E16			
036F16	UART1 receive buffer register (U1RB)		
037016	UART transmit/receive control register 2 (UCON)		
037116			
037216			
037316			
037416			
037516			
037616	Flash memory control register 1 (FMR1) (Note)		
037716	Flash memory control register 0 (FMR0) (Note)		
037816	DMA0 request cause select register (DM0SL)		
037916	DMA1 request cause select register (DM1SL)		
037A16	DMA2 request cause select register (DM2SL)		
037B16	DMA3 request cause select register (DM3SL)		
037C16			
037D16	CRC data register (CRCD)		
	CBC input register (CBCINI)		
037E16 037F16	CRC input register (CRCIN)		

038016 038116	A/D register 0 (AD0)
038216	A/D register 1 (AD1)
038316	
038416	A/D register 2 (AD2)
038516	
038616	A/D register 3 (AD3)
038716	
038816	A/D register 4 (AD4)
038916	
038A16	A/D register 5 (AD5)
038B16	
038C16	A/D register 6 (AD6)
038D16 038E16	
038E16	A/D register 7 (AD7)
039016	
039116	
039216	
039316	
039416	A/D control register 2 (ADCON2)
039516	
039616	A/D control register 0 (ADCON0)
039716	A/D control register 1 (ADCON1)
039816	D/A register 0 (DA0)
039916	
039A16	D/A register 1 (DA1)
039B16	
039C16	D/A control register (DACON)
039D16	
039E16	
039F16	
03A016	
03A116	
03A216	
03A316	
03A416	
03A516	
03A616	
03A716	
03A816	
03A916	
03AA16	
03AB16	
03AC16	
03AD16	
03AE16	Eulection select register C(BSC)
03AF16 03B016	Function select register C(PSC)
03B016 03B116	Function select register A0 (PS0) Function select register A1 (PS1)
03B216	Function select register B0 (PSL0)
03B316	Function select register B1 (PSL1)
03B416	Function select register B1 (PSL1)
03B516	Function select register A3 (PS3)
03B616	Function select register B2 (PSL2)
03B716	Function select register B3 (PSL3)
03B816	
03B916	
03BA16	
03BB16	
03BC16	
03BD16	
03BE16	
03BF16	
(The s. 1	
(The b	lank area is reserved and cannot be used by user.)

Figure 5.3 Location of peripheral unit control registers (3)

03C016	Port P6 (P6)	03C016	Port P6 (P6)
03C116	Port P7 (P7)	03C116	Port P7 (P7)
03C216	Port P6 direction register (PD6)	03C216	Port P6 direction register (PD
03C316	Port P7 direction register (PD7)	03C316	Port P7 direction register (PD
3C416	Port P8 (P8)	03C416	Port P8 (P8)
3C516	Port P9 (P9)	03C516	Port P9 (P9)
)3C616	Port P8 direction register (PD8)	03C616	Port P8 direction register (PD
03 C7 16	Port P9 direction register (PD9)	03C716	Port P9 direction register (PD
03C816	Port P10 (P10)	03C816	Port P10 (P10)
03C916		03C916	Port P11 (P11)
03CA16	Port P10 direction register (PD10)	03CA16	Port P10 direction register (PI
03CB16	For FTO direction register (FDTO)	03CB16	Port P11 direction register (PI
03CC16		03CC16	
			Port P12 (P12)
03CD16		03CD16	
03CE16		03CE16	Port P12 direction register (PI
03CF16		03CF16	Port P13 direction register (Pl
03D016		03D016	Port P14 (P14)
03D116		03D116	Port P15 (P15)
03D216		03D216	Port P14 direction register (Pl
03D316		03D316	Port P15 direction register (P
03D416		03D416	
03D516		03D516	
03D616		03D616	
03D716		03D716	
03D816		03D816	
03D916		03D916	
03DA16	Pull-up control register 2 (PUR2)	03DA16	Pull-up control register 2 (PUI
03DB16	Pull-up control register 3 (PUR3)	03DB16	Pull-up control register 3 (PUI
03DC16		03DC16	Pull-up control register 4 (PU
03DD16		03DD16	
03DE16		03DD16	
03DF16		03DE16 03DF16	
03E016	Dart B0 (D0)	03DF16 03E016	Dart D0 (D0)
	Port P0 (P0)		Port P0 (P0)
03E116	Port P1 (P1)	03E116	Port P1 (P1)
03E216	Port P0 direction register (PD0)	03E216	Port P0 direction register (PD
03E316	Port P1 direction register (PD1)	03E316	Port P1 direction register (PD
03E416	Port P2 (P2)	03E416	Port P2 (P2)
03E516	Port P3 (P3)	03E516	Port P3 (P3)
03E616	Port P2 direction register (PD2)	03E616	Port P2 direction register (PD
03E716	Port P3 direction register (PD3)	03E716	Port P3 direction register (PD
03E816	Port P4 (P4)	03E816	Port P4 (P4)
03E916	Port P5 (P5)	03E916	Port P5 (P5)
03EA16	Port P4 direction register (PD4)	03EA16	Port P4 direction register (PD
)3EB16	Port P5 direction register (PD5)	03EB16	Port P5 direction register (PD
)3EC16		03EC16	
)3ED16		03ED16	
03EE16		03EE16	
03EF16		03EF16	
3F016	Pull-up control register 0 (PUR0)	03EP16	Pull-up control register 0 (PUI
03F116		03F016	
03F216	Pull-up control register 1 (PUR1)		Pull-up control register 1 (PUI
		03F216	
03F316		03F316	
<i>F</i>	ř	: F	٣
03FC16		03FC16	
03FD16		03FD16	
03FE16		03FE16	
	Dort control register (DCD)	03FF16	Port control register (PCR)
03FF16	Port control register (PCR)		

D316 at initial setting. Note 2: ////. Address 03DC16 area is for future plan. Must set "0016" to address 03DC16 at initial setting.

Figure 5.4 Location of peripheral unit control registers (4)

Software Reset

Writing "1" to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has the same effect as a hardware reset. The contents of internal RAM are preserved.

Carry out a software reset after oscillation of main clock is fully stable.

6. Processor Mode

(1) Types of Processor Mode

One of three processor modes can be selected: single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, the memory map, and the access space differ according to the selected processor mode.

• Single-chip mode

In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be accessed. However, after the reset has been released and the operation of shifting from the microprocessor mode has started ("H" applied to the CNVss pin), the internal ROM area cannot be accessed even if the CPU shifts to the single-chip mode.

Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal peripheral functions.

Memory expansion mode

In memory expansion mode, external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM). However, after the reset has been released and the operation of shifting from the microprocessor mode has started ("H" applied to the CNVSS pin), the internal ROM area cannot be accessed even if the CPU shifts to the memory expansion mode.

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

Microprocessor mode

In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The internal ROM area cannot be accessed.

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

(2) Setting Processor Modes

The processor mode is set using the CNVss pin and the processor mode bits (bits 1 and 0 at address 000416). Do not set the processor mode bits to "102".

Regardless of the level of the CNVss pin, changing the processor mode bits selects the mode. Therefore, never change the processor mode bits when changing the contents of other bits. Do not change the processor mode bits simultaneously with other bits when changing the processor mode bits "012" or "112". Change the processor mode bits after changeing the other bits. Also do not attempt to shift to or from the microprocessor mode within the program stored in the internal ROM area.

Applying Vss to CNVss pin

The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode is selected by writing "012" to the processor mode is selected bits.

Applying VCC to CNVss pin

The microcomputer starts to operate in microprocessor mode after being reset.

Figures 6.1 and 6.2 show the processor mode register 0 and 1.

Figure 6.3 shows the memory maps applicable for each processor modes.

Γ

v b6 b5 b4 b3 b2 b1 b0 0	Symbol PM0		When reset 8016 (Note 2)	
	Bit symbol	Bit name	Function	RV
	PM00	Processor mode bit (Note 8)	0 0: Single-chip mode 0 1: Memory expansion mode	0
PM01			1 0: Must not be set 1 1: Microprocessor mode	0
(Note 7)		R/W mode select bit (Note 7)	0 : <u>RD,BHE,WR</u> 1 : RD,WRH,WRL	00
PM03 Software reset bit		Software reset bit	The device is reset when this bit is set to "1". The value of this bit is "0" when read.	0
PM		Multiplexed bus space select bit (Note 3)	0 0 : Multiplexed bus is not used 0 1 : Allocated to CS2 space	0
	PM05		1 0 : Allocated to CS1 space 1 1 : Allocated to entire space (Note4)	00
l	Reserved bit		Must always be set to "0"	0
	PM07	BCLK output disable bit (Note 5)	0 : BCLK is output (Note 6) 1 : Function set by bit 0,1 of system clock control register 0	00
Note 2: If the Vcc to "1" and Note 3: Valid in m mode 0 is Note 4: After the m result, in m When you operates w Moo Moo Note 5: No BCLK microproc bit 1 (CM0 Note 6: When sele Note 7: When usin	voltage is appl PM07 is set to icroprocessor a selected. Do r eset has been nicroprocessor a select the full with 64 Kbytes de 0: <u>Multiplexed</u> de 1: <u>CS0</u> to <u>CS</u> de 2: <u>CS0</u> to <u>CS</u> de 3: <u>CS0</u> to <u>CS</u>	lied to the CNVss, the valu o "0".) and memory expansion mo- not set to allocated to CS2 released, the M16C/80 gro mode, you cannot select to CS space multiplex bus in boundaries for each chip se ad bus cannot be used. S2 when you select full CS S3 when you select full CS s4 bits 0 and 1 of system cl vidth in DRAM controller, se	space. space. '0" is set in PM07. When stopping clock out the following settings: PM07="1", bit 0 (CM ress 000616) = "0". "L" is now output from F ock control register 0 (CM00, CM01) to "0".	is se hen As a put ir 100) a 253.

Figure 6.1 Processor mode register 0

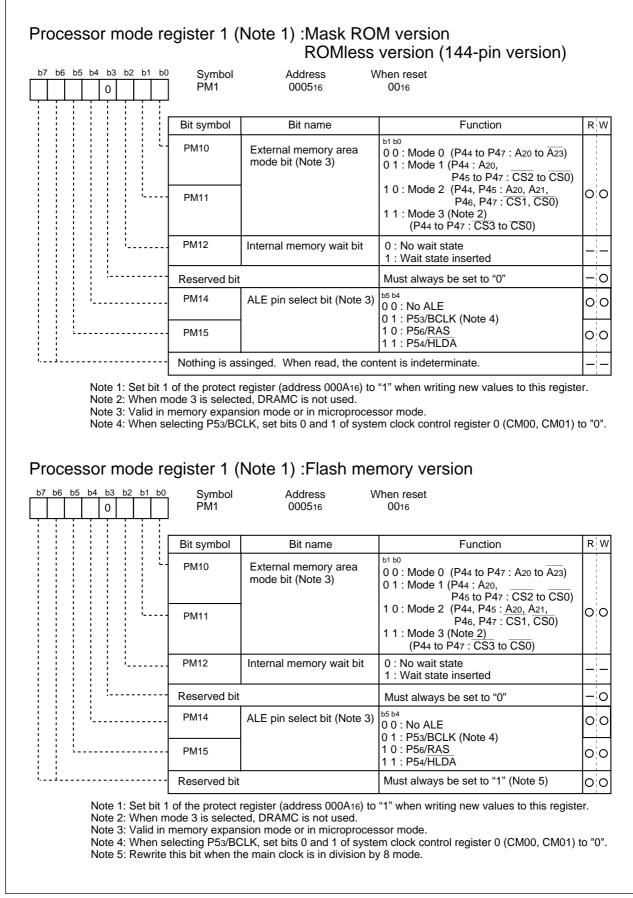


Figure 6.2 Processor mode register 1

	Single chip	Memory expanded m	inded mode			Microprocessor mode	ssor mode		
	mode	Mode 0	Mode 1	Mode 2	Mode 3	Mode 0	Mode 1	Mode 2	Mode 3
00000016 00040016	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area	SFR area Internal RAM area
00080016		Internal reserved area	Internal reserved area	Internal reserved area	Internal reserved area	Internal reserved area	Internal reserved area	Internal reserved area	Internal reserved area
		External area 0	CS1 2Mbytes (Note1) External area 0	CS1 4Mbvtas	No use <u>CS</u> 1, 1Mbytes External area 0	External area 0	CS1 2Mbytes (Note1) External area 0	<u>CS1</u>	No use <u> CS</u> 1, 1Mbytes External area 0
20000016		External area 1	<u>CS</u> 2 2Mbytes External area 1	(Note2) (Note2) External area 0	CS2, 1Mbytes External area 1 No use	External area 1	<u>CS2</u> 2Mbytes External area 1	4wuytes (Note2) External area 0	CS2, 1Mbytes External area 1 No use
40000016									
	No use	Connect with DRAM 0, 0.5 to 8MB	Connect with DRAM 0, 0.5 to 8MB	Connect with DRAM 0, 0.5 to 8MB	No use	Connect with DRAM 0, 0.5 to 8MB	Connect with DRAM 0, 0.5 to 8MB	Connect with DRAM 0, 0.5 to 8MB	No use (Cannot use as
		(When not connect with DRAM, use as external area.)	(When open area is under 8MB, cannot use the rest of this area.)	(When open area is under 8MB, cannot use the rest of this area.)	(Carmor use as DRAM area or external area.)	(when not connect with DRAM, use as external area.)	(when open area is under 8MB, cannot use the rest of this area.)	(When open area is under 8MB, cannot use the rest of this area.)	DRAM area or external area.)
		(External area 2)	(External area 2)	(External area 2)		(External area 2)	(External area 2)	(External area 2)	
C000016	1		<u>CS</u> 0 2Mbvtes	080	<u>CS3</u> , 1Mbytes External area 2		No use		<u>CS3</u> , 1Mbytes External area 2
		External area 3	External area 3	3Mbytes	No use	Evtornal area 2		<u>CS</u> 0	NO LISA
EUUUU16			No use	External area 3	CS0, 1Mbytes External area 3		<u>cso</u>	4lvlbytes External area 3	
F000016	Internal ROM area	Internal reserved area Internal ROM area	Internal reserved area Internal ROM area	Internal reserved area Internal ROM area	Internal reserved area Internal ROM area		2Mbytes External area 3		<u>CS</u> 0, 1Mbytes External area 3
	Each <u>CS0 to C</u> S3 can set 0 to 3 WAIT.	i set 0 to 3 WAIT.			Note 1: 20 Note 2: 40	Note 1: 20000016-00800016=2016 Kbytes. 32 K less than 2 MB. Note 2: 40000016-00800016=4064 Kbytes. 32 K less than 4 MB.	016 Kbytes. 32 K les 064 Kbytes. 32 K les	ss than 2 MB. ss than 4 MB.	

7. Bus

7.1 Bus Settings

The BYTE pin, bit 0 to 3 of the external data bus width control register (address 000B16), bits 4 and 5 of the processor mode register 0 (address 000416) and bit 0 and 1 of the processor mode register 1 (address 000516) are used to change the bus settings.

Table 7.1 shows the factors used to change the bus settings, Figure 7.1 shows external data bus width control register and Table 7.2 shows external area 0 to 3 and external area mode.

Table 7.1 Factors for switching bus settings

Bus setting	Switching factor
Switching external address bus width	External data bus width control register
Switching external data bus width	BYTE pin (external area 3 only)
Switching between separate and multiplex bus	Bits 4 and 5 of processor mode register 0

(1) Selecting external address bus width

You can select the width of the address bus output externally from the 16 Mbytes address space, the number of chip select signals, and the address area of the chip select signals. (Note, however, that when you select "Full \overline{CS} space multiplex bus", addresses A0 to A15 are output.) The combination of bits 0 and 1 of the processor mode register 1 allow you to set the external area mode.

When using DRAM controller, the DRAM area is output by multiplexing of the time splitting of the row and column addresses.

(2) Selecting external data bus width

You can select 8-bit or 16-bit for the width of the external data bus for external areas 0, 1, 2, and 3. When the data bus width bit of the external data bus width control register is "0", the data bus width is 8 bits; when "1", it is 16 bits. The width can be set for each of the external areas. The default bus width for external area 3 is 16 bits when the BYTE pin is "L" after a reset, or 8 bits when the BYTE pin is "H" after a reset. The bus width selection is valid only for the external bus (the internal bus width is always 16 bits). During operation, fix the level of the BYTE pin to "H" or "L".

(3) Selecting separate/multiplex bus

The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.

Separate bus

In this bus configuration, input and output is performed on separate data and address buses. The data bus width can be set to 8 bits or 16 bits using the external data bus width control register. For all programmable external areas, P0 is the data bus when the external data bus is set to 8 bits, and P1 is a programmable IO port. When the external data bus width is set to 16 bits for any of the external areas, P0 and P1 (although P1 is undefined for any 8-bit bus areas) are the data bus.

When accessing memory using the separate bus configuration, you can select a software wait using the wait control register.

Multiplex bus

In this bus configuration, data and addresses are input and output on a time-sharing basis. For areas for which 8-bit has been selected using the external data bus width control register, the 8 bits Do to D7 are multiplexed with the 8 bits Ao to A7. For areas for which 16-bit has been selected using the external data bus width control register, the 16 bits Do to D15 are multiplexed with the 16 bits Ao to A15. When accessing memory using the multiplex bus configuration, two waits are inserted regardless of whether you select "No wait" or "1 wait' in the appropriate bit of the wait control register.

The default after a reset is the separate bus configuration, and the full \overline{CS} space multiplex bus configuration cannot be selected in microprocessor mode. If you select "Full \overline{CS} space multiplex bus", the 16 bits from A0 to A15 are output for the address.

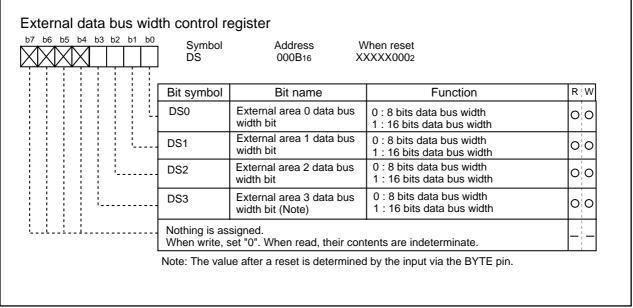


Figure 7.1 External data bus width control register

External area mode (Note 2)		Mode 0	Mode 1	Mode 2	Mode 3
External area 0	Memory expansion mode, Microprocessor mode	00800016 to 1FFFFF16	<cs1 area=""> 00800016 to 1FFFFF16</cs1>	<cs1 area=""> 00800016 to 1FFFFF16</cs1>	<cs1 area=""> 10000016 to 1FFFFF16</cs1>
External area 1	Memory expansion mode, Microprocessor mode	20000016 to 3FFFFF16	<cs2 area=""> 20000016 to 3FFFFF16</cs2>	No area is selected.	<cs2 area=""> 20000016 to 2FFFFF16</cs2>
External area 2	Memory expansion mode, Microprocessor mode	40000016 to BFFFFF16 (Note 1)	<dramc area=""> 40000016 to BFFFFF16</dramc>	<dramc area=""> 40000016 to BFFFFF16</dramc>	<cs3 area=""> C0000016 to CFFFFF16</cs3>
External area 3	Memory expansion mode	C0000016 to EFFFFF16	<cs0 area=""> C0000016 to EFFFFF16</cs0>	<cs0 area=""> C0000016 to EFFFFF16</cs0>	<cs0 area=""> E0000016 to EFFFFF16</cs0>
	Microprocessor mode	C0000016 to FFFFFF16	<cs0 area=""> E0000016 to FFFFFF16</cs0>	<cs0 area=""> C0000016 to FFFFFF16</cs0>	<cs0 area=""> F0000016 to FFFFFF16</cs0>

Note 1: DRAMC area when using DRAMC.

Note 2: Set the external area mode (modes 0, 1, 2, and 3) using bits 0 and 1 of the processor mode register 1 (address 000516).

Processor mode	Single-chip mode	Memo	ry expansion mo	de/microprocess	or modes	des Memory expansion mode	
Multiplexed bus space select bit		"01", "10" CS1 or CS2 : multiplexed bus, and the other : separate bus		CS1 or CS2 : multiplexed Separate bus bus, and the other :		"11" (Note 1) All space multiplexed bus	
Data bus width BYTE pin level		All external area is 8 bits	Some external area is 16 bits	All external area is 8 bits	Some external area is 16 bits	All external area is 8 bits	Some external area is 16 bits
P00 to P07	I/O port	Data bus	Data bus	Data bus	Data bus	I/O port	I/O port
P10 to P17	I/O port	I/O port	Data bus	I/O port	Data bus	I/O port	I/O port
P20 to P27	I/O port	Address bus /data bus (Note 2)	Address bus /data bus (Note 2)	Address bus	Address bus	Address bus /data bus	Address bus /data bus
P30 to P37	I/O port	Address bus	Address bus /data bus (Note 2)	Address bus	Address bus	Address bus	Address bus /data bus
P40 to P43	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port	I/O port
P44 to P46	I/O port	CS (chip select) or address bus (A20 to A22) (For details, refer to "Bus control") (Note 5)					
P47	I/O port	CS (chip select) or address bus (A23) (For details, refer to "Bus control") (Note 5)					
P50 to P53	I/O port	Outputs RD, WRL, WRH and BCLK, or RD, BHE, WR and BCLK (For details, refer to "Bus control") (Note 3,4)					
P54	I/O port	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD	HOLD
P56	I/O port	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)
P57	I/O port	RDY	RDY	RDY	RDY	RDY	RDY

Table 7.3 Each processor mode and por	rt function
---------------------------------------	-------------

Note 1:The default after a reset is the separate bus configuration, and "Full CS space multiplex bus" cannot be selected in microprocessor mode. When you select "Full CS space multiplex bus" in extended memory mode, the address bus operates with 64 Kbytes boundaries for each chip select.

Note 2: Address bus in separate bus configuration.

Note 3: The ALE output pin is selected using bits 4 and 5 of the processor mode register 1.

Note 4: When you have selected use of the DRAM controller and you access the DRAM area, these are CASL, CASH, DW, and BCLK outputs.

Note 5: The \overline{CS} signal and address bus selection are set by the external area mode.

7.2 Bus Control

The following explains the signals required for accessing external devices and software waits. The signals required for accessing the external devices are valid when the processor mode is set to memory expansion mode and microprocessor mode.

(1) Address bus/data bus

There are 24 pins, A0 to A22 and $\overline{A23}$ for the address bus for accessing the 16 Mbytes address space. $\overline{A23}$ is an inverted output of the MSB of the address.

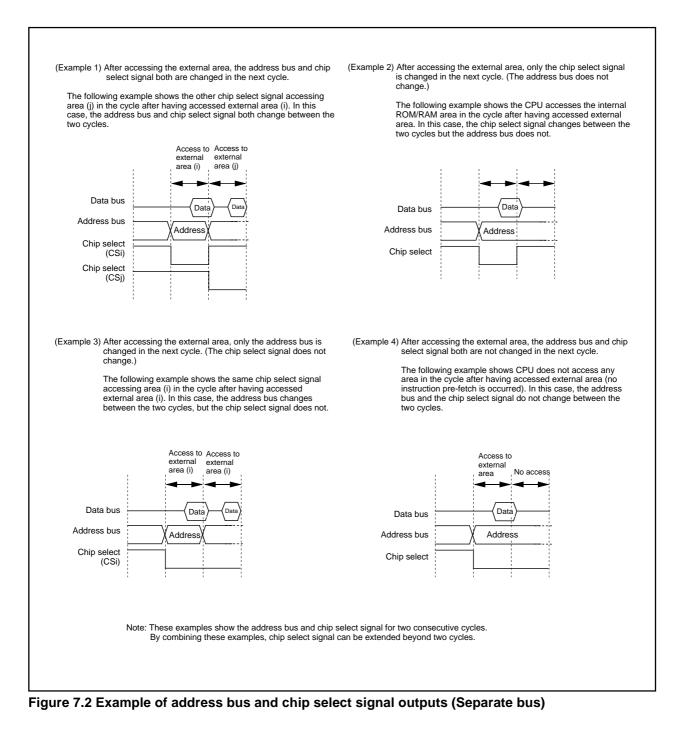
The data bus consists of pins for data IO. The external data bus control register (address 000B16) selects the 8-bit data bus, D0 to D7 for each external area, or the 16-bit data bus, D0 to D15. After a reset, there is by default an 8-bit data bus for the external area 3 when the BYTE pin is "H", or a 16-bit data bus when the BYTE pin is "L".

When shifting from single-chip mode to extended memory mode, the value on the address bus is undefined until an external area is accessed.

When accessing a DRAM area with DRAM control in use, a multiplexed signal consisting of row address and column address is output to A8 to A20.

(2) Chip select signals

The chip select signals share A₀ to A₂₂ and $\overline{A_{23}}$. You can use bits 0 and 1 of the processor mode register 1 (address 000516) to set the external area mode, then select the chip select area and number of address outputs.


In microprocessor mode, external area mode 0 is selected after a reset. The external area can be split into a maximum of four using the chip select signals. Table 7.4 shows the external areas specified by the chip select signals.

	mory space		Chip select signal					
	xpansion mode	Processor mode	CS0	CS1	CS2	CS3		
	Mode 0		(A23)	(A22)	(A21)	(A20)		
s range	Mode 1	Memory expansion mode	C0000016 to DFFFFF16 (2 Mbytes)	00800016 to 1FFFF16	20000016 to 3FFFF516			
address	ອີຍອີອອີອອີອອີອອີອອອອອອອອອອອອອອອອອອອອອ		E0000016 to FFFFF16 (2 Mbytes)	(2016 Kbytes)	(2 Mbytes)	(A20)		
Specified	Mada O	Memory expansion mode	C0000016 to EFFFF16 (3 Mbytes)	00800016 to 3FFFF516				
	Mode 2	Microprocessor mode	C0000016 to FFFFF16 (4 Mbytes)	(4064 Kbytes)	(A21)	(A20)		
	Mode 3	Memory expansion mode	E0000016 to EFFFFF16 (1 Mbytes)	10000016 to	20000016 to	C0000016 to		
	wode 3	Microprocessor mode	F0000016 to FFFFF16 (1 Mbytes)	1FFFFF16 (1 Mbytes)	2FFFFF16 (1 Mbytes)	CFFFFF16 (1 Mbytes)		

Table 7.4 External areas specified by the chip select signals

The chip select signal turns "L" (active) in synchronize with the address bus. However, its turning "H" depends on the area accessed in the next cycle. Figure 7.2 shows the output examples of the address bus and chip select signals.

(3) Read/write signals

With a 16-bit data bus, bit 2 of the processor mode register 0 (address 000416) select the combinations of \overline{RD} , \overline{BHE} , and \overline{WR} signals or \overline{RD} , \overline{WRL} , and \overline{WRH} signals. With a 8-bit full space data bus, use the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals as read/write signals. (Set "0" to bit 2 of the processor mode register 0 (address 000416).) When using both 8-bit and 16-bit data bus widths and you access an 8-bit data bus area, the \overline{RD} , \overline{WR} and \overline{BHE} signals combination is selected regardless of the value of bit 2 of the processor mode register 0 (address 000416).)

Tables 7.5 and 7.6 show the operation of these signals.

After a reset has been cancelled, the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals is automatically selected. When switching to the \overline{RD} , \overline{WRL} , and \overline{WRH} combination, do not write to external memory until bit 2 of the processor mode register 0 (address 000416) has been set (Note).

- Note 1: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A16) to "1".
- Note 2: When using 16-bit data bus width for DRAM controller, select \overline{RD} , \overline{WRL} , and \overline{WRH} signals.

	,	,	U	
Data bus width	RD	WRL	WRH	Status of external data bus
	L	Н	Н	Read data
16-bit	Н	L	Н	Write 1 byte of data to even address
	Н	Н	L	Write 1 byte of data to odd address
	Н	L	L	Write data to both even and odd addresses
8-bit	Н	L (Note)	Not used	Write 1 byte of data
o-Dit	L	H (Note)	Not used	Read 1 byte of data

Table 7.5 Operation of RD, WRL, and WRH signals

Note: It becomes \overline{WR} signal.

Table 7.6 Operation of RD, WR, and BHE signals

			•		
Data bus width	RD	WR	BHE	A0	Status of external data bus
	Н	L	L	Н	Write 1 byte of data to odd address
	L	Н	L	Н	Read 1 byte of data from odd address
16-bit	Н	L	Н	L	Write 1 byte of data to even address
I O-DIL	L	Н	Н	L	Read 1 byte of data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8-bit	Н	L	Not used	H/L	Write 1 byte of data
o-Dit	L	Н	Not used	H/L	Read 1 byte of data

(4) ALE signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls. The ALE output pin is selected using bits 4 and 5 of the processor mode register 1 (address 000516).

The ALE signal is occurred regardless of internal area and external area.

When BYTE pin = "H"	When BYTE pin = "L"
ALE	ALE
Do/Ao to D7/A7 Address Data (Note 1)	Do/Ao to D15/A15 Address Data (Note 1)
As to A15 X Address X	
A16 to A19	A16 to A19 Address (Note 2)
A20 to A22, A23	A20 to A22, A23
Note 1: Floating when reading. Note 2: When full space multiplexed bus	is selected, these are I/O ports.

Figure 7.3 ALE signal and address/data bus

(5) Ready signal

The ready signal facilitates access of external devices that require a long time for access. As shown in Figure 7.2, inputting "L" to the $\overline{\text{RDY}}$ pin at the falling edge of BCLK causes the microcomputer to enter the ready state. Inputting "H" to the $\overline{\text{RDY}}$ pin at the falling edge of BCLK cancels the ready state. Table 7.7 shows the microcomputer status in the ready state. Figure 7.4 shows the example of the $\overline{\text{RD}}$ signal being extended using the $\overline{\text{RDY}}$ signal.

Ready is valid when accessing the external area during the bus cycle in which the software wait is applied. When no software wait is operating, the \overline{RDY} signal is ignored, but even in this case, unused pins must be pulled up.

Table 7.7 Microcomputer status in ready state (Note)

Item	Status
Oscillation	On
$\overline{\text{RD}}/\overline{\text{WR}}$ signal, address bus, data bus, $\overline{\text{CS}}$	Maintain status when ready signal received
ALE signal, HLDA, programmable I/O ports	
Internal peripheral circuits	On

Note: The ready signal cannot be received immediately prior to a software wait.

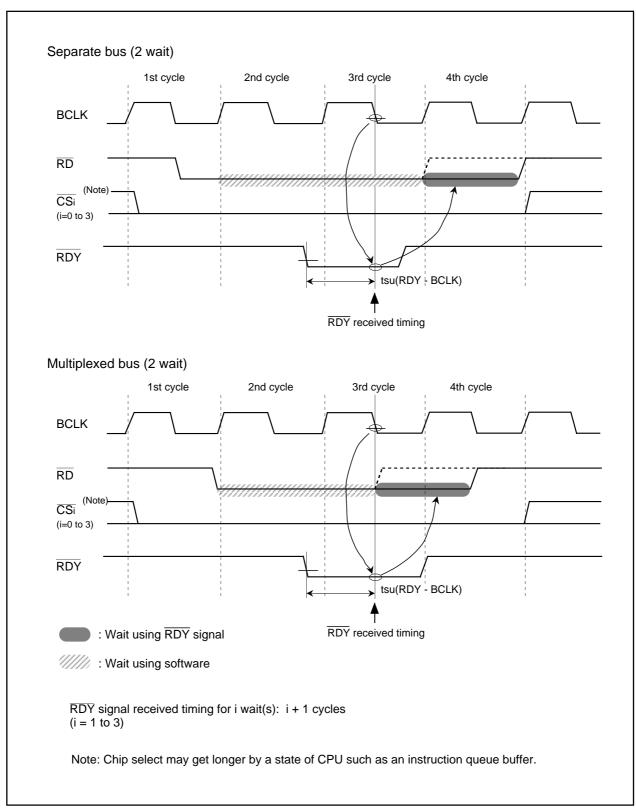


Figure 7.4 Example of $\overline{\text{RD}}$ signal extended by $\overline{\text{RDY}}$ signal

(6) Hold signal

The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting "L" to the $\overline{\text{HOLD}}$ pin places the microcomputer in the hold state at the end of the current bus access. This status is maintained and "L" is output from the $\overline{\text{HLDA}}$ pin as long as "L" is input to the $\overline{\text{HOLD}}$ pin. Table 7.8 shows the microcomputer status in the hold state. The bus is used in the following descending order of priority: $\overline{\text{HOLD}}$, DMAC, CPU.

\overline{HOLD} > DMAC > CPU

Figure 7.5 Example of RD signal extended by RDY signal

Table 7.8 Microcomputer status in hold state

Item	Status		
	ON		
us, data bus, CS , BHE	Floating		
P0, P1, P2, P3, P4, P5	Maintains status when hold signal is received		
P6, P7, P8, P9, P10			
P11, P12, P13, P14, P15 (Note)			
	Output "L"		
6	ON (but watchdog timer stops)		
	Undefined		
	ous, data bus, CS, BHE P0, P1, P2, P3, P4, P5		

Note: Ports P11 to P15 exist in 144-pin version.

(7) External bus status when accessing to internal area

Table 7.9 shows external bus status when accessing to internal area

Table 7.9 External bus status when accessing to internal area

Iten	n	SFR accessing status Internal ROM/RAM accessing status			
Address b	bus	Remain address of external area accessed immediately before			
Data bus	When read	Floating			
	When write	Floating			
RD, WR,	WRL, WRH	H Output "H"			
BHE		Remain external area status accessed immediately before			
CS Output "H"					
ALE		ALE output			

(8) BCLK output

BCLK output can be selected by bit 7 of the processor mode register 0 (address 000416 :PM07) and bit 1 and bit 0 of the system clock select register 0 (address 000616 :CM01, CM00). Setting PM07 to "0" and CM01 and CM00 to "00" outputs the BCLK signal from P53. However, in single chip mode, BCLK signal is not output. When setting PM07 to "1", the function is as set by CM01 and CM00.

(9) DRAM controller signals (RAS, CASL, CASH, and DW)

Bits 1, 2, and 3 of the DRAM control register (address 000416) select the DRAM space and enable the DRAM controller. The DRAM controller signals are then output when the DRAM area is accessed. Table 7.10 shows the operation of the respective signals.

Data bus width	RAS	CASL	CASH	DW	Status of external data bus
	L	L	L	Н	Read data from both even and odd addresses
	L	L	L	Н	Read 1 byte of data from even address
16-bit	L	Н	Н	Н	Read 1 byte of data from odd address
10-01	L	L	L	L	Write data to both even and odd addresses
	L	L	Н	L	Write 1 byte of data to even address
	L	Н	L	L	Write 1 byte of data to odd address
9 hit	L	L	Not used	Н	Read 1 byte of data
8-bit	L	L	Not used	L	Write 1 byte of data

Table 7.10 Operation of RAS, CASL, CASH, and DW signals

(10) Software wait

A software wait can be inserted by setting the wait control register (address 000816). Figure 7.6 shows wait control register

You can use the external area I wait bits (where I = 0 to 3) of the wait control register to specify from "No wait" to "3 waits" for the external memory area. When you select "No wait", the read cycle is executed in the BCLK1 cycle. The write cycle is executed in the BCLK2 cycle (which has 1 wait). When accessing external memory using the multiplex bus, access has two waits regardless of whether you specify "No wait" or "1 wait" in the appropriate external area i wait bits in the wait control register.

Software waits in the internal memory (internal RAM and internal ROM) can be set using the internal memory wait bits of the processor mode register 1 (address 000516). Setting the internal memory wait bit = "0" sets "No wait". Setting the internal memory wait bit = "1" specifies a wait.

The SFR area is not affected by the setting of the internal memory wait bit and is always accessed in the BCLK2 cycle.

Table 7.11 shows the software waits and bus cycles. Figures 7.7 and 7.8 show example bus timings when using software waits.

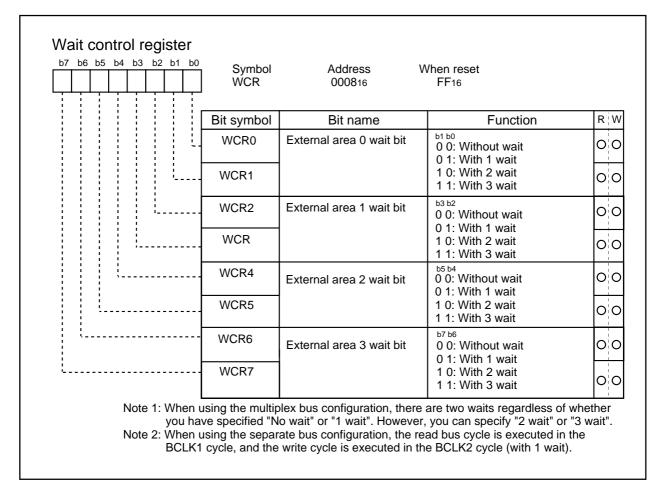
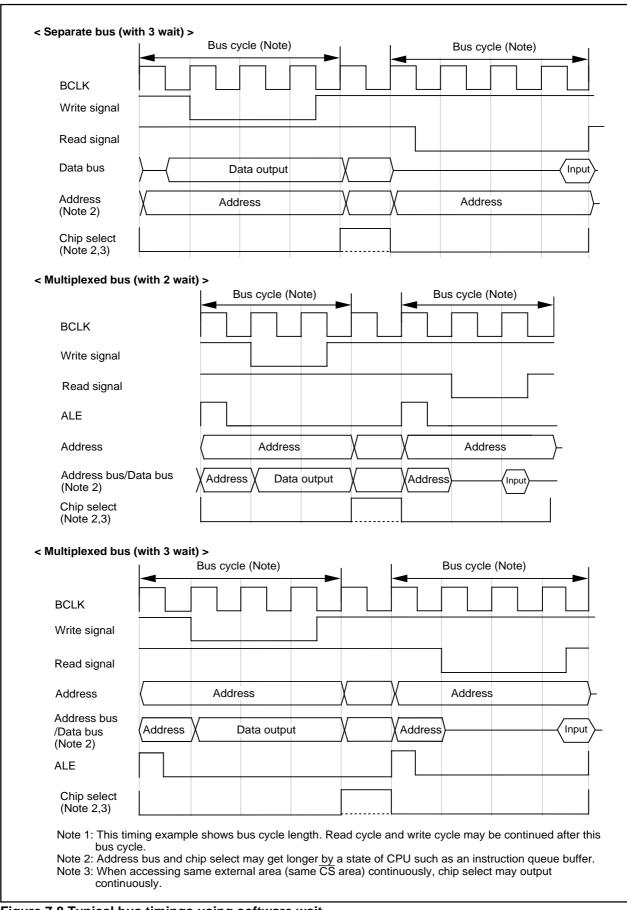


Figure 7.6 Wait control register

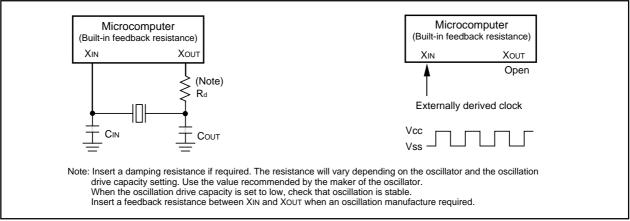

Table 7.11	Software	waits	and	bus	cycles

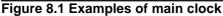
Area	Bus status	Internal memory wait bit	External memory area i wait bit	Bus cycle	
SFR				2 BCLK cycles	
Internal		0		1 BCLK cycle	
ROM/RAM		1		2 BCLK cycles	
			002	Read :1 BCLK cycle	
	Separate bus	Separate bus 0	Separate bus	002	Write : 2 BCLK cycles
				012	2 BCLK cycles
External memory				102	3 BCLK cycles
area			112	4 BCLK cycles	
			002	3 BCLK cycle	
	Multiplex bus		012	3 BCLK cycles	
			102	3 BCLK cycles	
			112	4 BCLK cycles	

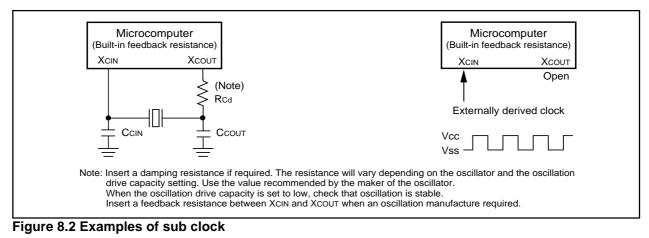
< Separate bus (no wait) >	Bus cycle (Note) Bu	us cycle (Note)
BCLK		
Write signal		
Read signal		
Data bus	Output	(Input)
Address bus (Note 2)	Address	Address
Chip select (Note 2,3)		
< Separate bus (with wait) >		
	Bus cycle (Note)	Bus cycle (Note)
BCLK		
Write signal		
Read signal		
Data bus	Output	(Input)
Address bus (Note 2)	Address	Address
Chip select (Note 2,3)		
< Separate bus with 2 wait >	Bus cycle (Note 1)	Bus cycle (Note 1)
BCLK		
Write signal		
Read signal		
Data bus	Data output	Input
Address bus (Note 2)	Address	Address
Chip select (Note 2,3)		
bus cycle. Note 2: Address bus and chip se	lect may get longer by a state o	e and write cycle may be continued after this of CPU such as an instruction queue buffer. ntinuously, chip select may output

Figure 7.7 Typical bus timings using software wait

8. Clock Generating Circuit


The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the CPU and internal peripheral units.


	Main clock generating circuit	Sub clock generating circuit	
Use of clock	CPU's operating clock source	CPU's operating clock source	
	 Internal peripheral units' 	Timer A/B's count clock	
	operating clock source	source	
Usable oscillator	Ceramic or crystal oscillator	Crystal oscillator	
Pins to connect oscillator	Xin, Xout	Xcin, XCOUT	
Oscillation stop/restart function	Available	Available	
Oscillator status immediately after reset	Oscillating	Stopped	
Other	Externally derived clock can be input		


Table 8.1 Main clock and sub clock generating circuits

8.1 Example of oscillator circuit

Figure 8.1 shows some examples of the main clock circuit, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Figure 8.2 shows some examples of sub clock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Circuit constants in Figures 8.1 and 8.2 vary with each oscillator used. Use the values recommended by the manufacturer of your oscillator.

REJ09B0187-0100

8.2 Clock Control

Figure 8.3 shows the block diagram of the clock generating circuit.

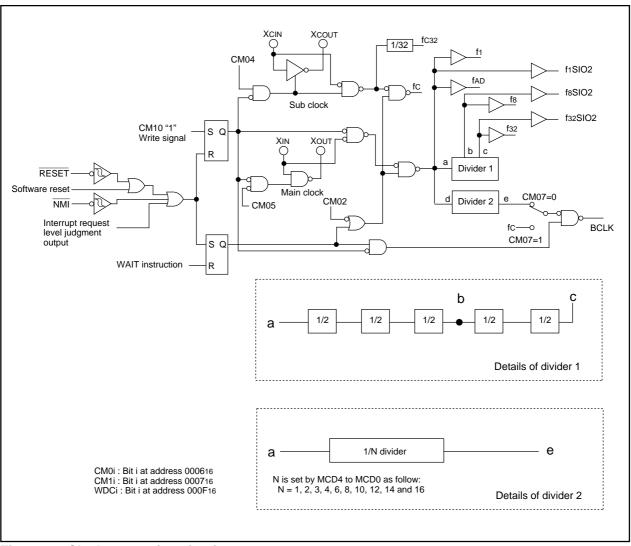


Figure 8.3 Clock generating circuit

The following paragraphs describes the clocks generated by the clock generating circuit.

(1) Main clock

The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Switching to the sub clock oscillation as CPU operating clock source before stopping the clock reduces the power dissipation.

When the main clock is stoped (bit 5 at address 000616 =1) or the mode is shifted to stop mode (bit 0 at address 000716 =1), the main clock division register (address 000C16) is set to the division by 8 ("0816"). After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock oscillation circuit capacity select bit (bit 5 at address 000716). Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit defaults to "1" when shifting from high-speed or middle-speed mode to stop mode and after a reset. This bit remains in low-speed and low power dissipation mode.

(2) Sub clock

The sub clock is generated by the sub clock oscillation circuit. No sub clock is generated after a reset. After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub clock can be selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure that the sub clock oscillation has fully stabilized before switching.

After the oscillation of the sub clock oscillation circuit has stabilized, the drive capacity of the sub clock oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616). Reducing the drive capacity of the sub clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting to stop mode and at a reset.

When the sub clock is used, set ports P86 and P87 to no pull-up resistance with the input port.

(3) BCLK

The BCLK is the clock that drives the CPU, and is either fc or is derived by dividing the main clock by 1, 2, 3, 4, 6, 8, 10, 12, 14 or 16. The BCLK is derived by dividing the main clock by 8 after a reset.

This signal is output from BCLK pin using CM01, CM00 and PM07 in memory expansion mode and microprocessor mode.

When main clock is stoped or shifting to stop mode, the main clock division register (address 000C16) is set to the division by 8 ("0816").

(4) Peripheral function clock

• f1, f8, f32, f1SIO2, f8SIO2, f32SIO2

The clock for the peripheral devices is derived from the main clock or by dividing it by 8 or 32. The peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function clock stop bit (bit 2 at 000616) to "1" and then executing a WAIT instruction.

• fad

This clock has the same frequency as the main clock and is used for A/D conversion.

(5) fc32

This clock is derived by dividing the sub clock by 32. It is used for the timer A and timer B counts.

(6) fc

This clock has the same frequency as the sub clock. It is used for BCLK and for the watchdog timer.

Figure 8.4 shows the system clock control registers 0 and 1 and Figure 8.5 shows main clock division register.

╶┼┼┼┼┼┼┼┼] Symbo CM0	I Address 000616	When reset 0816	
	Bit symbol	Bit name	Function	RV
	- CM00	Clock output function select bit (Note 2)	0 0 : I/O port P53 0 1 : fC output (Note 3)	00
l	CM01		1 0 : f8 output (Note 3) 1 1 : f32 output (Note 3)	00
· · · · · · · · · · · · · · · · · · ·	. CM02	WAIT peripheral function clock stop bit	 0 : Do not stop peripheral clock in wait mode 1 : Stop peripheral clock in wait mode (Note 10) 	00
	CM03	XCIN-XCOUT drive capacity select bit (Note 4)	1 : HIGH	00
	CM04	Port XC select bit	0 : I/O port 1 : XcIN-Xcout generation (Note 11)	00
	CM05	Main clock (XIN-XOUT) stop bit (Note 5, 6)	0 : On 1 : Off (Note 7)	00
	CM06	Watchdog timer function select bit	0 : Watchdog timer interrupt 1 : Reset (Note 8)	00
	CM07	System clock select bit (Note 9)	0 : Xin, Xout 1 : Xcin, Xcout	00
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XOUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has t	when shifting the power sa m clock stop "1", XOUT is level) via the clock is stop ode. peen set once	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed e feedback resistance. ped, the main clock divisio e, "0" cannot be written by	use P57 as input port. is stopped using this bit. To stop the oscillation of sub clock is stable. The back resistance remains ON, so XIN on register (address 000C16) is set to software.	en se i is p o the
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XOUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has to Note 9: To set CM07 "/ CM07. Also, to stable. Then s Note 10: fc32 is not incl Note 11: When XcIN-Xcin System clock control Note b5 b4 b3 b2 b1 b0	when shifting the power sa m clock stop ' level) via the clock is stop ode. been set once to set CM07 "C et CM07. Do uded. court is used,	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed e feedback resistance. ped, the main clock division a, "0" cannot be written by "st set CM04 to "1", and an " from "1", first set CM05 to not rewrite CM04 and CM set port P86 and P87 to not (Note 1)	is stopped using this bit. To stop the oscillation of sub clock is stable. The back resistance remains ON, so XIN on register (address 000C16) is set to software.	en se is p the nen s k is
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XOUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has to Note 9: To set CM07 "/ CM07. Also, to stable. Then s Note 10: fc32 is not incl Note 11: When XcIN-Xcin System clock control or b6 b5 b4 b3 b2 b1 b0	when shifting the power sa m clock stop "1", XOUT is clock is stop ode. seen set once to clock is stop ode. set CM07 "C et CM07. Do uded. COUT is used, I register 1 Symbo CM1	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed e feedback resistance. ped, the main clock division e, "0" cannot be written by "st set CM04 to "1", and an " from "1", first set CM05 to not rewrite CM04 and CM0 set port P86 and P87 to not (Note 1) I Address	is stopped using this bit. To stop the oscillation of sub clock is stable. The lback resistance remains ON, so XIM on register (address 000C16) is set to software. oscillation of sub clock is stable. The oscillation of sub clock is stable. The oscillation of sub clock is stable. The software. oscillation of sub clock is stable. The oscillation of sub clock is stable. The oscillation of sub clock is stable. The software. oscillation of sub clock is stable. The software. So	en se i is p o the nen s k is rt.
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XOUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has to Note 9: To set CM07 "/ CM07. Also, to stable. Then s Note 10: fc32 is not incl Note 11: When XcIN-Xcin System clock control 7 b6 b5 b4 b3 b2 b1 b0	when shifting the power sa m clock stop "1", XOUT is clock is stop ode. been set once to clock is used, to clock is used	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed e feedback resistance. ped, the main clock division e, "0" cannot be written by st set CM04 to "1", and an 0" from "1", first set CM05 to not rewrite CM04 and CM set port P86 and P87 to not (Note 1) I Address 000716 Bit name All clock stop control bit	is stopped using this bit. To stop the oscillation of sub clock is stable. The lback resistance remains ON, so XIM on register (address 000C16) is set to software. o scillation of sub clock is stable. The o scillation of sub clock is stable. The o "1", and an oscillation of main cloc 05 simultaneously. o pull-up resistance with the input po When reset 2016 Function 0 : Clock on	I is p the the nen s k is rt.
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XOUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has to Note 9: To set CM07 "/ CM07. Also, to stable. Then s Note 10: fc32 is not incl Note 11: When XcIN-Xcin System clock control 17 b6 b5 b4 b3 b2 b1 b0	when shifting the power sa m clock stop ' "1", XOUT is ' level) via the clock is stop ode. Deen set once to set CM07 "C et CM07. Do uded. COUT is used, I register 1 Symbo CM1	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed e feedback resistance. ped, the main clock division e, "0" cannot be written by st set CM04 to "1", and an " from "1", first set CM05 to not rewrite CM04 and CM set port P86 and P87 to not (Note 1) I Address 000716 Bit name All clock stop control bit (Note 3)	is stopped using this bit. To stop the oscillation of sub clock is stable. The lback resistance remains ON, so XIM on register (address 000C16) is set to software. o oscillation of sub clock is stable. The oscillation of sub clock is stable.	I is p the the nen s k is rt.
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XOUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has to Note 9: To set CM07 "/ CM07. Also, to stable. Then s Note 10: fc32 is not incl Note 11: When XcIN-Xcin System clock control 17 b6 b5 b4 b3 b2 b1 b0	when shifting the power sa m clock stop ' "1", XOUT is ' level) via the clock is stop ode. been set once to set CM07 "C et CM07. Do uded. COUT is used, I register 1 Symbo CM1 Bit symbol CM10	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed e feedback resistance. ped, the main clock division e, "0" cannot be written by st set CM04 to "1", and an " from "1", first set CM05 to not rewrite CM04 and CM set port P86 and P87 to not (Note 1) I Address 000716 Bit name All clock stop control bit (Note 3)	is stopped using this bit. To stop the oscillation of sub clock is stable. The lback resistance remains ON, so Xin on register (address 000C16) is set to software. o oscillation of sub clock is stable. The o scillation of sub clock is stable. The o "1", and an oscillation of main cloc 05 simultaneously. o pull-up resistance with the input po When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode) (Note 4)	en se i is p o the nen s k is rt.
Note 4: Changes to "1" Note 5: When entering clock, set syste bit to "1". Note 6: When this bit is up to XoUT ("H' Note 7: When the main division by 8 m Note 8: When "1" has to Note 9: To set CM07 "/ CM07. Also, to stable. Then s Note 10: fc32 is not incl Note 11: When XcIN-Xo System clock contro	when shifting the power sa m clock stop "1", XOUT is ' level) via the o clock is stop ode. Deen set once " from "0", fir o set CM07 "C et CM07. Do uded. COUT is used, I register 1 Symbol CM1 Bit symbol CM10 Reserved b	g to stop mode or reset. ving mode, the main clock bit (CM07) to "1" while an "H". Also, the internal feed a feedback resistance. ped, the main clock division a feedback resistance. a feedback resi	is stopped using this bit. To stop the oscillation of sub clock is stable. The lback resistance remains ON, so Xin on register (address 000C16) is set to software. o oscillation of sub clock is stable. The o scillation of sub clock is stable. The o "1", and an oscillation of main cloc 05 simultaneously. o pull-up resistance with the input po When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode) (Note 4)	en se is p the nen s k is

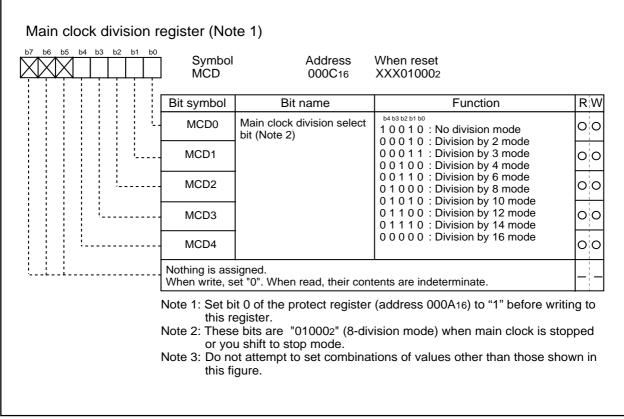


Figure 8.5 Main clock division register

8.3 Clock Output

In single chip mode, when the BCLK output function select bit (bit 7 at address 000416 :PM07) is "1", you can output f8, f32, or fc from the P53/BCLK/ALE/CLKOUT pins by setting the clock output function select bits (bits 1 and 0 at address 000616 :CM01, CM00).(Note)

Even when you set PM07 to "0" and CM01 and CM00 to "002", no BCLK is output.

In memory expansion mode or microprocessor mode, when the ALE pin select bits (bits 5 and 4 at address 000516 :PM15, PM14) are other than "012(P53/BCLK)" and PM07 is "1", you can output f8, f32, or fc from the P53/BCLK/ALE/CLKOUT pins by setting CM01 and CM00.

In memory expansion mode or microprocessor mode, when PM15 and PM14 are other than "012(P53/ BCLK)" and PM07 is "0" and CM01 and CM00 to "002", BCLK is output from the P53/BCLK/ALE/CLKOUT pins.

When stopping clock output in memory expansion mode or microprocessor mode, set PM07 to "1" and CM01 and CM00 to "002" (IO port P53). The P53 function is not selected. When PM15 and PM14 are "012 (P53/BCLK)" and CM01 and CM00 are "002", PM07 is ignored and the P53 pin is set for ALE output.

When the WAIT peripheral function clock stop bit (bit 2 at address 000616) is set to "1", f8 or f32 clock output is stopped when a WAIT command is executed.

Table 8.2 shows clock output setting (single chip mode) and Table 8.3 shows clock output setting (memory expansion/microprocessor mode).

Note :When outputting the f8, f32 or fc from port P53/BCLK/ALE/CLKOUT pin in single chip mode, use port P57/RDY as an input only port.

RENESAS

BCLK output function select bit	•	function select	ALE pin select bit		P53/BCLK/ALE/CLKout
PM07	CM01	CM00	PM15	PM14	pin function
0/1	0	0	Ignored	Ignored	P53 I/O port
1	0	1	Ignored	Ignored	fc output (Note)
1	1	0	Ignored	Ignored	f8 output (Note)
1	1	1	Ignored	Ignored	f32 output (Note)

Table 8.2 Clock output setting (single chip mode)

Note : Must use P57 as input port.

Table 8.3 Clock output setting (memory expansion/microprocessor mode)

BCLK output function select bit	• •	unction select	ALE pin select bit		P53/BCLK/ALE/CLKOUT
PM07	CM01	CM00	PM15	PM14	pin function
0	0	0			BCLK output
1	0	0	0	0	"L" output (not P53)
1	0	1	1	0	fc output
1	1	0	1	1	f8 output
1	1	1			f32 output
Ignored	0	0	0	1	ALE output

8.4 Stop Mode

Writing "1" to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that Vcc remains above 2V.

Because the oscillation of BCLK, f1 to f32, f1SiO2 to f32SiO2, fc, fc32, and fAD stops in stop mode, peripheral functions such as the A/D converter and watchdog timer do not function. However, timer A and timer B operate provided that the event counter mode is set to an external pulse, and UARTi(i = 0 to 2) functions provided an external clock is selected. Table 8.4 shows the status of the ports in stop mode. Stop mode is cancelled by a hardware reset or interrupt.

When using an interrupt to exit stop mode, the relevant interrupt must have been enabled and set to a priority level above the level set by the interrupt priority set bits (bits 2, 1, and 0 at address 009F16) for exiting a stop/wait state. Set the interrupt priority set bits for the exit from a stop/wait state to the same level as the flag register (FLG) processor interrupt level (IPL). Figure 8.6 shows the exit priority register.

The priority level of the interrupt which is not used to cancel stop mode, must have been changed to 0. When exiting stop mode using an interrupt, the relevant interrupt routine is executed.

If only a hardware reset or an NMI interrupt is used to cancel stop mode, change the priority level of all interrupt to 0, then shift to stop mode.

When shifting to stop mode and reset, the main clock division register (000C16) is set to "0816".

Table 8.4 Port status during stop mode

Pin		Memory expansion mode	Single-chip mode
		Microprocessor mode	
Address bus,	data bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{BHE}}$	Retains status before stop mode	
RD, WR, WF	RL, WRH, DW, CASL,	"H" (Note)	
CASH			
RAS		"H" (Note)	
HLDA, BCLK	<	"H"	
ALE		"H"	
Port		Retains status before stop mode	Retains status before stop mode
CLKOUT	When fc selected	"H"	"H"
	When f8, f32 selected	Retains status before stop mode	Retains status before stop mode

Note :When self-refresh is done in operating DRAM control, CAS and RAS becomes "L".

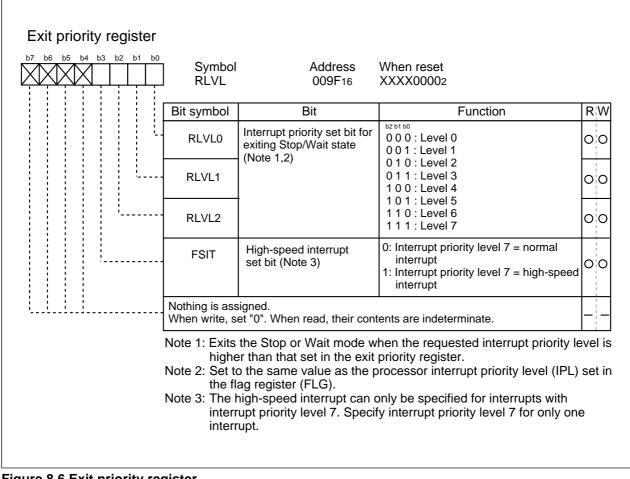


Figure 8.6 Exit priority register

8.5 Wait Mode

When a WAIT instruction is executed, the BCLK stops and the microcomputer enters the wait mode. In this mode, oscillation continues but the BCLK and watchdog timer stop. Writing "1" to the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions, allowing power dissipation to be reduced. Table 8.5 shows the status of the ports in wait mode.

Wait mode is cancelled by a hardware reset or interrupt. If an interrupt is used to cancel wait mode, the microcomputer restarts using as BCLK the clock that had been selected when the WAIT instruction was executed.

When using an interrupt to exit Wait mode, the relevant interrupt must have been enabled and set to a priority level above the level set by the interrupt priority set bits for exiting a stop/wait state (bits 2, 1, and 0 at address 009F16). Set the interrupt priority set bits for the exit from a stop/wait state to the same level as the flag register (FLG) processor interrupt level (IPL).

The priority level of the interrupt which is not used to cancel wait mode, must have been changed to 0.

When using an interrupt to exit Wait mode, the microcomputer resumes operating the clock that was operating when the WAIT command was executed as BCLK from the interrupt routine.

If only a hardware reset or an NMI interrupt is used to cancel stop mode, change the priority level of all interrupt to 0, then shift to wait mode.

Pin		Memory expansion mode	Single-chip mode
		Microprocessor mode	
	ta bus, $\overline{CS0}$ to $\overline{CS3}$,	Retains status before wait mode	
BHE			
$\overline{RD}, \overline{WR}, \overline{WRL}, \overline{V}$	WRH, DW, CASL,	"H" (Note)	
CASH			
RAS		"H" (Note)	
HLDA,BCLK		"H"	
ALE		"L"	
Port		Retains status before wait mode Retains status before wait mode	
CLKOUT	When fC selected	Does not stop	
	When f8, f32 selected	Does not stop when the WAIT	peripheral function clock stop bit
		is "0". When the WAIT periphe	eral function clock stop bit is "1",
		the status immediately prior to entering wait mode is ma	
		tained.	

Table 8.5 Port status during wait mode

Note :When self-refresh is done in operating DRAM control, CAS and RAS becomes "L".

8.6 Status Transition of BCLK

Power dissipation can be reduced and low-voltage operation achieved by changing the count source for BCLK. Table 8.6 shows the operating modes corresponding to the settings of system clock control registers 0 and main clock division register.

After a reset, operation defaults to division by 8 mode. When shifting to stop mode, reset or stopping main clock, the main clock division register (address 000C16) is set to "0816".

(1) Division by 2 mode

The main clock is divided by 2 to obtain the BCLK.

(2) Division by 3 mode

The main clock is divided by 3 to obtain the BCLK.

(3) Division by 4 mode

The main clock is divided by 4 to obtain the BCLK.

(4) Division by 6 mode

The main clock is divided by 6 to obtain the BCLK.

(5) Division by 8 mode

The main clock is divided by 8 to obtain the BCLK. After reset, this mode is executed. Note that oscillation of the main clock must have stabilized before transferring from this mode to no-division, division by 2, 6, 10, 12, 14 and 16 mode.

Oscillation of the sub clock must have stabilized before transferring to low-speed and low power dissipation mode.

(6) Division by 10 mode

The main clock is divided by 10 to obtain the BCLK.

(7) Division by 12 mode

The main clock is divided by 12 to obtain the BCLK.

(8) Division by 14 mode

The main clock is divided by 14 to obtain the BCLK.

(9) Division by 16 mode

The main clock is divided by 16 to obtain the BCLK.

(10) No-division mode

The main clock is divided by 1 to obtain the BCLK.

(11) Low-speed mode

fc is used as BCLK. Note that oscillation of both the main and sub clocks must have stabilized before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the sub clock starts. Therefore, the program must be written to wait until this clock has stabilized immediately after powering up and after stop mode is cancelled.

(12) Low power dissipation mode

fc is the BCLK and the main clock is stopped.

When the main clock is stoped, the main clock division register (address 000C16) is set to the division by 8 mode.

Note: When count source of BCLK is changed from clock A to clock B (XIN to XCIN or XCIN to XIN), clock B needs to be stable before changing. Please wait to change modes until after oscillation has stabilized.

Table of Operating modes abtaice by settings of system block control register v and main block artister register								
CM07	CM05	CM04	MCD4	MCD3	MCD2	MCD1	MCD0	Operating mode of BCLK
0	0	Invalid	1	0	0	1	0	No division
0	0	Invalid	0	0	0	1	0	Division by 2 mode
0	0	Invalid	0	0	0	1	1	Division by 3 mode
0	0	Invalid	0	0	1	0	0	Division by 4 mode
0	0	Invalid	0	0	1	1	0	Division by 6 mode
0	0	Invalid	0	1	0	0	0	Division by 8 mode
0	0	Invalid	0	1	0	1	0	Division by 10 mode
0	0	Invalid	0	1	1	0	0	Division by 12 mode
0	0	Invalid	0	1	1	1	0	Division by 14 mode
0	0	Invalid	0	0	0	0	0	Division by 16 mode
1	0	1	Invalid	Invalid	Invalid	Invalid	Invalid	Low-speed mode
1	1	1	Invalid	Invalid	Invalid	Invalid	Invalid	Low power dissipation mode

Table 8.6 Operating modes dictated by settings of system clock control register 0 and main clock division register

CM0i: Clock control register 0 (address 000616) bit i MCDi: Main clock division register (address 000C16) bit i

8.7 Power Saving

In Power Save modes, the CPU and oscillator stop and the operating clock is slowed to minimize power dissipation by the CPU. The following outlines the Power Save modes. There are three power save modes.

(1) Normal operating mode

• High-speed mode

In this mode, one main clock cycle forms BCLK. The CPU operates on the selected internal clock. The peripheral functions operate on the clocks specified for each respective function.

Medium-speed mode

In this mode, the main clock is divided into 2, 3, 4, 6, 8, 10, 12, 14, or 16 to form BCLK. The CPU operates on the selected internal clock. The peripheral functions operated on the clocks specified for each respective function.

• Low-speed mode

In this mode, fc forms BCLK. The CPU operates on the fc clock. fc is the clock supplied by the subclock. The peripheral functions operate on the clocks specified for each respective function.

• Low power-dissipation mode

This mode is selected when the main clock is stopped from low-speed mode. The CPU operates on the fc clock. fc is the clock supplied by the subclock. Only the peripheral functions for which the subclock was selected as the count source continue to run.

(2) Wait mode

CPU operation is halted in this mode. The oscillator continues to run.

(3) Stop mode

All oscillators stop in this mode. The CPU and internal peripheral functions all stop. Of all 3 power saving modes, power savings are greatest in this mode.

Figure 8.7 shows the clock transition between each of the three modes, (1), (2), and (3).

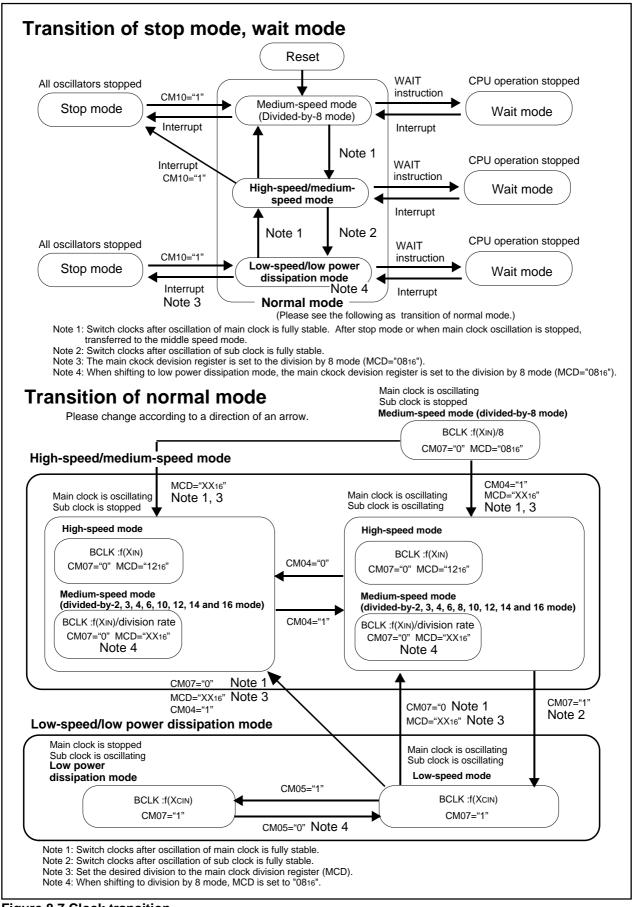
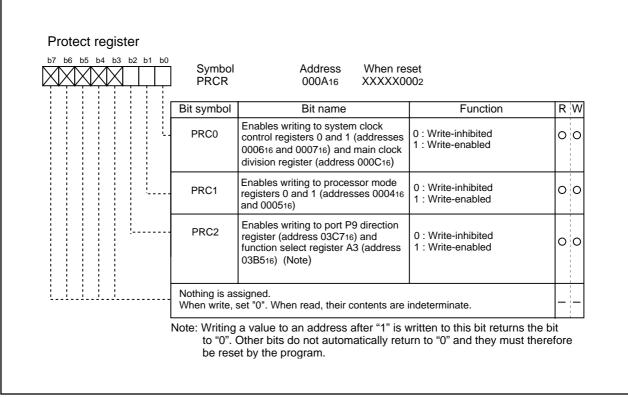


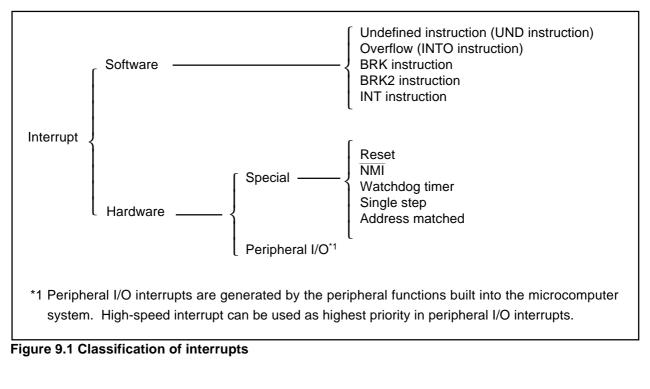
Figure 8.7 Clock transition

8.8 Protection

The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 8.8 shows the protect register. The values in the processor mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716), main clock division register (address 000C16), port P9 direction register (address 03C716) and function select register A3 (address 03B516) can only be changed when the respective bit in the protect register is set to "1". Therefore, important outputs can be allocated to port P9.

If, after "1" (write-enabled) has been written to the PRC2 (bit 2 at address 000A16), a value is written to any address, the bit automatically reverts to "0" (write-inhibited). Change port P9 input/output and function select register A3 immediately after setting "1" to PRC2. Interrupt and DMA transfer should not be inserted between instructions. However, the PRC0 (bit 0 at address 000A16) and PRC1 (bit 1 at address 000A16) do not automatically return to "0" after a value has been written to an address. The program must therefore be written to return these bits to "0".




Figure 8.8 Protect register

9. Interrupt Outline

9.1 Types of Interrupts

Figure 9.1 lists the types of interrupts.

- Maskable interrupt : An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority can be changed by priority level.
 Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag
 - (I flag) or whose interrupt priority cannot be changed by priority level.

9.2 Software Interrupts

Software interrupts are generated by some instruction that generates an interrupt request when executed. Software interrupts are nonmaskable interrupts.

(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 interrupt

This interrupt occurs when the BRK2 instruction is executed. This interrupt is used exclusively for debugger purposes. You normally do not need to use this interrupt.

(5) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number from 0 to 63. Note that software interrupt numbers 0 to 43 are assigned to peripheral I/O interrupts. This means that by executing the INT instruction, you can execute the same interrupt routine as used in peripheral I/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number. For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The previous U flag before the interrupt occurred is restored when control returns from the interrupt routine. For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

However, in peripheral I/O interrupts, the U flag is saved when an interrupt occurs and the U flag is cleared to 0 to choose ISP.

Therefore movement of U flag is different by peripheral I/O interrupt or INT instruction in software interrupt number 32 to 43.

9.3 Hardware Interrupts

There are Two types in hardware Interrupts; special interrupts and Peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

• Reset

A reset occurs when the RESET pin is pulled low.

NMI interrupt

This interrupt occurs when the $\overline{\text{NMI}}$ pin is pulled low.

Watchdog timer interrupt

This interrupt is caused by the watchdog timer.

• Address-match interrupt

This interrupt occurs immediately before the instruction at the address indicated by the address match interrupt register is executed while the address match interrupt enable bit is set to "1".

This interrupt does not occur if any address other than the start address of an instruction is set in the address match register.

• Single-step interrupt

This interrupt is used exclusively for debugger purposes, do not use it in other circumstances. A singlestep interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated after one instruction is executed.

(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 0 through 43 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.

• Bus collision detection, start/stop condition detection interrupts (UART2, UART3, UART4), fault error interrupts (UART3, 4)

This is an interrupt that the serial I/O bus collision detection generates. When I²C mode is selected, start, stop condition interrupt is selected. When \overline{SS} pin is selected, fault error interrupt is selected.

- DMA0 through DMA3 interrupts These are interrupts that DMA generates.
- Key-input interrupt

A key-input interrupt occurs if an "L" is input to the \overline{KI} pin.

• A/D conversion interrupt

This is an interrupt that the A/D converter generates.

- UART0, UART1, UART2/NACK, UART3/NACK and UART4/NACK transmission interrupt These are interrupts that the serial I/O transmission generates.
- UART0, UART1, UART2/ACK, UART3/ACK and UART4/ACK reception interrupt These are interrupts that the serial I/O reception generates.
- Timer A0 interrupt through timer A4 interrupt These are interrupts that timer A generates
- Timer B0 interrupt through timer B5 interrupt These are interrupts that timer B generates.
- INT0 interrupt through INT5 interrupt

An INT interrupt selects a edge sense or a level sense. In edge sense, an INT interrupt occurs if either a rising edge or a falling edge or a both edge is input to the INT pin. In level sense, an INT interrupt occurs if either an "H" level or an "L" level is input to the INT pin.

9.4 High-speed interrupts

High-speed interrupts are interrupts in which the response is executed at 5 cycles and the return is 3 cycles.

When a high-speed interrupt is received, the flag register (FLG) and program counter (PC) are saved to the save flag register (SVF) and save PC register (SVP) and the program is executed from the address shown in the vector register (VCT).

Execute a FREIT instruction to return from the high-speed interrupt routine.

High-speed interrupts can be set by setting "1" in the high-speed interrupt specification bit allocated to bit 3 of the exit priority register. Setting "1" in the high-speed interrupt specification bit makes the interrupt set to level 7 in the interrupt control register into a high-speed interrupt.

You can only set one interrupt as a high-speed interrupt. When using a high-speed interrupt, do not set multiple interrupts as level 7 interrupts.

The interrupt vector for a high-speed interrupt must be set in the vector register (VCT).

When using a high-speed interrupt, you can use a maximum of two DMAC channels.

The execution speed is improved when register bank 1 is used with high speed interrupt register selected by not saving registers to the stack but to the switching register bank. In this case, switch register bank mode for high-speed interrupt routine.

9.5 Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 9.2 shows the format for specifying the address.

Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.

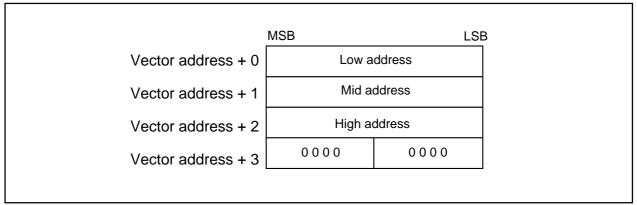


Figure 9.2 Format for specifying interrupt vector addresses

• Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 9.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
Undefined instruction	FFFFDC16 to FFFFDF16	Interrupt on UND instruction
Overflow	FFFFE016 to FFFFE316	Interrupt on INTO instruction
BRK instruction	FFFFE416 to FFFFE716	If content of FFFFE716 is filled with FF16, program
execution		starts from the address shown by the vector in the
		variable vector table
Address match	FFFFE816 to FFFFEB16	There is an address-matching interrupt enable bit
Watchdog timer	FFFFF016 to FFFFF316	
NMI	FFFFF816 to FFFFFB16	External interrupt by input to NMI pin
Reset	FFFFFC16 to FFFFFF16	

Table 9.1 Interrupt factors	(fixed interrupt vector	addresses)
-----------------------------	-------------------------	------------

• Vector table dedicated for emulator

Table 9.2 shows interrupt vector address which is vector table register dedicated for emulator (address 00002016 to 00002216). These instructions are not effected with interrupt enable flag (I flag) (non maskable interrupt).

This interrupt is used exclusively for debugger purposes. You normally do not need to use this interrupt. Do not access to the interrupt vector table register dedicated for emulator (address 00002016 to 00002216).

Table 9.2 Interru	ot vector table	reaister for	emulator
	Di 10010. 10010		onnanato.

	—	
Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
BRK2 instruction	Interrupt vector table register for emulator	Interrupt for debugger
	00002016 to 00002216	
Single step	Interrupt vector table register for emulator	Interrupt for debugger
	00002016 to 00002216	

Variable vector tables

The addresses in the variable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 9.3 shows the interrupts assigned to the variable vector tables and addresses of vector tables.

Set an even address to the start address of vector table setting in INTB so that operating efficiency is increased.

Software interrupt number	Vector table address Address (L) to address (H)	Interrupt source	Remarks
Software interrupt number 0	+0 to +3 (Note 1)	BRK instruction	Cannot be masked I flag
Software interrupt number 8	+32 to +35 (Note 1)	DMA0	
Software interrupt number 9	+36 to +39 (Note 1)	DMA1	
Software interrupt number 10	+40 to +43 (Note 1)	DMA2	
Software interrupt number 11	+44 to +47 (Note 1)	DMA3	
Software interrupt number 12	+48 to +51 (Note 1)	Timer A0	
Software interrupt number 13	+52 to +55 (Note 1)	Timer A1	
Software interrupt number 14	+56 to +59 (Note 1)	Timer A2	
Software interrupt number 15	+60 to +63 (Note 1)	Timer A3	
Software interrupt number 16	+64 to +67 (Note 1)	Timer A4	
Software interrupt number 17	+68 to +71 (Note 1)	UART0 transmit	
Software interrupt number 18	+72 to +75 (Note 1)	UART0 receive	
Software interrupt number 19	+76 to +79 (Note 1)	UART1 transmit	
Software interrupt number 20	+80 to +83 (Note 1)	UART1 receive	
Software interrupt number 21	+84 to +87 (Note 1)	Timer B0	
Software interrupt number 22	+88 to +91 (Note 1)	Timer B1	
Software interrupt number 23	+92 to +95 (Note 1)	Timer B2	
Software interrupt number 24	+96 to +99 (Note 1)	Timer B3	
Software interrupt number 25	+100 to +103 (Note 1)	Timer B4	
Software interrupt number 26	+104 to +107 (Note 1)	INT5	
Software interrupt number 27	+108 to +111 (Note 1)	INT4	
Software interrupt number 28	+112 to +115 (Note 1)	ĪNT3	
Software interrupt number 29	+116 to +119 (Note 1)	ĪNT2	
Software interrupt number 30	+120 to +123 (Note 1)	INT1	
Software interrupt number 31	+124 to +127 (Note 1)	INTO	
Software interrupt number 32	+128 to +131 (Note 1)	Timer B5	
Software interrupt number 33	+132 to +135 (Note 1)	UART2 transmit/NACK (Note 2)	
Software interrupt number 34	+136 to +139 (Note 1)	UART2 receive/ACK (Note 2)	
Software interrupt number 35	+140 to +143 (Note 1)	UART3 transmit/NACK (Note 2)	
Software interrupt number 36	+144 to +147 (Note 1)	UART3 receive/ACK (Note 2)	
Software interrupt number 37	+148 to +151 (Note 1)	UART4 transmit/NACK (Note 2)	
Software interrupt number 38	+152 to +155 (Note 1)	UART4 receive/ACK (Note 2)	
Software interrupt number 39	+156 to +159 (Note 1)	Bus collision detection, start/stop condition detection (UART2) (Note 2)	
Software interrupt number 40	+160 to +163 (Note 1)	Bus collision detection, start/stop condition detection, fault error (UART3) (Note 2, 3)	
Software interrupt number 41	+164 to +167 (Note 1)	Bus collision detection, start/stop condition detection, fault error (UART4) (Note 2, 3)	
Software interrupt number 42	+168 to +171 (Note 1)	A/D	
Software interrupt number 43	+172 to +175 (Note 1)	Key input interrupt	
Software interrupt number 44	+176 to +179 (Note 1)	· · ·	
to Software interrupt number 63	to +252 to +255 (Note 1)	Software interrupt	Cannot be masked I flag

Table 9.3 Interrupt causes (variable interrupt vector addresses)

Note 1: Address relative to address in interrupt table register (INTB). Note 2: When I²C mode is selected, NACK/ACK, <u>start/stop</u> condition detection interrupts are selected.

Note 3: The fault error interrupt is selected when \overline{SS} pin is selected.

9.6 Interrupt control registers

Peripheral I/O interrupts have their own interrupt control registers. Figure 9.3 shows the interrupt control registers.

When using an interrupt to exit Stop mode or Wait mode, the relevant interrupt must have been enabled and set to a priority level above the level set by the interrupt priority set bits for exit a stop/wait state (bits 2, 1, and 0 at address 009F16). Set the interrupt priority set bits for the exit from a stop/wait state to the same level as the flag register (FLG) processor interrupt level (IPL).

Figure 9.4 shows the exit priority register.

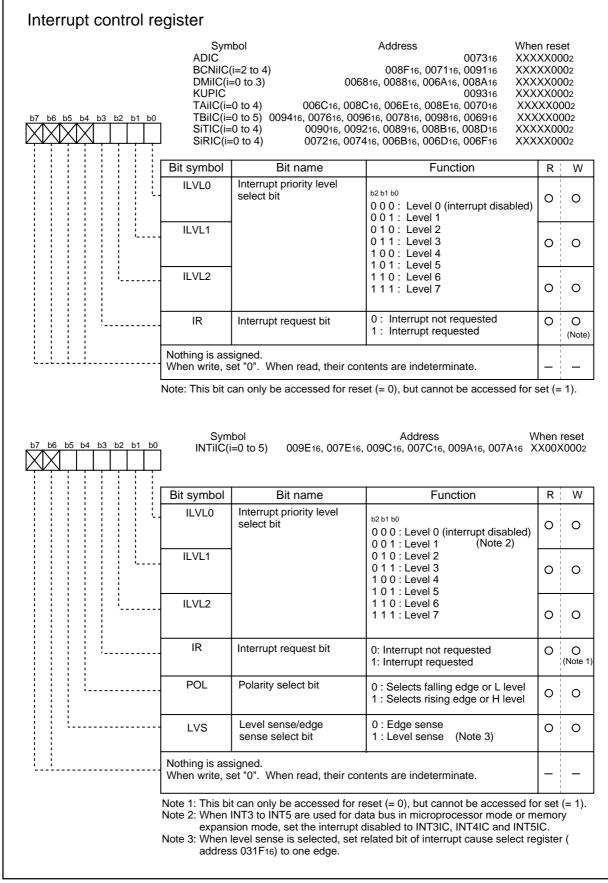


Figure 9.3 Interrupt control register

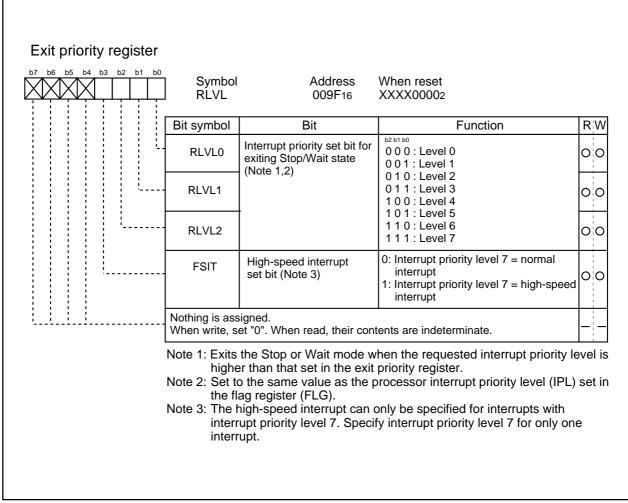


Figure 9.4 Exit priority register

9.7 Interrupt Enable Flag (I Flag)

The interrupt enable flag (I flag) is used to disable/enable maskable interrupts. When this flag is set (= 1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is automatically cleared to 0 after a reset is cleared.

9.8 Interrupt Request Bit

This bit is set (= 1) by hardware when an interrupt request is generated. The bit is cleared to 0 by hardware when the interrupt request is acknowledged and jump to the interrupt vector. This bit can be cleared to 0 (but cannot be set to 1) in software.

9.9 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)

Interrupt priority levels are set by the interrupt priority select bit in an interrupt control register. When an interrupt request is generated, the interrupt priority level of this interrupt is compared with the processor interrupt priority level (IPL). This interrupt is enabled only when its interrupt priority level is greater than the processor interrupt priority level (IPL). This means that you can disable any particular interrupt by setting its interrupt priority level to 0.

Table 9.4 shows how interrupt priority levels are set. Table 9.5 shows interrupt enable levels in relation to the processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is acknowledged:

- Interrupt enable flag (I flag) = 1
- Interrupt request bit = 1
- Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), interrupt request bit, interrupt priority level select bit, and the processor interrupt priority level (IPL) all are independent of each other, so they do not affect any other bit.

Interru level	• •	riority ct bit	Interrupt priority level	Priority order
b2 0	b1 0	ь0 О	Level 0 (interrupt disabled)	
0	0	1	Level 1	Low
0	1	0	Level 2	
0	1	1	Level 3	
1	0	0	Level 4	
1	0	1	Level 5	
1	1	0	Level 6	
1	1	1	Level 7	High

Table 9.4 Interrupt Priority Levels

Table 9.5 IPL and Interrupt Enable Levels

Processor interrupt		nterrupt	Enabled interrupt priority
priority level (IPL)		el (IPL)	levels
IPL ₂ 0	IPL ₁ 0	IPL ₀ 0	Interrupt levels 1 and above are enabled.
0	0	1	Interrupt levels 2 and above are enabled.
0	1	0	Interrupt levels 3 and above are enabled.
0	1	1	Interrupt levels 4 and above are enabled.
1	0	0	Interrupt levels 5 and above are enabled.
1	0	1	Interrupt levels 6 and above are enabled.
1	1	0	Interrupt levels 7 and above are enabled.
1	1	1	All maskable interrupts are disabled.

9.10 Rewrite the interrupt control register

When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

9.11 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

- (1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 00000016 (address 00000216 when high-speed interrupt). After this, the related interrupt request bit is "0".
- (2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
- (3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
- (4) Saves the content of the temporary register (Note 1) within the CPU in the stack area. Saves in the flag save register (SVF) in high-speed interrupt.
- (5) Saves the content of the program counter (PC) in the stack area. Saves in the PC save register (SVP) in high-speed interrupt.
- (6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.

Note: This register cannot be utilized by the user.

9.12 Interrupt Response Time

'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 9.5 shows the interrupt response time.

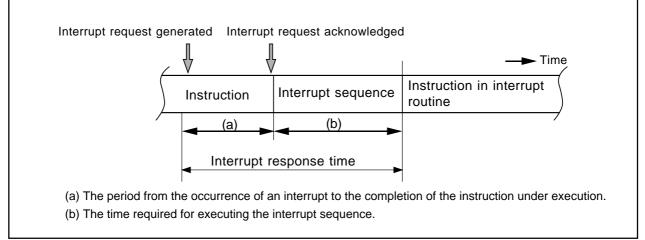


Figure 9.5 Interrupt response time

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time that consists of 24* cycles.

Time (b) is shown in Table 9.6.

* It is when the divisor is immediate or register. When the divisor is memory, the following value is added.

 Normal addressing 	: 2 + X
 Index addressing 	: 3 + X
 Indirect addressing 	: 5 + X + 2Y
 Indirect index addressing 	: 6 + X + 2Y

X is number of wait of the divisor area. Y is number of wait of the indirect address stored area. When X and Y are in odd address or in 8 bits bus area, double the value of X and Y.

Table 9.6 Interrupt Sequence Execution Time

Interrupt	Interrupt vector address	16 bits data bus	8 bits data bus
Peripheral I/O	Even address	14 cycles	16 cycles
	Odd address (Note 1)	16 cycles	16 cycles
INT instruction	Even address	12 cycles	14 cycles
	Odd address (Note 1)	14 cycles	14 cycles
NMI	Even address (Note 2)	13 cycles	15 cycles
Watchdog timer			
Undefined instruction			
Address match			
Overflow	Even address (Note 2)	14 cycles	16 cycles
BRK instruction (Variable vector table)	Even address	17 cycles	19 cycles
	Odd address (Note 1)	19 cycles	19 cycles
Single step	Even address (Note 2)	19 cycles	21 cycles
BRK2 instruction			
BRK instruction (Fixed vector table)			
High-speed interrupt (Note 3)	Vector table is internal register	5 cycles	

Note 1: Allocate interrupt vector addresses in even addresses, if possible.

Note 2: The vector table is fixed to even address.

Note 3: The high-speed interrupt is independent of these conditions.

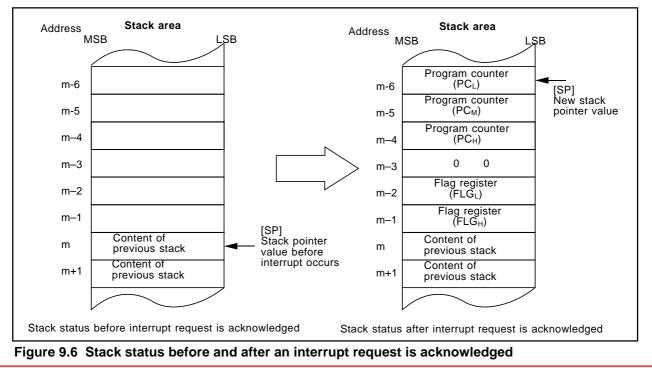
9.13 Changes of IPL When Interrupt Request Acknowledged

When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is set to the processor interrupt priority level (IPL).

If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in Table 9.7 is set to the IPL.

Interrupt sources without interrupt priority levels	Value that is set to IPL
Watchdog timer, NMI	7
Reset	0
Other	Not changed

9.14 Saving Registers


In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are saved to the stack area.

The order in which these contents are saved is as follows: First, the FLG register is saved to the stack area. Next, the 16 high-order bits and 16 low-order bits of the program counter expanded to 32-bit are saved. Figure 9.6 shows the stack status before an interrupt request is acknowledged and the stack status after an interrupt request is acknowledged.

In a high-speed interrupt sequence, the contents of the flag register (FLG) is saved to the flag save register (SVF) and program counter (PC) is saved to PC save register (SVP).

If there are any other registers you want to be saved, save them in software at the beginning of the interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP) by a single instruction.

The execution speed is improved when register bank 1 is used with high speed interrupt register selected by not saving registers to the stack but to the switching register bank. In this case, switch register bank mode for high-speed interrupt routine.

9.15 Return from Interrupt Routine

As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been saved to the stack area immediately preceding the interrupt sequence are automatically restored. In high-speed interrupt, as you execute the FREIT instruction at the end of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been saved to the save registers immediately preceding the interrupt sequence are automatically restored. In high-speed interrupt, as you execute the FREIT instruction at the end of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been saved to the save registers immediately preceding the interrupt sequence are automatically restored.

Then control returns to the routine that was under execution before the interrupt request was acknowledged, and processing is resumed from where control left off.

If there are any registers you saved via software in the interrupt routine, be sure to restore them using an instruction (e.g., POPM instruction) before executing the REIT or FREIT instruction.

When switching the register bank before executing REIT and FREIT instruction, switched to the register bank immediately before the interrupt sequence.

9.16 Interrupt Priority

If two or more interrupt requests are sampled active at the same time, whichever interrupt request is acknowledged that has the highest priority.

Maskable interrupts (Peripheral I/O interrupts) can be assigned any desired priority by setting the interrupt priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the priority between these interrupts is resolved by the priority that is set in hardware.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer interrupt have their priority levels set in hardware. Figure 9.7 lists the hardware priority levels of these interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an interrupt routine whenever the relevant instruction is executed.

9.17 Interrupt Resolution Circuit

Interrupt resolution circuit selects the highest priority interrupt when two or more interrupt requests are sampled active at the same time.

Figure 9.8 shows the interrupt resolution circuit.

Reset > NMI > Watchdog > Peripheral I/O > Single step > Address match

Figure 9.7 Interrupt priority that is set in hardware

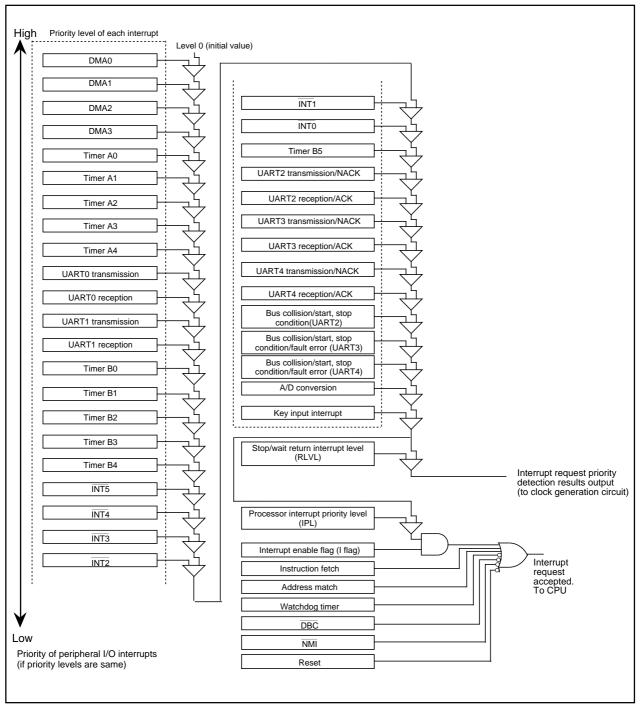


Figure 9.8 Interrupt resolution circuit

9.18 INT Interrupts

INTO to INT5 are external input interrupts. The level sense/edge sense switching bits of the interrupt control register select the input signal level and edge at which the interrupt can be set to occur on input signal level and input signal edge. The polarity bit selects the polarity.

With the external interrupt input edge sense, the interrupt can be set to occur on both rising and falling edges by setting the INTi interrupt polarity switch bit of the interrupt request select register (address 031F16) to "1". When you select both edges, set the polarity switch bit of the corresponding interrupt control register to the falling edge ("0").

When you select level sense, the INTi interrupt polarity switch bit of the interrupt request select register (address 031F16) to "0".

Figure 9.9 shows the interrupt request select register.

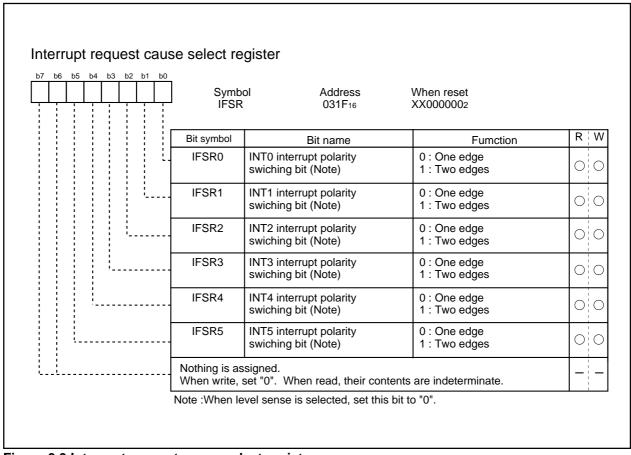


Figure 9.9 Interrupt request cause select register

9.19 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when the input to the P85/ $\overline{\text{NMI}}$ pin changes from "H" to "L". The $\overline{\text{NMI}}$ interrupt is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address 03C416).

This pin cannot be used as a normal port input.

Notes:

When not intending to use the $\overline{\text{NMI}}$ function, be sure to connect the $\overline{\text{NMI}}$ pin to Vcc (pulled-up). The $\overline{\text{NMI}}$ interrupt is non-maskable. Because it cannot be disabled, the pin must be pulled up.

9.20 Key Input Interrupt

If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 9.10 shows the block diagram of the key input interrupt. Note that if an "L" level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an interrupt.

Setting the key input interrupt disable bit (bit 7 at address 03AF16) to "1" disables key input interrupts from occurring regardless of the setting in the interrupt control register. When "1" is set in the key input interrupt disable register, there is no input via the port pin even when the direction register is set to input.

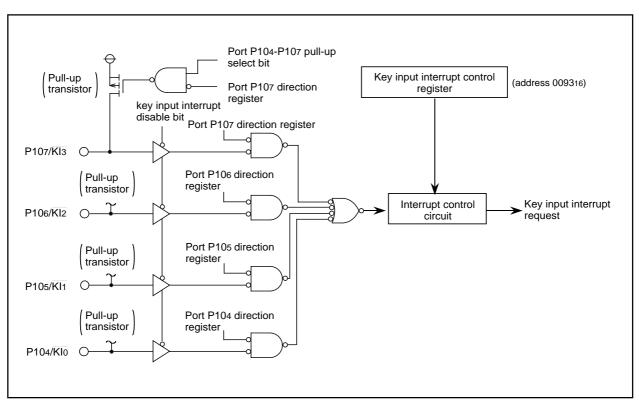
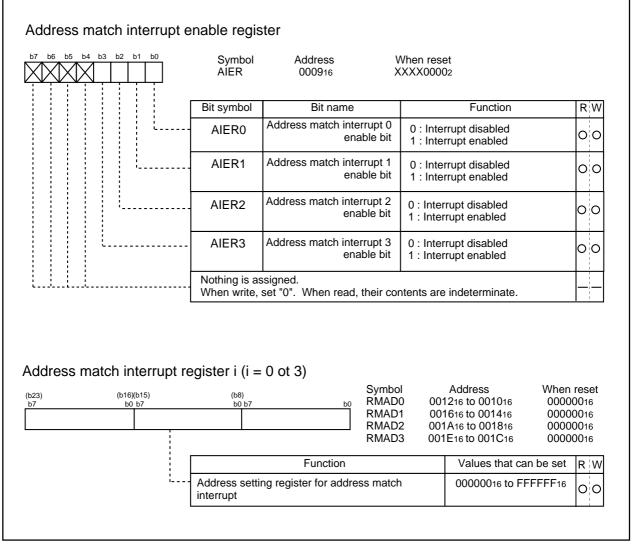


Figure 9.10 Block diagram of key input interrupt


9.21 Address Match Interrupt

An address match interrupt is generated when the address match interrupt address register contents match the program counter value. Four address match interrupts can be set, each of which can be enabled and disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL).

Figure 9.11 shows the address match interrupt-related registers.

Set the start address of an instruction to the address match interrupt register.

Address match interrupt is not generated when address such as the middle of instruction or table data is set.

9.22 Precautions for Interrupts

(1) Reading addresses 00000016 and 00000216

• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence from address 00000016. When high-speed interrupt is occurred, CPU read from address 00000216.

The interrupt request bit of the certain interrupt will then be set to "0".

However, reading addresses 00000016 and 00000216 by software does not set request bit to "0".

(2) Setting the stack pointer

• The value of the stack pointer immediately after reset is initialized to 00000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack point at the beginning of a program. Any interrupt including the NMI interrupt is generated immediately after executing the first instruction after reset. Set an even address to the stack pointer so that the operating efficiency of accessign memory is increased.

(3) The NMI interrupt

- As for the NMI interrupt pin, an interrupt cannot be disabled. Connect it to the Vcc pin via a resistance (pull-up) if unused. Be sure to work on it.
- The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
- Signals input to the NMI pin require "L" level and "H" level of 2 clock + 300ns or more, from the operation clock of CPU.

(4) External interrupt

• Edge sense

Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INTo to INT5 regardless of the CPU operation clock.

• Level sense

Either an "L" level or an "H" level of 1 cycle of BCLK + at least 200 ns width is necessary for the signal input to pins INT₀ to INT₅ regardless of the CPU operation clock. (When XIN=20MHz and no division mode, at least 250 ns width is necessary.)

• When the polarity of the INT₀ to INT₅ pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 9.12 shows the procedure for changing the INT interrupt generate factor.

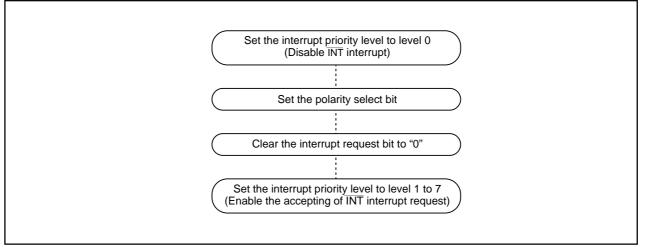


Figure 9.12 Switching condition of INT interrupt request

(5) Rewrite the interrupt control register

• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

• When attempting to clear the interrupt request bit of an interrupt control register, the interrupt request bit is not cleared sometimes. This will depend on the instruction. If this creates problems, use the below instructions to change the register. Instructions : MOV

(6) Address match interrupt

- Do not set the following addresses to the address match interrupt register.
- 1. The address of the starting instruction in an interrupt routine.
- 2. Any of the next 7 instructions addresses immediately after an instruction to clear an interrupt request bit of an interrupt control register or an instruction to rewrite an interrupt priority level to a smaller value.
- 3. Any of the next 3 instructions addresses immediately after an instruction to set the interrupt enable flag (I flag).
- 4. Any of the next 3 instructions addresses immediately after an instruction to rewrite a processor interrupt priority level (IPL) to a smaller value.

Example 1)			
Interru	ıpt_A:	; Inter	rupt A routine
	pushm R0,R1,R2	2,R3,A0,A1 ; < ;	Do not set address match interrupt to the start address of an interrupt instruction
Example 2)			
mov.b	#0,TA0IC	;Change TA	0 interrupt priority level to a smaller value
nop		; 1st instruc	tion
nop		; 2nd instruc	ction
nop		; 3rd instruc	tion Do not set address match interrupt
nop		; 4th instruc	
nop		; 5th instruc	tion
nop		; 6th instruc	tion
nop		; 7th instruc	tion J
Example 3)			
fset	I	; Set I flag (inte	rrupt enabled)
nop		; 1st instruction	Do not set address match interrupt
nop		; 2nd instruction	during this period
nop		; 3rd instruction	
Example 4)			
ldipl	#0	; Rewrite IPL to	a smaller value
nop		; 1st instruction	Do not not address match interrupt
nop		; 2nd instruction	Do not set address match interrupt during this period
nop		; 3rd instruction	

• To return from an interrupt to the address set in an address match interrupt register using return instruction (reit or freit)

To rewrite the interrupt control register within the interrupt routine, add the below processing to the end of the routine (immediately before the reit or freit instruction). Also, if multiple interrupts are enabled with other interrupts, add the below processing to the end of the interrupt that enables the multiple interrupts.

If the interrupt control register is being rewritten within the non-maskable interrupt routine, add the below processing to the end of all interrupts.

Additional process

	; Execute after the register reset instruction (popm instruction)
fclr U	; Select ISP (Unnecessary if the ISP has been selected)
pushm R0	; Store R0 register
mov.w 6[SP],R0	; Read FLG on stack (use "stc SVF,R0" when high-speed
	; interrupt)
ldc R0,FLG	; Set in FLG
popm R0	; Restore R0 register
nop	; Dummy
reit	; Interrupt completed (use freit when high-speed interrupt)

Example 5)

If rewriting the interrupt control register for interrupt B with the interrupt A routine and enabling multiple interrupts with interrupt C, the above processing is required at the end of the interrupt A and interrupt C routines.

		Interrupt A routine	
Int	errupt_A	A:	
	pushm	R0,R1,R2,R3,A0,A1	; Store registers
	••••		
	bclr	3,TA0IC	; Rewrite interrupt control register of interrupt B
	••••		
	popm	R0,R1,R2,R3,A0,A1	; Restore registers
	fclr	U	; Select ISP (Unnecessary if the ISP has been selected)
	pushm	R0	; Store R0 register
	mov.w	6[SP],R0	; Read FLG on stack
	ldc	R0,FLG	; Set in FLG
	popm	R0	; Restore R0 register
	nop		; Dummy
	reit		; Interrupt completed
		Interrupt C routine	
Int	errupt_0	•	
		R0,R1,R2,R3,A0,A1	; Store registers
	fset	1	; Multiple interrupt enabled
	••••		
	••••		
	popm	R0,R1,R2,R3,A0,A1	;Restore registers
	fclr	U	; Select ISP (Unnecessary if the ISP has been selected)
	pushm	R0	; Store R0 register
	mov.w	6[SP],R0	; Read FLG on stack
	ldc	R0,FLG	; Set in FLG
	popm	R0	; Restore R0 register
	nop		; Dummy
	reit		; Interrupt completed

10. Watchdog Timer

The watchdog timer has the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer is a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. Whether a watchdog timer interrupt is generated or reset is selected when an underflow occurs in the watchdog timer. Watchdog timer interrupt is selected when bit 6 of the system control register 0 (address 000816 :CM06) is "0" and reset is selected when CM06 is "1". No value other than "1" can be written in CM06. Once when reset is selected (CM06="1"), watchdog timer interrupt cannot be selected by software.

When XIN is selected for the BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7 of the watchdog timer control register (address 000F16). Therefore, the watchdog timer cycle can be calculated as follows. However, errors can arise in the watchdog timer cycle due to the prescaler.

When XIN is selected in BCLK

Watchdog timer cycle =	Prescaler division ratio (16 or 128) x watchdog timer count (32768)		
	BCLK		
When XCIN is selected in BCLK			
Watchdog timer cycle = -	Prescaler division ratio (2) x watchdog timer count (32768)		
	BCLK		

For example, when BCLK is 20MHz and the prescaler division ratio is set to 16, the monitor timer cycle is approximately 26.2 ms.

The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by writing to the watchdog timer start register (address 000E16). CM06 is initialized only at reset. After reset, watchdog timer interrupt is selected.

The watchdog timer and the prescaler stop in stop mode, wait mode and hold status. After exiting these modes and status, counting starts from the value remained before.

In the stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released. Figure 10.1 shows the block diagram of the watchdog timer. Figure 10.2 shows the watchdog timer-related registers.

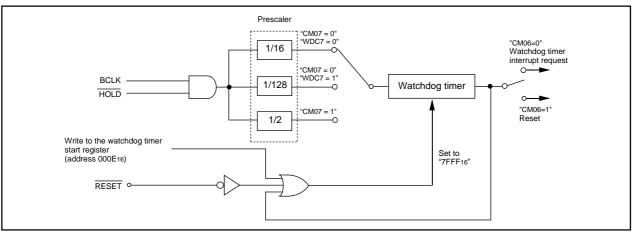
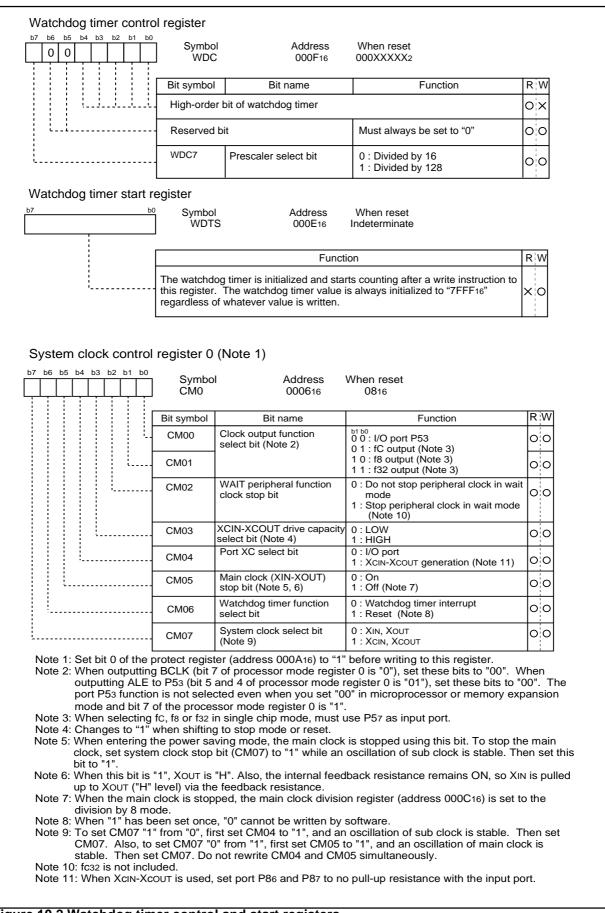



Figure 10.1 Block diagram of watchdog timer

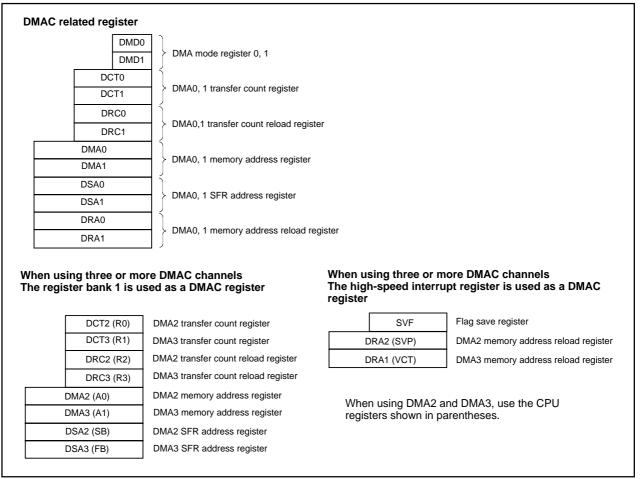


Figure 10.2 Watchdog timer control and start registers

11. DMAC

This microcomputer has four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC is a function that to transmit 1 data of a source address (8 bits / 16 bits) to a destination address when transmission request occurs. When using three or more DMAC channels, the register bank 1 register and high-speed interrupt register are used as DMAC registers. If you are using three or more DMAC channels, you cannot, therefore, use high-speed interrupts. The CPU and DMAC use the same data bus, but the DMAC has a higher bus access privilege than the CPU, and because of the use of cycle-steeling, operations are performed at high-speed from the occurrence of a transfer request until one word (16 bits) or 1 byte (8 bits) of data have been sent. Figure 11.1 shows the mapping of registers used by the DMAC. Table 11.1 shows DMAC specifications. Figures 11.2 to 11.5 show the structures of the registers used.

As the registers shown in Figure 11.1 is allocated in CPU, use LDC instruction when writing. When writing to DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3, set register bank select flag (B flag) to "1" and use MOV instruction to set R0 to R3, A0 and A1 registers. When writing to DSA2 and DSA3, set register bank select flag (B flag) to "1" and use LDC instruction to set SB and FB registers.

Figure 11.1 Register map using DMAC

In addition to writing to the software DMA request bit to start DMAC transfer, the interrupt request signals output from the functions specified in the DMA request factor select bits are also used. However, in contrast to the interrupt requests, repeated DMA requests can be received, regardless of the interrupt flag. (Note, however, that the number of actual transfers may not match the number of transfer requests if the DMA request cycle is shorter than the DMR transfer cycle. For details, see the description of the DMAC request bit.)

Table 11.1 DMAC specifications

Item	Specification
No. of channels	4 (cycle steal method)
Transfer memory space	• From any address in the 16 Mbytes space to a fixed address (16
	Mbytes space)
	• From a fixed address (16 Mbytes space) to any address in the 16 M
	bytes space
Maximum No. of bytes transferred	128 Kbytes (with 16-bit transfers) or 64 Kbytes (with 8-bit transfers)
DMA request factors (Note)	Falling edge of INT0 to INT3 or both edge
	Timer A0 to timer A4 interrupt requests
	Timer B0 to timer B5 interrupt requests
	UART0 to UART4 transmission and reception interrupt requests
	A/D conversion interrupt requests
	Software triggers
Channel priority	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 is the first priority)
Transfer unit	8 bits or 16 bits
Transfer address direction	forward/fixed (forward direction cannot be specified for both source and
	destination simultaneously)
Transfer mode	Single transfer
	Transfer ends when the transfer count register is "000016".
	Repeat transfer
	When the transfer counter is "000016", the value in the transfer
	counter reload register is reloaded into the transfer counter and the
	DMA transfer is continued
DMA interrupt request generation timing	When the transfer counter register changes from "000116" to "000016".
DMA startup	Single transfer
	Transfer starts when DMA transfer count register is more than
	"000116" and the DMA is requested after "012" is written to the
	channel i transfer mode select bits
	Repeat transfer
	Transfer starts when the DMA is requested after "112" is written to the
	channel i transfer mode select bits
DMA shutdown	Single transfer
	When "002" is written to the channel i transfer mode select bits and
	DMA transfer count register becomes "000016" by DMA transfer or
	write
	Repeat transfer
	When "002" is written to the channel i transfer mode select bits
Reload timing	When the transfer counter register changes from "000116" to "000016" in
	repeat transfer mode.
Reading / writing the register	Registers are always read/write enabled.
Number of DMA transfer cycles	Between SFR and internal RAM : 3 cycles
	Between external I/O and external memory : minimum 3 cycles
Note: DMA transfer is not offerti	

Note: DMA transfer is not effective to any interrupt.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol DMiSL	Addres 037816 to 0			
	Bit symbol	Bit name	Function	R	w
	DSEL0	DMA request cause select bit (Note 2)	b4 b3 b2 b1 b0 0 0 0 0 0 : Software trigger 0 0 0 0 1 : Falling edge of INTi pin (Note 3) 0 0 0 1 0 : Two edges of INTi pin (Note 3) 0 0 0 1 1 : Timer A0	0	0
	DSEL1		0 0 1 0 0 : Timer A1 0 0 1 0 1 : Timer A2 0 0 1 1 0 : Timer A3 0 0 1 1 1 : Timer A4 0 1 0 0 0 : Timer B0 0 1 0 0 1 : Timer B1	0	0
	DSEL2	_	0 1 0 1 0 : Timer B2 0 1 0 1 1 : Timer B3 0 1 1 0 0 : Timer B4 0 1 1 0 1 : Timer B5 0 1 1 1 0 : UART0 transmit 0 1 1 1 1 : UART0 receive	0	0
	DSEL3	-	1 0 0 0 0 : UART1 transmit 1 0 0 0 1 : UART1 receive 1 0 0 1 0 : UART2 transmit 1 0 0 1 1 : UART2 receive/ACK (Note 4) 1 0 1 0 0 : UART3 transmit	0	0
	DSEL4		1 0 1 0 1 : UART3 receive/ACK (Note 4) 1 0 1 1 0 : UART4 transmit 1 0 1 1 1 : UART4 receive/ACK (Note 4) 1 1 0 0 0 : A/D conversion 1 1 0 0 1 to 1 1 1 1 1 : Inhibit	0	0
	DSR	Software DMA request bit (Note 5)	If software trigger is selected, a DMA request is generated by setting this bit to "1" (When read, the value of this bit is always "0")	0	0
L	Nothing is as When write, s	signed. set "0". When read, its co	ontent is indeterminate.	-	-
	DRQ	DMA request bit (Note 5,6)	0 : Not requested 1 : Requested	0	0
1 1 1 1	Note 2: Set DM simultar e.g.) M Note 3: <u>DMA0-I</u> <u>INTi. He</u> INT3 ca Note 4: UARTi register Note 5: When s e.g.) C	neously. <u>MOV.B</u> #083h, DMISL INT0, DMA1-INT1, DMA2 powever, when INT3 pin be annot be used. reception and ACK switch reception and ACK switch and UARTi special model setting DSR to "1", set DR DR.B #0A0h, DMISL	the DMA request cause. Set DRQ to "1" ; Set timer A0 -INT2, and DMA3-INT3 correspond to D ecomes data bus in microprocessor mod hing are effected using the UARTi specia	MAi le, Dl al mo aneo	MA3- de

Figure 11.2 DMAC register (1)

CPU internal register)	Sym DMD		When reset 0016		
	Bit symbol	Bit name	Function	R	V
	MD00	Channel 0 transfer mode select bit	0 0 : DMA inhibit 0 1 : Single transfer	0	(
· · · · · · · · · · · · · · · · · · ·	MD01		1 0 : Reserved 1 1 : Repeat transfer	0	0
	BW0	Channel 0 transfer unit select bit	0 : 8 bits 1 : 16 bits	0	0
	RW0	Channel 0 transfer direction select bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	0	
	MD10	Channel 1 transfer mode select bit	^{b5 b4} 0 0 : DMA inhibit 0 1 : Single transfer	0	
	MD11		1 0 : Reserved 1 1 : Repeat transfer	0	(
	. BW1	Channel 1 transfer unit select bit	0 : 8 bits 1 : 16 bits	0	C
	RW1	Channel 1 transfer direction select bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	0	-
0MA mode register 1 CPU internal register)				<u> </u>	
	Sym DMC		When reset 0016		
CPU internal register)	Sym		When reset 0016 Function	R	V
CPU internal register)	Syml DMD	01	When reset 0016 Function	R	1
CPU internal register)	Symi DMD Bit symbol	Bit name Channel 2 transfer	When reset 0016 Function		
CPU internal register)	Symi DMD Bit symbol MD20	Bit name Channel 2 transfer	When reset 0016 Function b1 b0 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Reserved	0	
CPU internal register)	Symi DMD Bit symbol MD20 MD21	Bit name Channel 2 transfer mode select bit Channel 2 transfer	When reset 0016 Function b1 b0 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Reserved 1 1 : Repeat transfer 0 : 8 bits	0	
CPU internal register)	Symi DMD Bit symbol MD20 MD21 BW2	Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Reserved 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address ^{b5 b4} 0 0 : DMA inhibit	0 0 0	
CPU internal register)	Symi DMD Bit symbol MD20 MD21 BW2 RW2	Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer direction select bit Channel 3 transfer	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Reserved 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address ^{b5 b4}	0 0 0	
CPU internal register)	Symi DMD Bit symbol MD20 MD21 BW2 RW2 MD30	Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer direction select bit Channel 3 transfer	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Reserved 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address ^{b5 b4} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Reserved	0 0 0	

Figure 11.3 DMAC register (2)

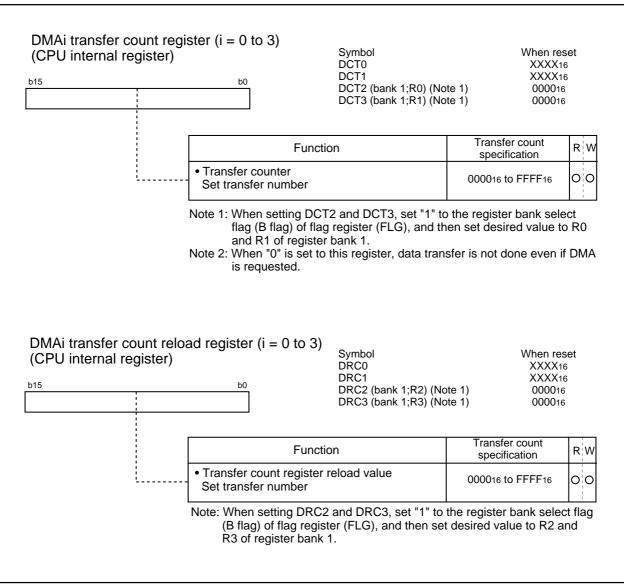
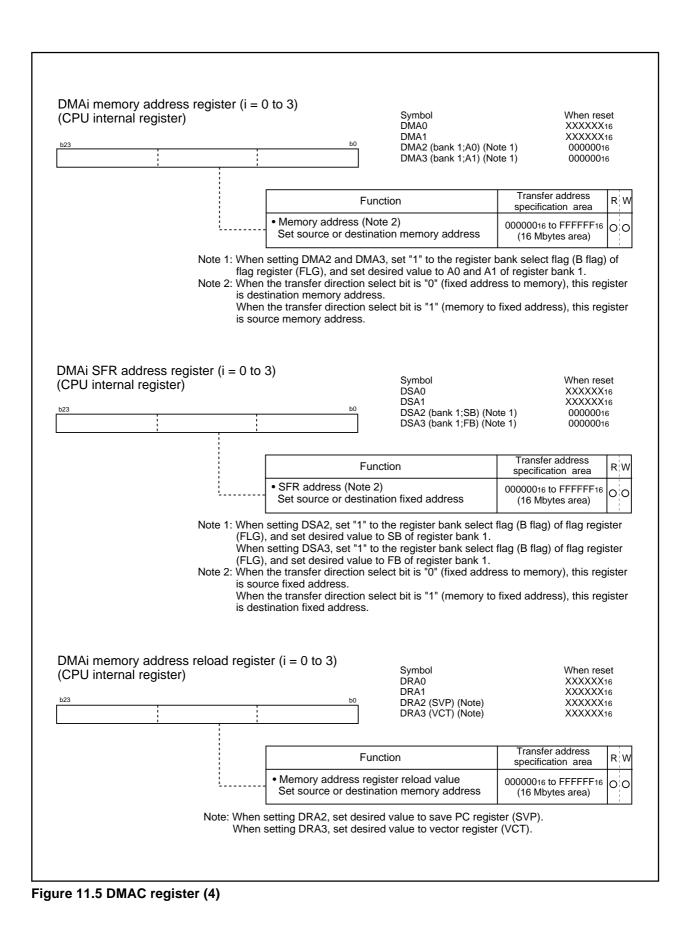



Figure 11.4 DMAC register (3)

(1) Transfer cycle

The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area (source read) and the bus cycle in which the data is written to memory or to the SFR area (destination write). The number of read and write bus cycles depends on the source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.

(a) Effect of source and destination addresses

When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd addresses, there are one more source read cycle and destination write cycle than when the source and destination both start at even addresses.

(b) Effect of external data bus width control register

When in memory expansion mode or microprocessor mode, the transfer cycle changes according to the data bus width at the source and destination.

- 1. When transferring 16 bits of data and the data bus width at the source and at the destination is 8 bits (data bus width bit = "0"), there are two 8-bit data transfers. Therefore, two bus cycles are required for reading and two cycles for writing.
- 2. When transferring 16 bits of data and the data bus width at the source is 8 bits (data bus width bit = "0") and the data bus width at the destination is 16 bits (data bus width bit = "1"), the data is read in two 8-bit blocks and written as 16-bit data. Therefore, two bus cycles are required for reading and one cycle for writing.
- 3. When transferring 16 bits of data and the data bus width at the source is 16 bits (data bus width bit = "1") and the data bus width at the destination is 8 bits (data bus width bit = "0"), 16 bits of data are read and written as two 8-bit blocks. Therefore, one bus cycle is required for reading and two cycles for writing.

(c) Effect of software wait

When the SFR area or a memory area with a software wait is accessed, the number of cycles is increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.

Figure 11.6 shows the example of the transfer cycles for a source read. Figure 11.6 shows the destination is external area, the destination write cycle is shown as two cycle (one bus cycle) and the source read cycles for the different conditions. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 11.6, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source read cycle and the destination write cycle.

Address	CPU use		Source		estination				CPU use	9			
 RD signal				·									
 WR signal													
Data – bus	CPU use		So	ource	Des	stination	χ		CPU us	e			
•When 16	6-bit data is 6-bit data is e width of c	transfe	rred a	nd the	width	of data	bus at	the so			ation	write	e cycle
Address -	CPU use		Gource	Source +	- 1	Destinatio				CPU use	;		
 RD signal		/ \	/		`\		/ \						
 WR signal													
Data - bus	CPU use	•	Sou	rce X s	ource +		stination	_γ		CPU use	e		
			So	urce		Destination			C	PU use			
Address	CPU use	/\											
	CPU use	/\											
bus	CPU use	/\											
bus RD signal	CPU use		\ \	Source	•	De	stination			CPU us	se		
bus		serted transfe	rred a	e sour	ce rea	d under	the co	nditior	ns in (2) stinatio)		nere	are
bus	CPU use ne wait is in S-bit data is	serted transfe	s).	e sour	ce rea	d under	the co but at t	the des	ns in (2) stinatio)			are
bus RD signal WR signal Data bus bus (When or (When 16 two dest BCLK Address bus	CPU use ne wait is in 5-bit data is ination writ	serted transfe	s).	e sour nd the	ce rea	d under of data	the co but at t	the des	stinatio)	bit, tł		are
bus	CPU use ne wait is in 5-bit data is ination writ	serted transfe	s).	e sour nd the	ce rea	d under of data	the co but at t	the des	stinatio)	bit, tł		are

(2) DMAC transfer cycles

Any combination of even or odd transfer read and write addresses is possible. Table 11.2 shows the number of DMAC transfer cycles.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

Transfer unit	Bus width	Access address	Single-ch	nip mode	Memory expansion mode Microprocessor mode		
			No. of read cycles	No. of write cycles	No. of read cycles	No. of write cycles	
	16-bit	Even	1	1	1	1	
8-bit transfers	(DSi = "1")	Odd	1	1	1	1	
(BWi = "0")	8-bit	Even	—	—	1	1	
	(DSi = "0")	Odd	—	—	1	1	
	16-bit	Even	1	1	1	1	
16-bit transfers	(DSi = "1")	Odd	2	2	2	2	
(BWi = "1")	8-bit	Even			2	2	
	(DSi = "0")	Odd	—		2	2	

Table 11.2 No. of DMAC transfer cycles

Coefficient j, k

Inte	ernal Memor	у	External Memory							
Internal R	OM/RAM	SFR area		Separa	Multiplex bus					
No wait	With wait		No wait One wait Two waits Three waits				Two waits	Three waits		
j=1	j=2	j=2	j=1	j=2	j=3	j=4	j=3	j=4		
k=1	k=2	k=2	k=2	k=2	k=3	k=4	k=3	k=4		

DMA Request Bit

The DMAC can issue DMA requests using preselected DMA request factors for each channel as triggers.

The DMA transfer request factors include the reception of DMA request signals from the internal peripheral functions, software DMA factors generated by the program, and external factors using input from external interrupt signals.

See the description of the DMAi factor selection register for details of how to select DMA request factors. DMA requests are received as DMA requests when the DMAi request bit is set to "1" and the channel i transfer mode select bits are "01" or "11". Therefore, even if the DMAi request bit is "1", no DMA request is received if the channel i transfer mode select bit is "00". In this case, DMAi request bit is cleared. Because the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset.

The following describes when the DMAi request bit is set and cleared.

(1) Internal factors

The DMAi request flag is set to "1" in response to internal factors at the same time as the interrupt request bit of the interrupt control register for each factor is set. This is because, except for software trigger DMA factors, they use the interrupt request signals output by each function.

The DMAi request bit is cleared to "0" when the DMA transfer starts or the DMA transfer is in disable state (channel i transfer mode select bits are "00" and the DMAi transfer count register is "0").

(2) External factors

These are DMA request factors that are generated by the input edge from the INTi pin (where i indicates the DMAC channel). When the INTi pin is selected by the DMAi request factor select bit as an external factor, the inputs from these pins become the DMA request signals.

When an external factor is selected, the DMAi request bit is set, according to the function specified in the DMA request factor select bit, on either the falling edge of the signal input via the INTi pins, or both edges. When an external factor is selected, the DMAi request bit is cleared, in the same way as the DMAi request bit is cleared for internal factors, when the DMA transfer starts or the DMA transfer is in disable state.

(3) Relationship between external factor request input and DMAi request flag, and DMA transfer timing

When the request inputs to DMAi occur in the same sampling cycle (between the falling edge of BCLK and the next falling edge), the DMAi request bits are set simultaneously, but if the DMAi enable bits are all set, DMA0 takes priority and the transfer starts. When one transfer unit is complete, the bus privilege is returned to the CPU. When the CPU has completed one bus access, DMA1 transfer starts, and, when one transfer unit is complete, the privilege is again returned to the CPU.

The priority is as follows: DMA0 > DMA1 > DMA2 > DMA3.

Figure 11.7. DMA transfer example by external factors shows what happens when DMA0 and DMA1 requests occur in the same sampling cycle.

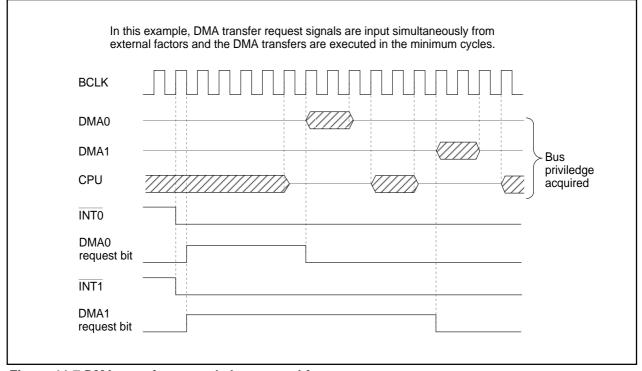


Figure 11.7 DMA transfer example by external factors

Precautions for DMAC

- (1) Do not clear the DMA request bit of the DMAi request cause select register. In M16C/80, when a DMA request is generated while the channel is disabled (Note), the DMA transfer is not executed and the DMA request bit is cleared automatically. Note :The DMA is disabled or the transfer count register is "0".
- (2) When DMA transfer is done by a software trigger, set DSR and DRQ of the DMAi request cause select register to "1" simultaneously using the OR instruction.

e.g.) OR.B #0A0h, DMiSL ; DMiSL is DMAi request cause select register

(3) When changing the DMAi request cause select bit of the DMAi request cause select register, set "1" to the DMA request bit, simultaneously. In this case, set the corresponding DMA channel to disabled before changing the DMAi request cause select bit. At least 26 cycles are needed from the instruction to write to the DMAi request cause select register to enable DMA.

Example) When DMA request cause is changed to timer A0 and using DMA0 in single transfer after DMA initial setting

	Bith this	liai ootanig				
	push.w	R0	; Store R0 register			
	stc	DMD0, R0	; Read DMA mode register	0		
	and.b	#11111100b, R0L	; Clear DMA0 transfer mode select bit to "00"			
	ldc	R0, DMD0	; DMA0 disabled			
	mov.b	#10000011b, DM0SL	; Select timer A0			
			; (Write "1" to DMA reques	st bit simultaneously)		
	push.w	R0	; Store R0 register			
	mov.w	#6,R0	,			
dumm	y_loop:			At least 26 cycles are needed		
	sbjnz.w	#1,R0,dummy_loop	; Dummy cycle	until DMA enabled.		
	pop.w	R0	; Restore R0 register			
	or.b	#00000001b, R0L	; Set DMA0 single transfer			
	ldc	R0, DMD0	; DMA0 enabled			
	pop.w	R0	; Restore R0 register			

- (4) Recommended procedure for starting DMA transfer
 - •When writing to the DMAi request cause register including overwriting the same value to the DMAi request cause register;
 - 1. Disable the corresponding channel i DMA in DMA mode registers 0 and 1.
 - 2. Set up the peripheral used as the source of the DMA transfer. However, the peripheral should remain disabled at this time. For example, when using UART0 transmit, disable UART0 transmit.
 - 3. Set the DMAi request cause select register. At this time, write a '1' to the DMA request bit (bit 7)

- 4. Set the following SFR registers:
- •DMAiSFR address register
- •DMAI memory address reload register
- •DMAi memory address register
- •DMAi transfer count reload register
- •DMAi transfer count register
- 5. At this point, if the number of elapsed cycles are less than 26, add code (NOP's or other processing) to make up some time.
- 6. Enable the corresponding channel i DMA in the DMA mode registers 0 and 1.
- 7. Enable the peripheral used as the source of the DMA transfer. For example, when using UART0 transmit, enable UART0 transmit.

•When not writing to the DMAi request cause register;

- 1. Disable the corresponding channel i DMA in the DMA mode registers 0 and 1.
- 2. Set up the peripheral used as the source of the DMA transfer. However, the peripheral should remain disabled at this time. For example, when using UART0 transmit, disable UART0 transmit.
- 3. Set up the following SFR registers:
- •DMAiSFR address register
- •DMAI memory address reload register
- DMAi memory address register
- •DMAi transfer count reload register
- •DMAi transfer count register
- 4. Enable the corresponding channel i DMA in the DMA mode registers 0 and 1.
- 5. Enable the peripheral used as the source of the DMA transfer. For example, when using UART0 transmit, enable UART0 transmit.
- (5) Recommended procedure after completing DMA transfer
 - •Disable the peripheral used as source of the DMA transfer to prevent generating a DMA request.
 - •Disable the corresponding channel i DMA in the DMA mode registers 0 and 1.

12. Timer

There are eleven 16-bit timers. These timers can be classified by function into timers A (five) and timers B (six). All these timers function independently. Count source for each timer becomes an operation clock for timer operation as counting and reloading, etc. Figures 12.1 and 12.2 show the block diagram of timers.

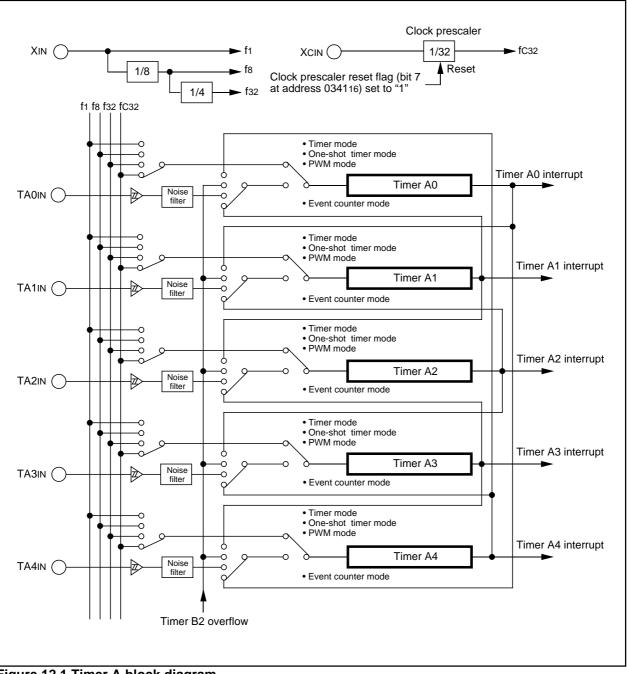


Figure 12.1 Timer A block diagram

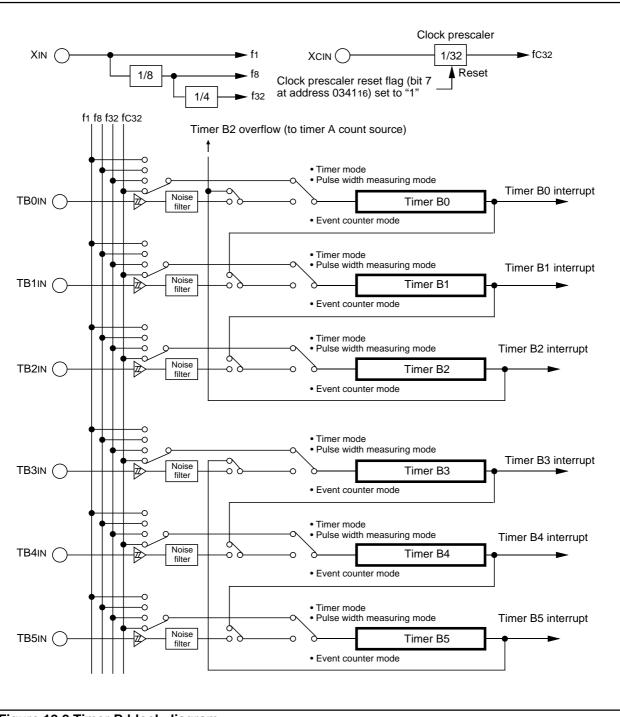


Figure 12.2 Timer B block diagram

13. Timer A

Figure 13.1 shows the block diagram of timer A. Figures 13.2 to 13.4 show the timer A-related registers. Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode register (i = 0 to 4) bits 0 and 1 to choose the desired mode.

Timer A has the four operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer over flow.
- One-shot timer mode: The timer stops counting when the count reaches "0000₁₆".
- Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.

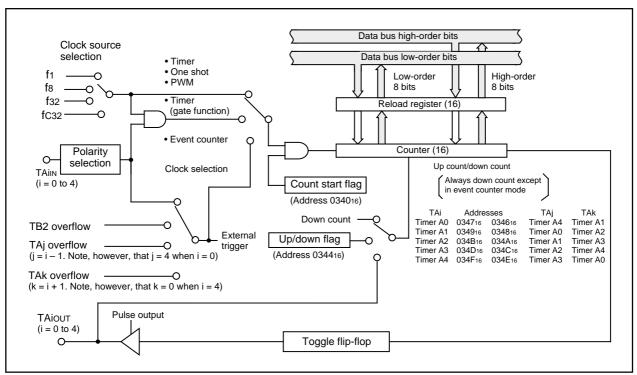
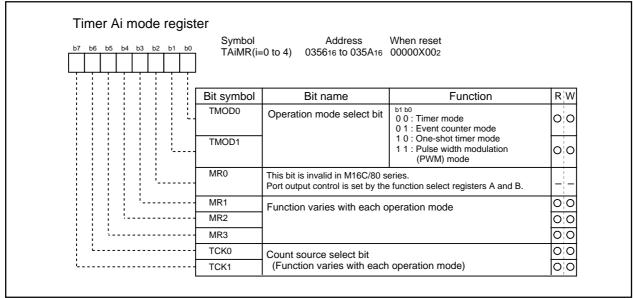
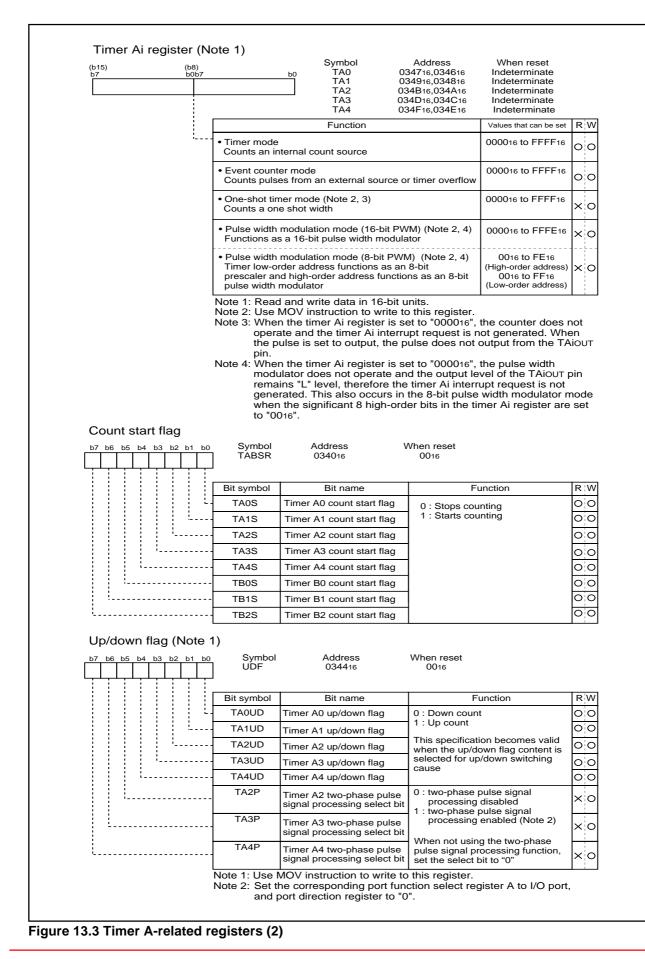
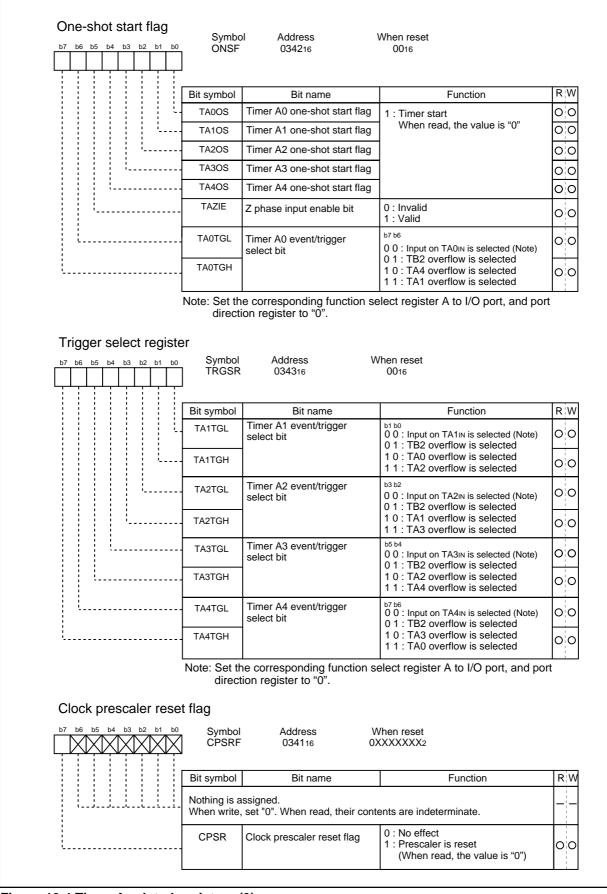
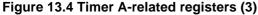


Figure 13.1 Block diagram of timer A


Figure 13.2 Timer A-related registers (1)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 13.1) Figure 13.5 shows the timer Ai mode register in timer mode.

 Table 13.1 Specifications of timer mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	Down count
	• When the timer underflows, it reloads the reload register contents before
	continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	When the timer underflows
TAilN pin function	Programmable I/O port or gate input
TAIOUT pin function	Programmable I/O port or pulse output (Setting by the corresponding function
	select registers A and B)
Read from timer	Count value can be read out by reading timer Ai register
Write to timer	When not counting
	Value written to timer Ai register is written to both reload register and counter
	When counting
	Value written to timer Ai register is written to only reload register
	(Transferred to counter at next reload time)
Select function	Gate function
	Counting can be started and stopped by the TAiln pin's input signal
	Pulse output function
	Each time the timer underflows, the TAiout pin's polarity is reversed

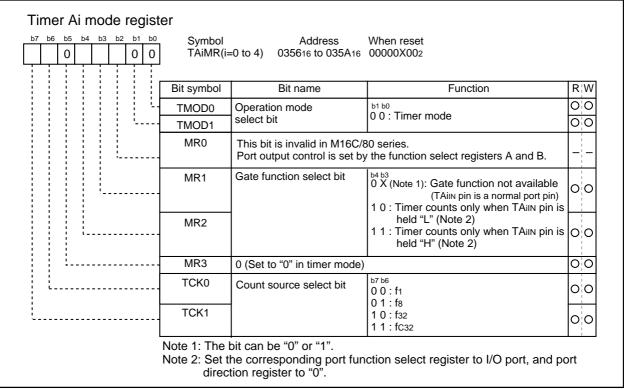


Figure 13.5 Timer Ai mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. Timers A0 and A1 can count a singlephase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase external signal. Table 13.2 lists timer specifications when counting a single-phase external signal. Figure 13.6 shows the timer Ai mode register in event counter mode. Table 13.3 lists timer specifications when counting a two-phase external signal. Figure 13.7 shows the timer Ai mode register in event counter mode.

Item	Specification				
Count source	• External signals input to TAIN pin (effective edge can be selected by software)				
	 TB2 overflows or underflows, TAj overflows or underflows 				
Count operation	• Up count or down count can be selected by external signal or software				
	• When the timer overflows or underflows, it reloads the reload register con				
	tents before continuing counting (Note)				
Divide ratio	 1/ (FFFF16 - n + 1) for up count 				
	• 1/ (n + 1) for down count n : Set value				
Count start condition	Count start flag is set (= 1)				
Count stop condition	Count start flag is reset (= 0)				
Interrupt request generation timing	The timer overflows or underflows				
TAilN pin function	Programmable I/O port or count source input				
TAIOUT pin function	Programmable I/O port, pulse output, or up/down count select input (Setting by				
	the corresponding function select registers A and B)				
Read from timer	Count value can be read out by reading timer Ai register				
Write to timer	When not counting				
	Value written to timer Ai register is written to both reload register and counter				
	When counting				
	Value written to timer Ai register is written to only reload register				
	(Transferred to counter at next reload time)				
Select function	Free-run count function				
	Even when the timer overflows or underflows, the reload register content is				
	not reloaded to it				
	Pulse output function				
	Each time the timer overflows or underflows, the TAiOUT pin's polarity is reversed				

Note: This does not apply when the free-run function is selected.

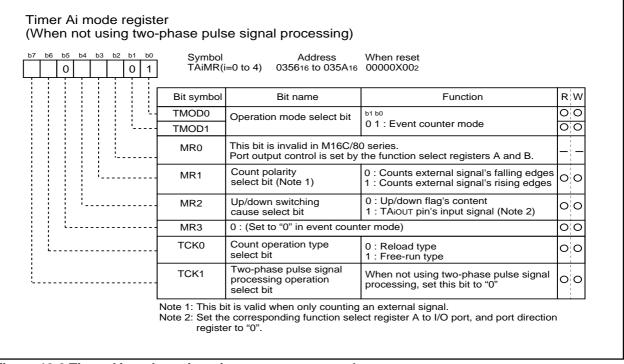


Figure 13.6 Timer Ai mode register in event counter mode

Table 13.3 Timer specifications in event counter mode

(when processing two-phase pulse signal with timers A2, A3, and A4)

Item	Specification
Count source	 Two-phase pulse signals input to TAiIN or TAiOUT pins (i=2 to 4)
Count operation	• Up count or down count can be selected by two-phase pulse signal
	• When the timer overflows or underflows, the reload register content is
	reloaded and the timer starts over again (Note)
Divide ratio	• 1/ (FFFF16 - n + 1) for up count
	• 1/ (n + 1) for down count n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	Timer overflows or underflows
TAilN pin function	Two-phase pulse input (Set the corresponding function select registers A to I/
	O port, and port direction register to "0")
TAiout pin function	Two-phase pulse input (Set the corresponding function select registers A to I/
	O port, and port direction register to "0")
Read from timer	Count value can be read out by reading timer A2, A3, or A4 register
Write to timer	 When not counting Value written to timer Ai register is written to both reload register and counter When counting Value written to timer Ai register is written to only reload register (Transferred to counter at next reload time)
Select function (Note 2)	 Normal processing operation (TimerA2 and timer A3) The timer counts up rising edges or counts down falling edges on the TAilN
	pin when input signal on the TAiOUT pin is "H" TAiOUT TAiIN (i=2,3) Up count Coun
	• Multiply-by-4 processing operation (TimerA3 and timer A4) If the phase relationship is such that the TAIIN pin goes "H" when the input signal on the TAIOUT pin is "H", the timer counts up rising and falling edges on the TAIOUT and TAIIN pins. If the phase relationship is such that the TAIIN pin goes "L" when the input signal on the TAIOUT pin is "H", the timer counts down rising and falling edges on the TAIOUT and TAIIN pins.
	TAIOUT Count up all edges Count down all edges
	TAIIN (i=3,4) Count up all edges Count down all edges
Note d. This data wat and	/ when the free-run function is selected.

Note 1: This does not apply when the free-run function is selected.

Note 2: Timer A3 is selectable. Timer A2 is fixed to normal processing operation and timer A4 is fixed to multiply-by-4 operation.

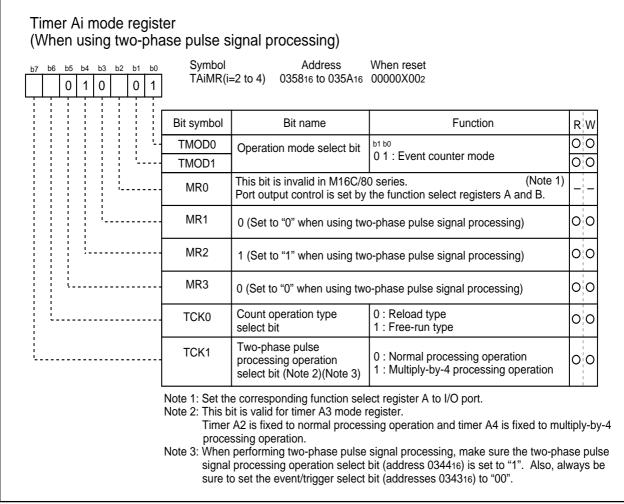


Figure 13.7 Timer Ai mode register in event counter mode

Counter Resetting by Two-Phase Pulse Signal Processing

This function resets the timer counter to "0" when the Z-phase (counter reset) is input during twophase pulse signal processing.

This function can only be used in timer A3 event counter mode, two-phase pulse signal processing, free-run type, and multiply-by-4 processing. The Z phase is input to the INT2 pin.

When the Z-phase input enable bit (bit 5 at address 034216) is set to "1", the counter can be reset by Z-phase input. For the counter to be reset to "0" by Z-phase input, you must first write "000016" to the timer A3 register (address 034D16 and 034C16).

The Z-phase is input when the INT2 input edge is detected. The edge polarity is selected by the INT2 polarity switch bit (bit 4 at address 009C16). The Z-phase must have a pulse width greater than 1 cycle of the timer A3 count source. Figure 13.8 shows the relationship between the two-phase pulse (A phase and B phase) and the Z phase.

The counter is reset at the count source following Z-phase input. Figure 13.9 shows the timing at which the counter is reset to "0".

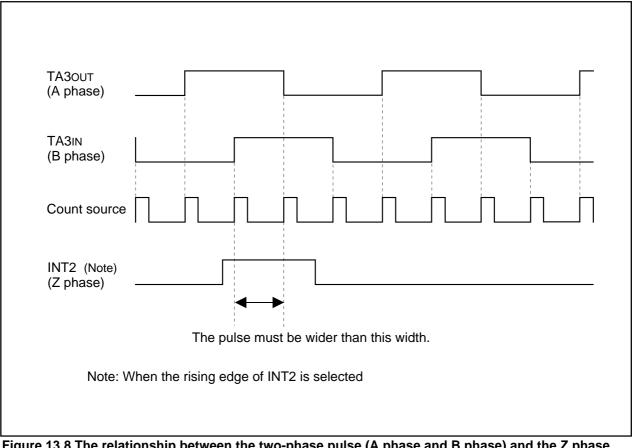


Figure 13.8 The relationship between the two-phase pulse (A phase and B phase) and the Z phase

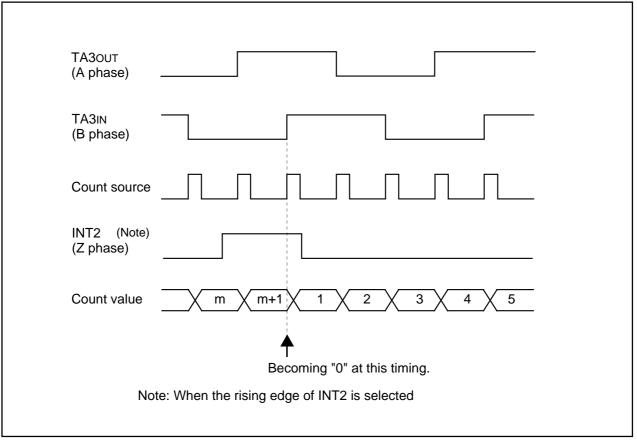


Figure 13.9 The counter reset timing

Note that timer A3 interrupt requests occur successively two times when timer A3 underflow and INT2 input reload are happened at the same timing.

Do not use timer A3 interrupt request when this function is used.

(3) One-shot timer mode

In this mode, the timer operates only once. (See Table 13.4) When a trigger occurs, the timer starts up and continues operating for a given period. Figure 13.10 shows the timer Ai mode register in one-shot timer mode.

Table 13.4 Timer specifications in one-shot timer mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	The timer counts down
	When the count reaches 000016, the timer stops counting after reloading a
	new count
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	1/n n : Set value
Count start condition	An external trigger is input
	The timer overflows
	• The one-shot start flag is set (= 1)
Count stop condition	A new count is reloaded after the count has reached 000016
	• The count start flag is reset (= 0)
Interrupt request generation timing	The count reaches 000016
TAilN pin function	Programmable I/O port or trigger input
TAIOUT pin function	Programmable I/O port or pulse output (Setting by the corresponding function
	select registers A and B)
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When not counting
	Value written to timer Ai register is written to both reload register and counter
	When counting
	Value written to timer Ai register is written to only reload register
	(Transferred to counter at next reload time)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol TAiMR(Address i=0 to 4) 035616 to 035A1	When reset 6 00000X002		
	Bit symbol	Bit name	Function	R	W
	TMOD0	Operation mode select bit	b1 b0	0	히
	TMOD1		1 0 : One-shot timer mode	0	히
· · · · · · · · · · · · · · · · · · ·	MR0	This bit is invalid in M16C/ Port output control is set b	80 series. y the function select registers A and B.	_	-
	MR1	External trigger select bit (Note 1)	0 : Falling edge of TAiın pin's input signal (Note 2) 1 : Rising edge of TAiın pin's input signal (Note 2)	0	0
	MR2	Trigger select bit	0 : One-shot start flag is valid 1 : Selected by event/trigger select bit	0	0
	MR3	0 (Set to "0" in one-shot tir	ner mode)	0	0
	TCK0	Count source select bit	^{b7 b6} 0 0 : f1	0	0
·	TCK1		0 1 : f8 1 0 : f32 1 1 : fC32	0	0
	addre) Note 2: Set the	sses 034216 and 034316).	lected by the event/trigger select bit If timer overflow is selected, this bit can be "1" n select register to I/O port, and port direction	or "	 0".

Figure 13.10 Timer Ai mode register in one-shot timer mode

(4) Pulse width modulation (PWM) mode

In this mode, the timer outputs pulses of a given width in succession. (See Table 13.5) In this mode, the counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 13.11 shows the timer Ai mode register in pulse width modulation mode. Figure 13.12 shows the example of how a 16-bit pulse width modulator operates. Figure 13.13 shows the example of how an 8-bit pulse width modulator operates.

Table 13.5 Timer specifications in pulse width modulation mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	• The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)
	 The timer reloads a new count at a rising edge of PWM pulse and continues counting The timer is not affected by a trigger that occurs when counting
16-bit PWM	• High level width n / fi n : Set value
	• Cycle time (2 ¹⁶ -1) / fi fixed
8-bit PWM	• High level width $n \times (m+1)/fi$ n : values set to timer Ai register's high-order address
	• Cycle time $(2^{8}-1)\times(m+1)$ / fi m:values set to timer Ai register's low-order address
Count start condition	External trigger is input
	The timer overflows
	• The count start flag is set (= 1)
Count stop condition	• The count start flag is reset (= 0)
Interrupt request generation timing	PWM pulse goes "L"
TAilN pin function	Programmable I/O port or trigger input
TAiout pin function	Pulse output (TAiout output is selected by the corresponding function select
	registers A and B)
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When not counting
	Value written to timer Ai register is written to both reload register and counter
	When counting
	Value written to timer Ai register is written to only reload register
	(Transferred to counter at next reload time)

7 b6 b5 b4 b3 b2 b1 b0 1 1 1	Symbo TAiMR	ol Address (i=0 to 4) 035616 to 035	When reset A16 00000X002	
	Bit symbol	Bit name	Function	RW
	TMOD0 TMOD1	Operation mode select bit	^{b1 b0} 1 1 : Pulse width modulaten (PWM) mode	00
	MR0	This bit is invalid in M160 Port output control is set	/80 series. by the function select registers A and B.	
	MR1	External trigger select bit (Note 1)	0: Falling edge of TAin pin's input signal (Note 2) 1: Rising edge of TAin pin's input signal (Note 2)	00
	MR2	Trigger select bit	0: Count start flag is valid 1: Selected by event/trigger select bit	00
	MR3	16/8-bit PWM mode select bit	0: Functions as a 16-bit pulse width modulator 1: Functions as an 8-bit pulse width modulator	00
	TCK0	Count source select bit	^{b7 b6} 0 0 : f1 0 1 : f8	00
[TCK1		1 0 : f32 1 1 : fC32	00
	addres) Note 2: Set the	sses 034216 and 034316).	elected by the event/trigger select bit If timer overflow is selected, this bit can be "1' elect register A to I/O port, and port direction	' or "0".

Figure 13.11 Timer Ai mode register in pulse width modulation mode

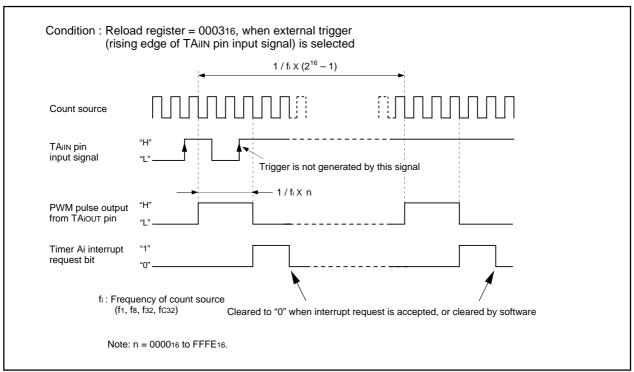
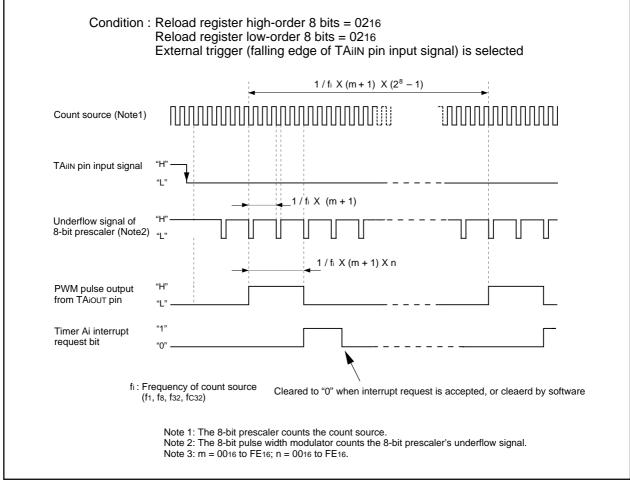
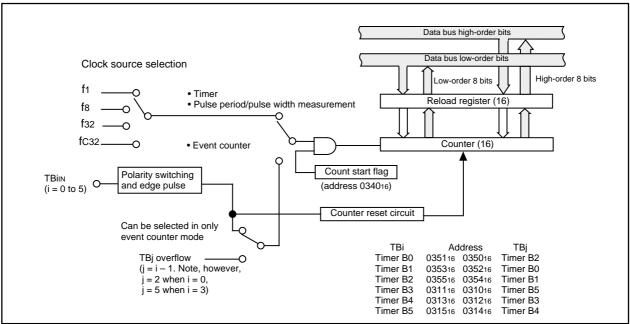
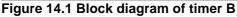


Figure 13.12 Example of how a 16-bit pulse width modulator operates


Figure 13.13 Example of how an 8-bit pulse width modulator operates

14. Timer B

Figure 14.1 shows the block diagram of timer B. Figures 14.2 and 14.3 show the timer B-related registers. Use the timer B mode register (i = 0 to 5) bits 0 and 1 to choose the desired mode. Timer B has three operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer overflow.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

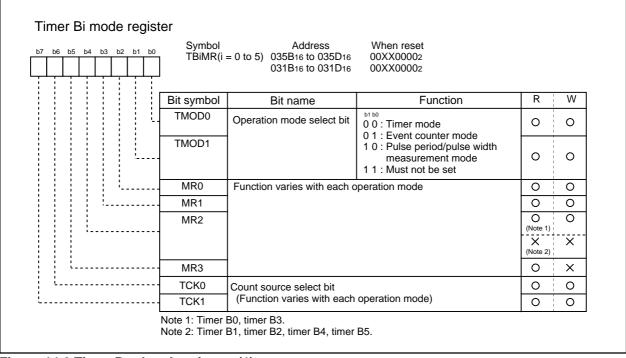


Figure 14.2 Timer B-related registers (1)

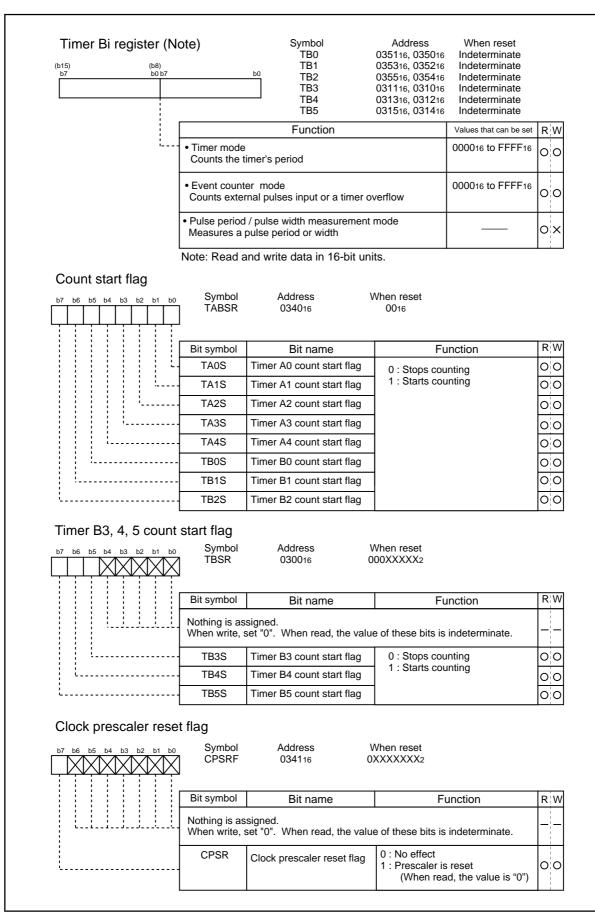


Figure 14.3 Timer B-related registers (2)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 14.1) Figure 14.4 shows the timer Bi mode register in timer mode.

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	Counts down
	• When the timer underflows, it reloads the reload register contents before
	continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBiIN pin function	Programmable I/O port
Read from timer	Count value is read out by reading timer Bi register
Write to timer	When not counting
	Value written to timer Bi register is written to both reload register and counter
	When counting
	Value written to timer Bi register is written to only reload register
	(Transferred to counter at next reload time)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol TBiMR(i	Address = 0 to 5) 035B16 to 035D16 031B16 to 031D16	When reset 00XX00002 00XX00002		
	Bit symbol	Bit name	Function	R	W
	TMOD0	Operation mode select bit	0 0 : Timer mode	0	0
	TMOD1			0	0
	MR0	Invalid in timer mode	•	0	0
· · · · · · · · · · · · · · · · · · ·	MR1 Can be "0" or "1"			0	0
	MR2	0 (Set to "0" in timer mode ; i = 0, 3)			0
		Nothing is assiigned (i = 1, When write, set "0". When	2, 4, 5). read, its content is indeterminate.	X (Note 2)	×
	MR3	Invalid in timer mode. When write, set "0". When read in timer mode, its content is indeterminate.		0	×
·	TCK0	Count source select bit	^{b7 b6} О О : f1 О 1 : f8	0	0
L	TCK1		1 0 : f32 1 1 : fC32	0	0

Figure 14.4 Timer Bi mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 14.2) Figure 14.5 shows the timer Bi mode register in event counter mode.

Table 14.2 Timer specifications in event counter mode

Item	Specification
Count source	External signals input to TBilN pin
	Effective edge of count source can be a rising edge, a falling edge, or falling
	and rising edges as selected by software
	TBi overflows or underflows
Count operation	Counts down
	When the timer underflows, it reloads the reload register contents before
	continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBilN pin function	Programable I/O port or Count source input (Set the corresponding function
	select register A to I/O port.)
Read from timer	Count value can be read out by reading timer Bi register
Write to timer	When not counting
	Value written to timer Bi register is written to both reload register and counter
	When counting
	Value written to timer Bi register is written to only reload register
	(Transferred to counter at next reload time)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol TBiMR(i∶	Address 0 to 5) 035B16 to 035 031B16 to 037				
		Bit symbol	Bit name	Function	R	W
		TMOD0	Operation mode	b1 b0	0	0
	TMOD1	select bit	0 1 : Event counter mode	0	0	
	MR0	Count polarity select bit (Note 1)	^{b3 b2} 0 0 : Counts external signal's falling edges 0 1 : Counts external signal's rising edges	0	0	
	MR1		 Counts external signal's falling and rising edges Must not be set 	0	0	
		MR2	0 (Set to "0" in event counter mode; i = 0, 3)		O (Note 2)	0
			Nothing is assigned (i When write, set "0". V	= 1, 2, 4, 5). Vhen read, its content is indeterminate.	X (Note 3))
		MR3	Invalid in event counte When write, set "0". V content is indetermina	Vhen read in event counter mode, its	0	×
		TCK0	Invalid in event counte Can be "0" or "1".	er mode.	0	0
		TCK1	Event clock select	0 : Input from TBiN pin (Note 4) 1 : TBj overflow (j = i - 1; however, j = 2 when i = 0, j = 5 when i = 3)	0	0

Note 2: Timer B0, timer B3. Note 3: Timer B1, timer B2, timer B4, timer B5.

Note 4: Set the corresponding function select register A to I/O port, and port direction register to "0".

Figure 14.5 Timer Bi mode register in event counter mode

(3) Pulse period/pulse width measurement mode

In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 14.3) Figure 14.6 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure 14.7 shows the operation timing when measuring a pulse period. Figure 14.8 shows the operation timing when measuring a pulse period.

ltem	Specification				
Count source	f1, f8, f32, fc32				
Count operation	Up count				
	Counter value "000016" is transferred to reload register at measurement				
	pulse's effective edge and the timer continues counting				
Count start condition	Count start flag is set (= 1)				
Count stop condition	Count start flag is reset (= 0)				
Interrupt request generation timing	When measurement pulse's effective edge is input (Note 1)				
	• Timer overflow. When an overflow occurs, the timer Bi overflow flag set to "1"				
	simultaneously. The timer Bi overflow flag cleared to "0" by writing to the				
	timer mode register at the next count timing or later after the timer Bi overflow				
	flag was set to "1". At this time, make sure the timer start flag is set to "1".				
TBilN pin function	Measurement pulse input (Set the corresponding function select register A to I/O port.)				
Read from timer	When timer Bi register is read, it indicates the reload register's content				
	(measurement result) (Note 2)				
Write to timer	Cannot be written to				

Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting. Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.

7 b6 b5 b4 b3 b2 b1 b0 1 1 0	Symbol TBiMR(i	Address = 0 to 5) 035B16 to 03 031B16 to 03	35D16 00XX00002		
	Bit symbol	Bit name	Function	R	W
	TMOD0	Operation mode	1 0 : Pulse period / pulse width	0	0
	TMOD1	select bit	measurement mode	0	0
	MR0	Measurement mode select bit	 ^{b3 b2} 0 0 : Pulse period measurement (Interval between measurement pulse's falling edge to falling edge) 0 1 : Pulse period measurement (Interval between 		0
·····	MR1 measurement pulse's rising edge to rising edge) 1 0 : Pulse width measurement (Interval between measurement pulse's falling edge to rising edge, and between rising edge to falling edge) 1 1 : Must not be set				
	MR2	0 (Set to "0" in pulse period/pulse width measurement mode; i = 0, 3)		O (Note 2)	0
		Nothing is assigned (i When write, set "0". \	= 1, 2, 4, 5). When read, its content is indeterminate.	X (Note 3)	×
	MR3	Timer Bi overflow flag (Note 1)	0 : Timer did not overflow 1 : Timer has overflowed	0	x
l	TCK0	Count source select bit	ьть 00:f1 01:f8	0	0
	TCK1		1 0 : f32 1 1 : fC32	0	0
	cleare overflo Note 2: Timer	d to "0" by writing to the ow flag was set to "1". T	r reset. When the timer Bi start flag = 1, the timer Bi over e timer Bi mode register at the next count timing or later a 'he Timer Bi overflow flag cannot be set to "1" in a progra	after the	

Figure 14.6 Timer Bi mode register in pulse period/pulse width measurement mode

When measuri	ing measurement pulse time interval from falling edge to falling edge
Count source	ບບບົບບບບບບົບບບບບບບບບບບບບບບບບບບບ
Measurement pulse	"H" "L" Transfer (indeterminate value) Transfer (measured value)
Reload register ← cou transfer timing	Inter
Timing at which counte reaches "000016"	er
Count start flag	"1" "O"
Timer Bi interrupt request bit	"1" "0"
Timer Bi overflow flag	Cleared to "0" when interrupt request is accepted, or cleared by software.
	er is initialized at completion of measurement. has overflowed.

Figure 14.7 Operation timing when measuring a pulse period

Count source	
Measurement pulse	"H" "L" Transfer Transfer Transfer (indeterminate (measured value) (measured value)
Reload register ← cour transfer timing	
Timing at which counte reaches "000016"	r (Note 1) _ (Note 1) _ (Note 1) _ (Note 2)
Count start flag	"1" "0"
Timer Bi interrupt request bit	"1" "0"
Timer Bi overflow flag	"1" Cleared to "0" when interrupt request is accepted, or cleared by software. "0"
Note 1: Counter is Note 2: Timer has	initialized at completion of measurement. overflowed.

Figure 14.8 Operation timing when measuring a pulse width

15. Three-phase motor control timers' functions

Use of more than one built-in timer A and timer B provides the means of outputting three-phase motor driving waveforms.

Figures 15.1 through 15.3 show registers related to timers for three-phase motor control.

	\downarrow	Ļ	Ļ	Symbol INVC0	Address V 030816	Vhen reset 0016		
			[Bit symbol	Bit	Description	R	W
				INV00	Effective interrupt output polarity select bit	 0: A timer B2 interrupt occurs when the timer A1 reload control signal is "0". 1: A timer B2 interrupt occurs when the timer A1 reload control signal is "1". Effective only in three-phase mode 1 	0	0
				INV01	Effective interrupt output specification bit (Note 4)	0: Not specified. 1: Selected by the effective interrupt output polarity selection bit. Effective only in three-phase mode 1	0	0
				INV02	Mode select bit (Note 2)	0: Normal mode 1: Three-phase PWM output mode	0	0
	· · · ·			INV03	Output control bit	0: Output disabled 1: Output enabled	0	0
	!			INV04	Positive and negative phases concurrent L output disable function enable bit	0: Feature disabled 1: Feature enabled	0	0
				INV05	Positive and negative phases concurrent L output detect flag	0: Not detected yet 1: Already detected	0	O (Note
				INV06	Modulation mode select bit (Note 3)	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode	0	0
				INV07	Software trigger bit	1: Trigger generated The value, when read, is "0".	0	0
Note 2	 Selectin timer B2 For U, T required In triang output. 	ng thre 2 inte 3, V, [*] d. gular The c	ee-p rrup ∇, V r wa data	t occurrences V and W outpu ve modulation transfer from t	tput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 thro n mode: The dead time timer the three-phase buffer registe	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers A starts in synchronization with the falling edg r to the three-phase output shift register is m	A, B	and timer
Note 2 Note 2 Note 4 Note 4	 Selectin timer B2 For U, TU required In triang output. synchro In sawte output a phase o Set bit 1 Rewrite 	ig thre 2 inte 2, V, ⁷ d. gular The conizat onizat ooth and woutput 1 of the the I	ee-p rrup V, V data ion vith t vith t t shi nis r NV(bhase PWM out t occurrences V and W output transfer from 1 with the transfer we modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an	tput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throw n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer iger signal. The data transfer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers <i>J</i> starts in synchronization with the falling edg r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edg from the three-phase output buffer register to sfer trigger. frequency set counter.	A, B e of ade e of t	and timer only imer
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawte output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee- μ rrup ∇ , V r wa data ion r wa vith t t shi his r NV(NV(1 co	bhase PWM out to occurrences V and W output transfer from the with the transfer the transfer trig ff register is m egister to "1" a	tput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throin n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer ger signal. The dead time timer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address V	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers <i>J</i> starts in synchronization with the falling edg r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edg from the three-phase output buffer register to sfer trigger. frequency set counter.	A, B e of ade e of t	and timer only imer
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawti output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee- μ rrup ∇ , V r wa data ion r wa vith t t shi his r NV(NV(1 co	bhase PWM ou to occurrences V and W outpu transfer from t with the transfer we modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an Control regis Symbol	tput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throin n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer ger signal. The dead time timer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address V	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers <i>A</i> starts in synchronization with the falling edg r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edg from the three-phase output buffer register to sfer trigger. frequency set counter. A1,A2,A4 and B stop.	A, B e of ade e of t	and timer only imer e thre
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawti output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee- μ rrup ∇ , V r wa data ion r wa vith t t shi his r NV(NV(1 co	bhase PWM ou t occurrences V and W outpu transfer from t with the transfer ve modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an Ontrol regis Symbol INVC1	tiput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throin n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer ger signal. The data transfer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address V 030916	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers <i>A</i> starts in synchronization with the falling edg r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edg from the three-phase output buffer register to sfer trigger. frequency set counter. A1,A2,A4 and B stop.	A, B e of ade e of t o the	and timer only imer three W
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawti output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee-r rrup V, V r wa data data wa vith t t shi nis r NVC	bhase PWM ou t occurrences V and W outpu transfer from 1 with the transfer we modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an DOTTOI regis Symbol INVC1 Bit symbol	Itput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throin n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer ger signal. The data transfer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address 030916 Bit name Timer Ai start trigger	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers A starts in synchronization with the falling edg r to the three-phase output shift register is m o the three-phase output buffer register. starts in synchronization with the falling edg from the three-phase output buffer register to sfer trigger. frequency set counter. A1,A2,A4 and B stop. When reset XXX0X0002 Description 0: Timer B2 overflow signal 1: Timer B2 overflow signal.	A, B e of ade e of t o the	and timer only imer e thre
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawti output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee-r rrup V, V r wa data data wa vith t t shi nis r NVC	bhase PWM ou t occurrences V and W outpu transfer from t with the transfer we modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an Dontrol regis Symbol INVC1 Bit symbol INV10	tiput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throi n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer iger signal. The data transfer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address V 030916 Bit name Timer Ai start trigger signal select bit Timer A1-1, A2-1, A4-1	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers <i>J</i> starts in synchronization with the falling edge r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edge from the three-phase output buffer register is sfer trigger. frequency set counter. A1,A2,A4 and B stop. When reset XXX0X0002 Description 0: Timer B2 overflow signal 1: Timer B2 overflow signal, signal for writing to timer B2 0: Three-phase mode 0	A, B e of ade e of t o the	and (timer only imer e thre
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawti output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee-r rrup V, V r wa data data wa vith t t shi nis r NVC	ohase PWM ou to occurrences V and W outpu transfer from t with the transfer we modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an Ontrol regis Symbol INV01 Bit symbol INV10	tiput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throi n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to n mode: The dead time timer iger signal. The data transfer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address 030916 Bit name Timer Ai start trigger signal select bit Timer A1-1, A2-1, A4-1 control bit Dead time timer count	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers <i>J</i> starts in synchronization with the falling edge r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edge from the three-phase output buffer register to sfer trigger. frequency set counter. A1,A2,A4 and B stop. When reset XXX0X0002 Description 0: Timer B2 overflow signal 1: Timer B2 overflow signal, signal for writing to timer B2 0: Three-phase mode 0 1: Three-phase mode 1 0 : f1	A, B e of tade e of the o the	and (timer only imer e three W
Note 2 Note 2 Note 2 Note 2	 Selectin timer B2 For U, TU required In triang output. synchro In sawti output a phase o Set bit 1 Rewrite 	ng thro 2 inte 2, V, ⁷ d. gular The conizat ooth and woutput 1 of the the I	ee-r rrup V, V r wa data data wa vith t t shi nis r NVC	bhase PWM ou t occurrences V and W outpu transfer from 1 with the transfer ve modulation the transfer trig ft register is m egister to "1" a 00 to INV02 an DONTROI regis Symbol INVC1 Bit symbol INV10 INV11 INV12	Itput mode causes the dead ti frequency set circuit works. t from P80, P81, and P72 throi n mode: The dead time timer the three-phase buffer registe er trigger signal after writing to mode: The dead time timer ger signal. The data transfer ade with respect to every tran fter setting timer B2 interrupt d INV06 bits when the timers ter 1 Address 030916 Bit name Timer A1 start trigger signal select bit Timer A1-1, A2-1, A4-1 control bit Dead time timer count source select bit Carrier wave detect flag	ime timer, the U, V, W phase output control of ugh P75, setting of function select registers / starts in synchronization with the falling edg r to the three-phase output shift register is m to the three-phase output buffer register. starts in synchronization with the falling edg from the three-phase output buffer register to sfer trigger. frequency set counter. A1,A2,A4 and B stop. When reset XXX0X0002 Description 0: Timer B2 overflow signal 1: Timer B2 overflow signal, signal for writing to timer B2 0: Three-phase mode 0 1: Three-phase mode 1 0 : f1 1 : f1/2 0: Rising edge of triangular waveform	A, B e of ade e of the other	and timer only imer a three 0 0

Figure 15.1 Registers related to timers for three-phase motor control

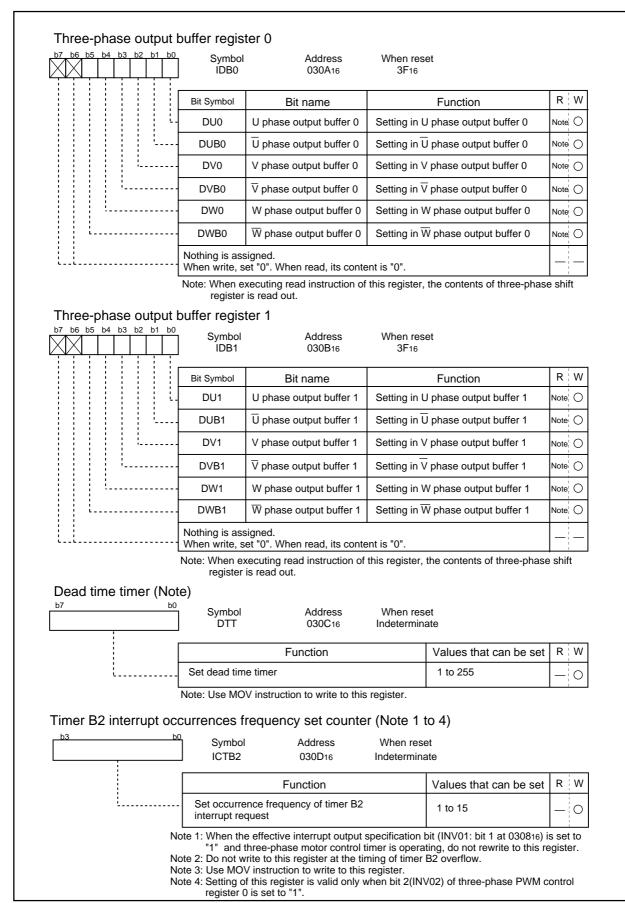


Figure 15.2 Registers related to timers for three-phase motor control



Figure 15.3 Registers related to timers for three-phase motor control

Г

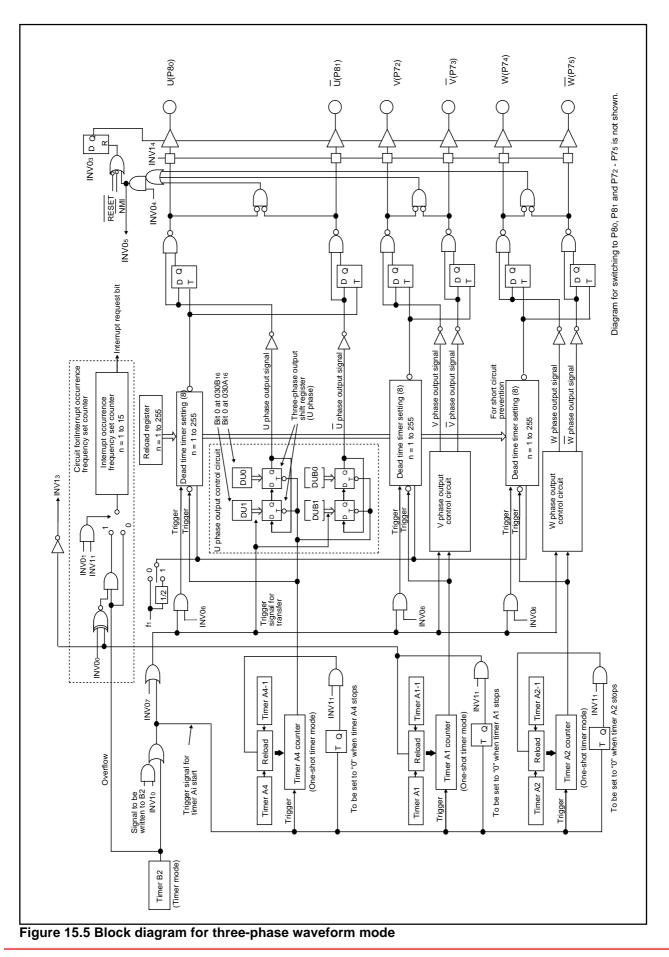
Three-phase motor driving waveform output mode (three-phase PWM output mode)

Setting "1" in the mode select bit (bit 2 at 030816) shown in Figure 15.1 causes three-phase PWM output mode that uses four timers A1, A2, A4, and B2 to be selected. As shown in Figure 15.4, set timers A1, A2, and A4 in one-shot timer mode, set the trigger in timer B2, and set timer B2 in timer mode using the respective timer mode registers.

Dimer Ai mode regist b7 b6 b5 b4 b3 b2 b1 b0 0 1 1 0 1 1 0	Er Symbo TA1MF TA2MF TA3MF	2 035716 0 2 035816 0	When reset 00000X002 00000X002 00000X002	
	Bit symbol	Bit name	Function	RV
	TMOD0	Operation mode	b1 b0	00
	TMOD1	select bit	1 0 : One-shot timer mode	00
	MR0	This bit is invalid in M16C/80 series. Port output control is set by the function select registers A and B.		
	MR1	External trigger select bit	Invalid in three-phase PWM output mode.	0
	MR2	Trigger select bit	1 : Selected by event/trigger select register	00
	MR3	0 (Set to "0" in one-shot tir	ner mode)	0
L	TCK0	Count source select bit	b7 b6 0 0 : f1 0 1 : f8	00
Timer B2 mode regis	TCK1		0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32	1
Fimer B2 mode regis	TCK1 ter Symbo TB2Mi	ol Address	0 0 : f1 0 1 : f8 1 0 : f32	00
7 b6 b5 b4 b3 b2 b1 b0	TCK1 ter Symbo	ol Address	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset	
	TCK1 ter Symbo TB2Mi	ol Address R 035D16	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset 00XX00002 Function	00
7 b6 b5 b4 b3 b2 b1 b0	TCK1 ter Symbo TB2MI Bit symbol TMOD0	DI Address R 035D16 Bit name Operation mode select bit	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset 00XX00002 Function	R V 0 C
7 b6 b5 b4 b3 b2 b1 b0	TCK1 ter Symbo TB2MI Bit symbol TMOD0 TMOD1	ol Address R 035D16 Bit name Operation mode select bit	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset 00XX00002 Function	R V 0 C 0 C
7 b6 b5 b4 b3 b2 b1 b0	TCK1 ter Symbol Bit symbol TMOD0 TMOD1 MR0	DI Address R 035D16 Bit name Operation mode select bit	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset 00XX00002 Function ^{b1 b0} 0 0 : Timer mode	R V 0 C 0 C
7 b6 b5 b4 b3 b2 b1 b0	TCK1 symbo TB2MI Bit symbol TMOD0 TMOD1 MR0 MR1	Address A 035D16 Bit name Operation mode select bit Invalid in timer mode Can be "0" or "1" 0 (Set to "0" in timer mode Invalid in timer mode.	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset 00XX00002 Function ^{b1 b0} 0 0 : Timer mode	R V 0 C
07 b6 b5 b4 b3 b2 b1 b0	TCK1 symbol Bit symbol TMOD0 TMOD1 MR0 MR1 MR2	Address Contraction and the select bit A Departion mode select bit A Depart of the select bit A Depart	0 0 : f1 0 1 : f8 1 0 : f32 1 1 : fC32 When reset 00XX00002 Function ^{b1 b0} 0 0 : Timer mode	R V 0 C 0 C 0 C 0 C 0 C 0 C

Figure 15.4 Timer mode registers in three-phase PWM output mode

Figure 15.5 shows the block diagram for three-phase waveform mode. In "L" active output polarity in three-phase waveform mode, the positive-phase waveforms (U phase, V phase, and W phase) and negative waveforms (U phase, \overline{V} phase, and \overline{W} phase), six waveforms in total, are output from P80, P81, P72, P73, P74, and P75 as active on the "L" level. Of the timers used in this mode, timer A4 controls the U phase and U phase, timer A1 controls the V phase and \overline{V} phase, and timer A2 controls the W phase and \overline{W} phase respectively; timer B2 controls the periods of one-shot pulse output from timers A4, A1, and A2. In outputting a waveform, dead time can be set so as to cause the "L" level of the positive waveform output (U phase, V phase, and W phase) not to lap over the "L" level of the negative waveform output (U phase, \overline{V} phase).


To set short circuit time, use three 8-bit timers sharing the reload register for setting dead time. A value from 1 through 255 can be set as the count of the timer for setting dead time. The timer for setting dead time works as a one-shot timer. If a value is written to the dead timer (030C16), the value is written to the reload register shared by the three timers for setting dead time.

Any of the timers for setting dead time takes the value of the reload register into its counter, if a start trigger comes from its corresponding timer, and performs a down count in line with the clock source selected by the dead time timer count source select bit (bit 2 at 030916). The timer can receive another trigger again before the workings due to the previous trigger are completed. In this instance, the timer performs a down count from the reload register's content after its transfer, provoked by the trigger, to the timer for setting dead time.

Since the timer for setting dead time works as a one-shot timer, it starts outputting pulses if a trigger comes; it stops outputting pulses as soon as its content becomes 0016, and waits for the next trigger to come.

The positive waveforms (U phase, V phase, and W phase) and the negative waveforms (\overline{U} phase, \overline{V} phase, and \overline{W} phase) in three-phase waveform mode are output from respective ports by means of setting "1" in the output control bit (bit 3 at 030816). Setting "0" in this bit causes the ports to be the high-impedance state. This bit can be set to "0" not only by use of the applicable instruction, but by entering a falling edge in the \overline{NMI} terminal or by resetting. Also, if "1" is set in the positive and negative phases concurrent L output disable function enable bit (bit 4 at 030816) causes one of the pairs of U phase and \overline{U} phase, V phase and \overline{V} phase, and W phase and \overline{W} phase concurrently go to "L", as a result, the output control bit becomes the high-impedance state.

Triangular wave modulation

To generate a PWM waveform of triangular wave modulation, set "0" in the modulation mode select bit (bit 6 at 030816). Also, set "1" in the timers A4-1, A1-1, A2-1 control bit (bit 1 at 030916). In this mode, each of timers A4, A1, and A2 has two timer registers, and alternately reloads the timer register's content to the counter every time timer B2 counter's content becomes 000016. If "0" is set to the effective interrupt output specification bit (bit 1 at 030816), the frequency of interrupt requests that occur every time the timer B2 counter's value becomes 000016 can be set by use of the timer B2 counter (030D16) for setting the frequency of interrupt occurrences. The frequency of occurrences is given by (setting; setting π 0). Setting "1" in the effective interrupt output specification bit (bit 1 at 030816) not provide the means to choose which value of the timer A1 reload control signal to use, "0" or "1", to cause timer B2's interrupt request to occur. To make this selection, use the effective interrupt output polarity selection bit (bit 0 at 030816). An example of U phase waveform is shown in Figure 15.6, and the description of waveform output work-

An example of 0 phase waveform is shown in Figure 15.6, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 030A16). And set "0" in DUB0 (bit 1 at 030A16). In addition, set "0" in DU1 (bit 0 at 030B16) and set "1" in DUB1 (bit 1 at 030B16). Also, set "0" in the effective interrupt output specification bit (bit 1 at 030816) to set a value in the timer B2 interrupt occurrence frequency set counter. By this setting, a timer B2 interrupt occurs when the timer B2 counter's content becomes 000016 as many as (setting) times. Furthermore, set "1" in the effective interrupt output specification bit (bit 1 at 030816), set in the effective interrupt polarity select bit (bit 0 at 030816) and set "1" in the interrupt occurrence frequency set counter (030D16). These settings cause a timer B2 interrupt to occur every other interval when the U phase output goes to "H".

When the timer B2 counter's content becomes 000016, timer A4 starts outputting one-shot pulses. In this instance, the content of DU1 (bit 0 at 030B16) and that of DU0 (bit 0 at 030A16) are set in the three-phase output shift register (U phase), the content of DUB1 (bit 1 at 030B16) and that of DUB0 (bit 1 at 030A16) are set in the three-phase shift register (\overline{U} phase). After triangular wave modulation mode is selected, however, no setting is made in the shift register even though the timer B2 counter's content becomes 000016.

The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the U terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (034F16, 034E16) and when timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to U phase output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform doesn't lap over the "L" level of the \overline{U} phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0" by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, "0" already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the timer A4 counter starts counting the value written to timer A4-1 (030716, 030616), and starts outputting one-shot pulses. When timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, but if the three-phase output shift register's content changes from "0" to "1" as a result of the shift, the output level changes from "L" to "H" without waiting for the timer for setting dead time to finish outputting one-shot pulses. A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase output shift register on the U phase side is used, the workings in generating a U phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U

phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the values of timer B2, timer A4, and timer A4-1. In dealing with the V and W phases, and \overline{V} and \overline{W} phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with the U and \overline{U} phases to generate an intended waveform.

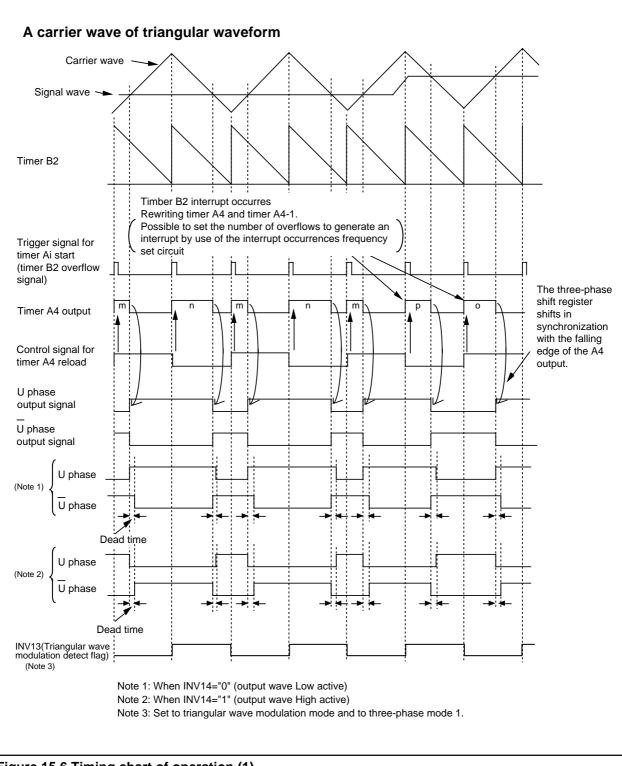


Figure 15.6 Timing chart of operation (1)

Assigning certain values to DU0 (bit 0 at 030A16) and DUB0 (bit 1 at 030A16), and to DU1 (bit 0 at 030B16) and DUB1 (bit 1 at 030B16) allows you to output the waveforms as shown in Figure 15.7, that is, to output the U phase alone, to fix \overline{U} phase to "H", to fix the U phase to "H," or to output the \overline{U} phase alone.

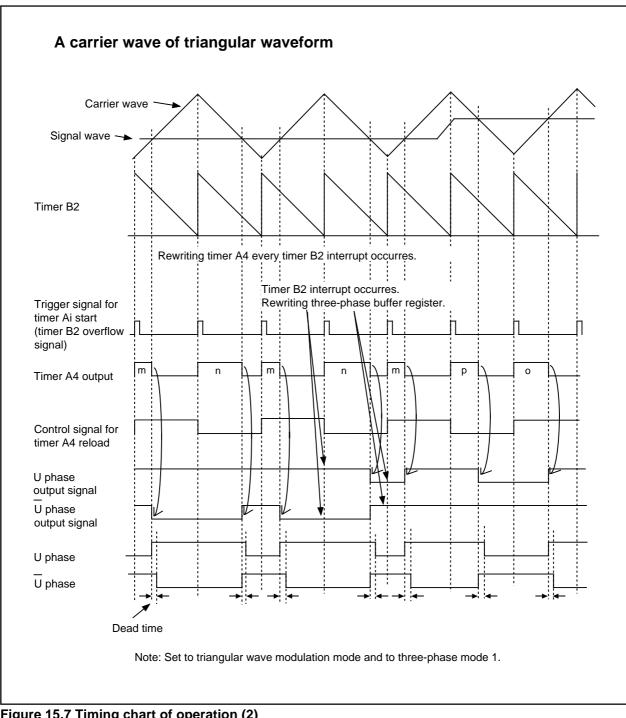
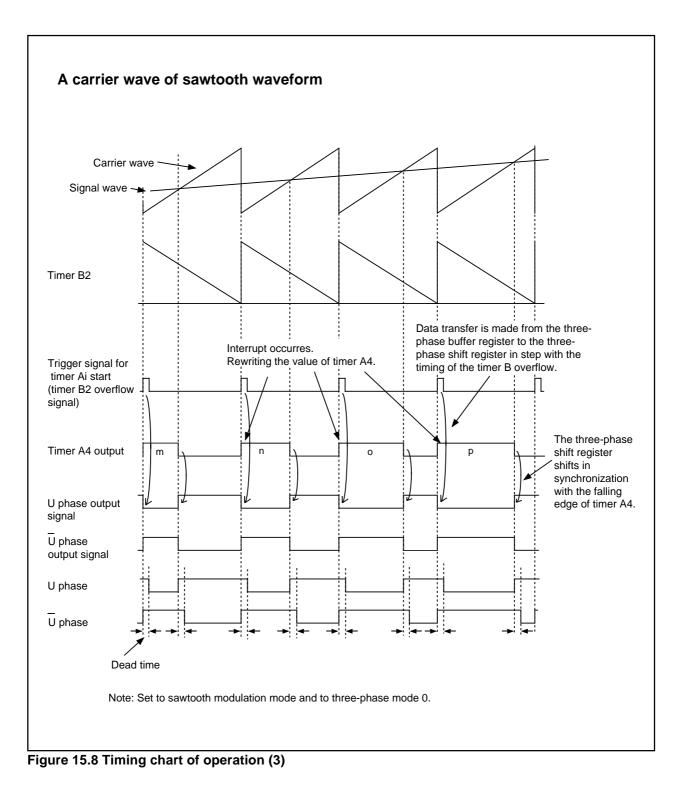


Figure 15.7 Timing chart of operation (2)

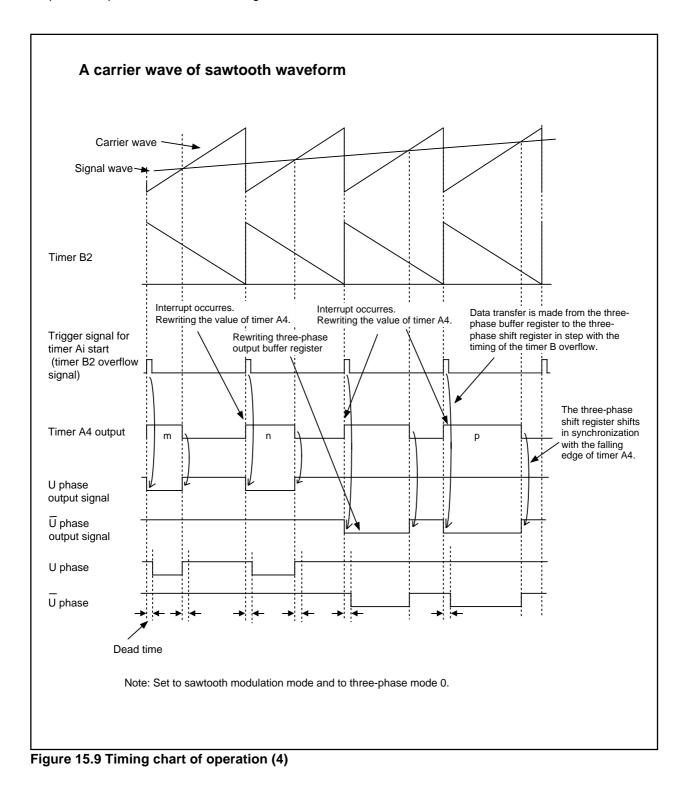
Sawtooth modulation

To generate a PWM waveform of sawtooth wave modulation, set "1" in the modulation mode select bit (bit 6 at 030816). Also, set "0" in the timers A4, A1, and A2-1 control bit (bit 1 at 030916). In this mode, the timer registers of timers A4, A1, and of A2 comprise conventional timers A4, A1, and A2 alone, and reload the corresponding timer register's content to the counter every time the timer B2 counter's content becomes 000016. The effective interrupt output specification bit (bit 1 at 030816) and the effective interrupt output specification bit (bit 1 at 030816) and the effective interrupt output polarity select bit (bit 0 at 030816) go nullified.


An example of U phase waveform is shown in Figure 15.8, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 030A16), and set "0" in DUB0 (bit 1 at 030A16). In addition, set "0" in DU1 (bit 0 at 030B16) and set "1" in DUB1 (bit 1 at 030B16).

When the timber B2 counter's content becomes 000016, timer B2 generates an interrupt, and timer A4 starts outputting one-shot pulses at the same time. In this instance, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase output shift register (U phase), and the contents of DUB1 and DUB0 are set in the three-phase output register (U phase). After this, the three-phase buffer register's content is set in the three-phase shift register every time the timer B2 counter's content becomes 000016.

The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the \overline{U} terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (034F16, 034E16) and when timer A4 finishes outputting one-shot pulses, the three-phase output shift register's content is shifted one position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to the \overline{U} output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform doesn't lap over the "L" level of the \overline{U} phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0 "by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, 0 already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase shift register (U phase), and the contents of DUB1 and DUB0 are set in the three-phase shift register (\overline{U} phase) again.


A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase output shift register on the \overline{U} phase side is used, the workings in generating a \overline{U} phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the values of timer B2 and timer A4. In dealing with the V and W phases, and \overline{V} and \overline{W} phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with the U and \overline{U} phases to generate an intended waveform.

Setting "1" both in DUB0 and in DUB1 provides a means to output the U phase alone and to fix the \overline{U} phase output to "H" as shown in Figure 15.9.

16. Serial I/O

Serial I/O is configured as five channels: UART0 to UART4.

UART0 to 4

UART0 to UART4 each have an exclusive timer to generate a transfer clock, so they operate independently of each other.

Figures 16.1 and 16.2 show the block diagram of UARTi (i=0 to 4). Figures 16.3 and 16.4 show the block diagram of the transmit/receive unit.

UARTi has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses 036016, 036816, 033816, 032816 and 02F816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART.

Although a few functions are different, UART0 to UART4 have almost the same functions.

UART2 to UART4, in particular, are compliant with the SIM interface with some extra settings added in clock-asynchronous serial I/O mode (Note). It also has the bus collision detection function that generates an interrupt request if the TxD pin and the RxD pin are different in level.

Table 16.1 shows the comparison of functions of UART0 to UART4, and Figures 16.5 through 16.11 show the registers related to UARTi.

Note: SIM : Subscriber Identity Module

Function	UART0	UART1	UART2	UART3	UART4
CLK polarity selection	Possible ^(Note 1)				
LSB first / MSB first selection	Possible ^(Note 1)	Possible ^(Note 1)	Possible ^(Note 2)	Possible ^(Note 2)	Possible ^(Note 2)
Continuous receive mode selection	Possible ^(Note 1)				
Transfer clock output from multiple pins selection	Impossible	Possible ^(Note 1)	Impossible	Impossible	Impossible
Separate CTS/RTS pins	Possible	Impossible	Impossible	Impossible	Impossible
Serial data logic switch	Impossible	Impossible	Possible ^(Note 4)	Possible ^(Note 4)	Possible ^(Note 4)
Sleep mode selection	Possible ^(Note 3)	Possible ^(Note 3)	Impossible	Impossible	Impossible
TxD, RxD I/O polarity switch	Impossible	Impossible	Possible	Possible	Possible
TxD, RxD port output format	CMOS output	CMOS output	N-channel open drain output	CMOS output	CMOS output
Parity error signal output	Impossible	Impossible	Possible ^(Note 4)	Possible ^(Note 4)	Possible ^(Note 4)
Bus collision detection	Impossible	Impossible	Possible	Possible	Possible

Table 16.1 Comparison of functions of UART0 to UART4

Note 1: Only when clock synchronous serial I/O mode.

Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode.

Note 3: Only when UART mode.

Note 4: Using for SIM interface.

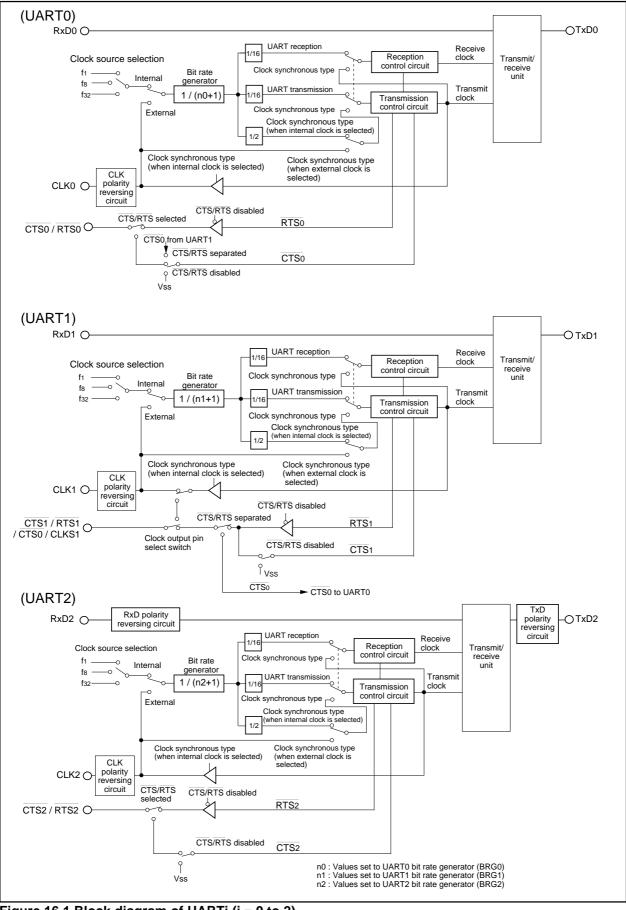


Figure 16.1 Block diagram of UARTi (i = 0 to 2)

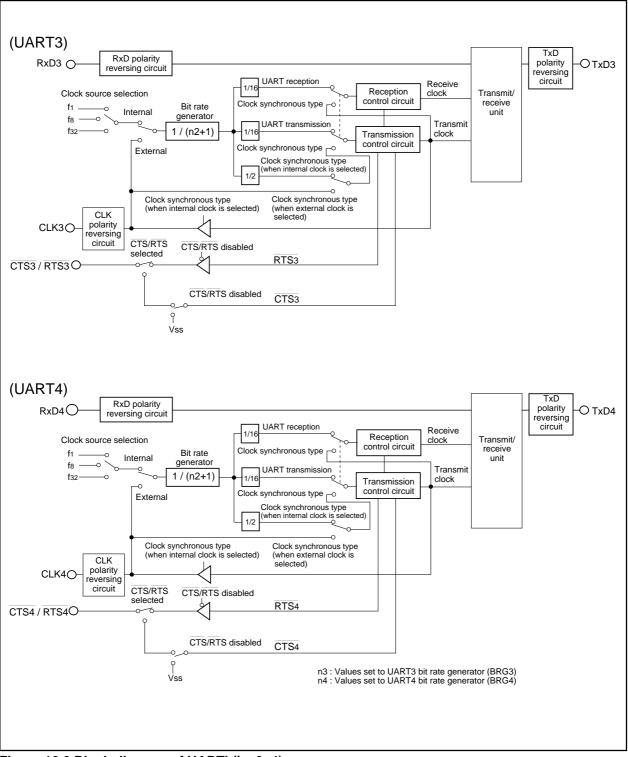


Figure 16.2 Block diagram of UARTi (i = 3, 4)

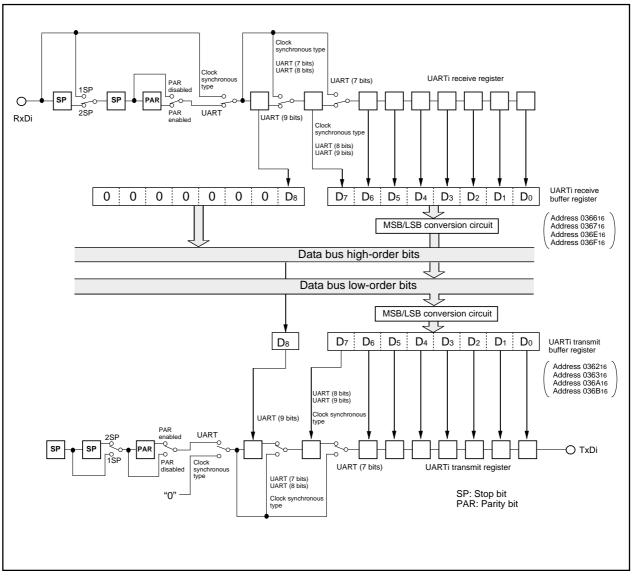


Figure 16.3 Block diagram of UARTi (i = 0, 1) transmit/receive unit

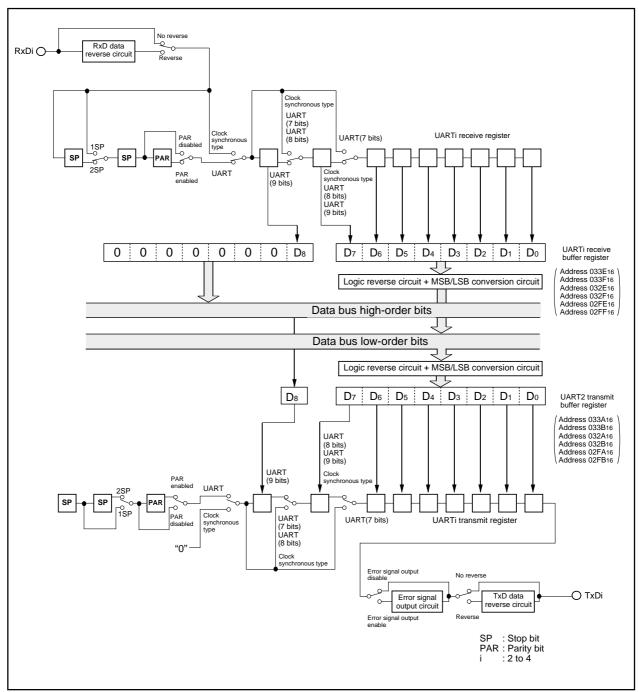
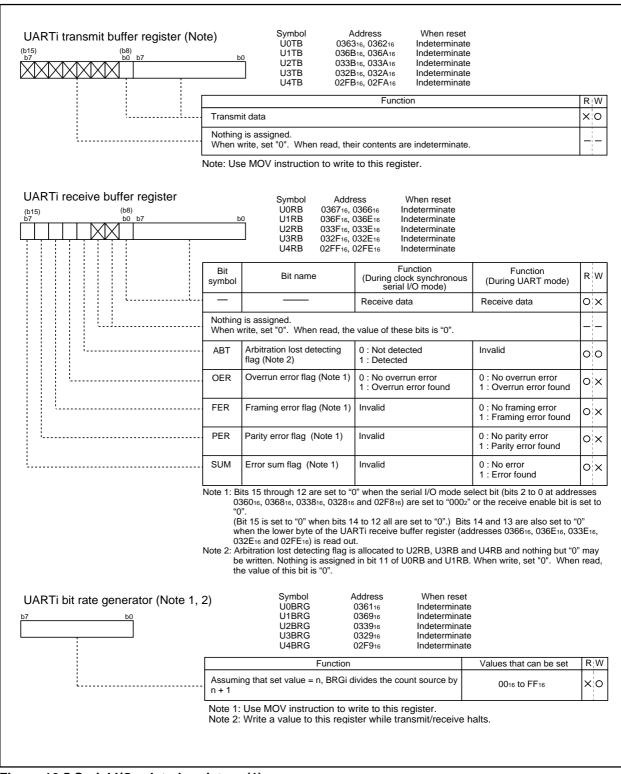
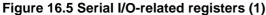




Figure 16.4 Block diagram of UARTi (i = 2 to 4) transmit/receive unit

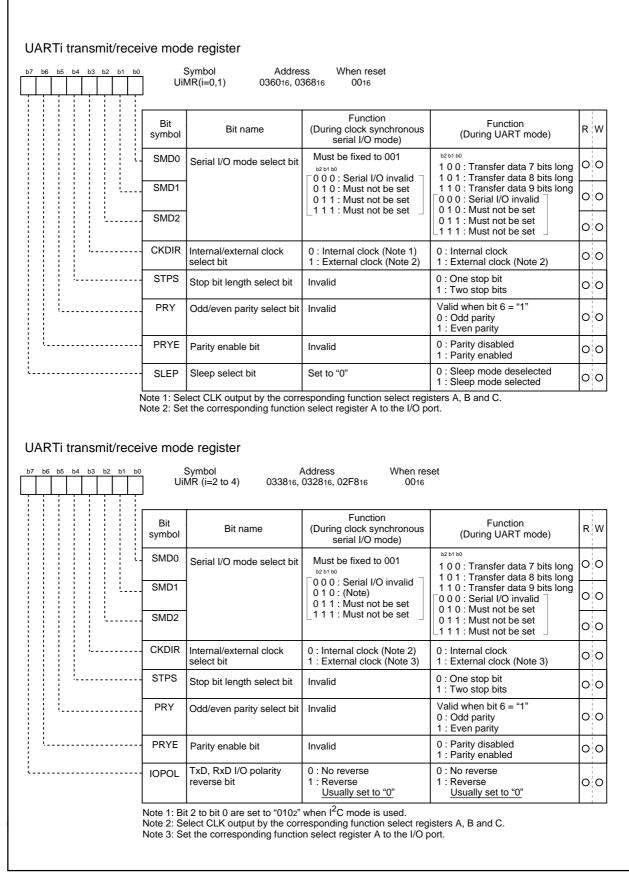


Figure 16.6 Serial I/O-related registers (2)

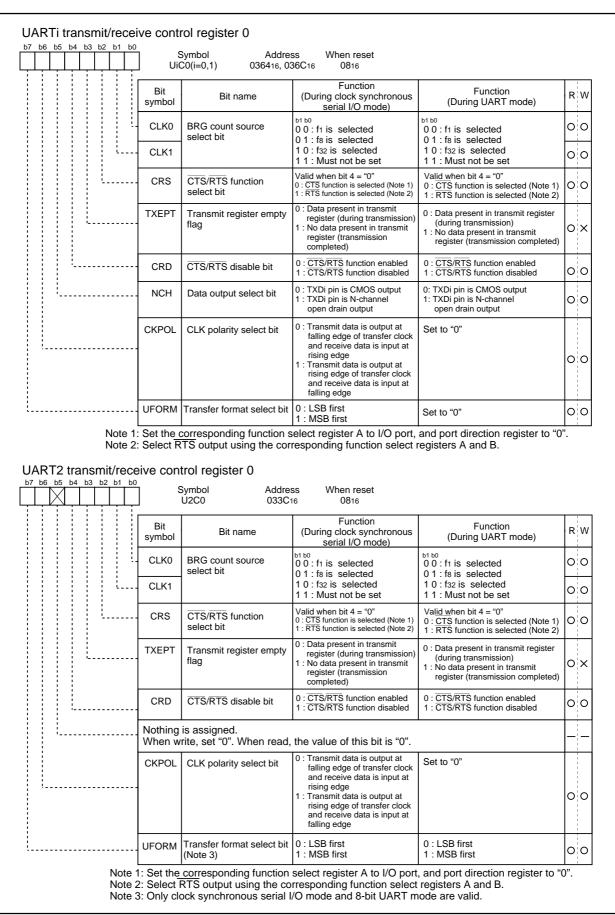
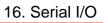
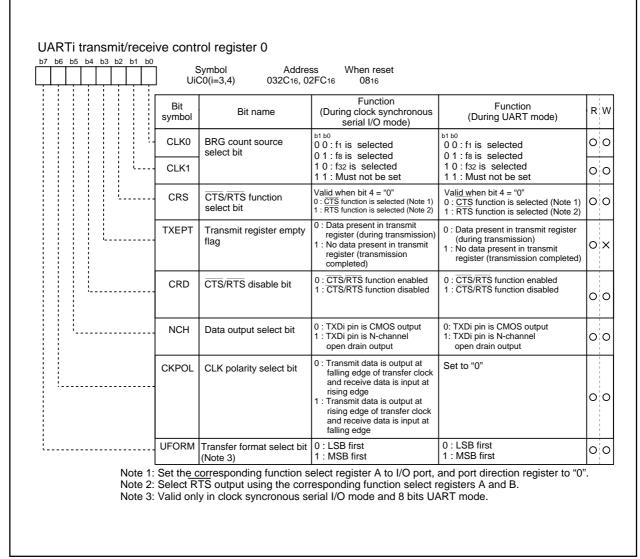
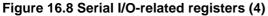





Figure 16.7 Serial I/O-related registers (3)

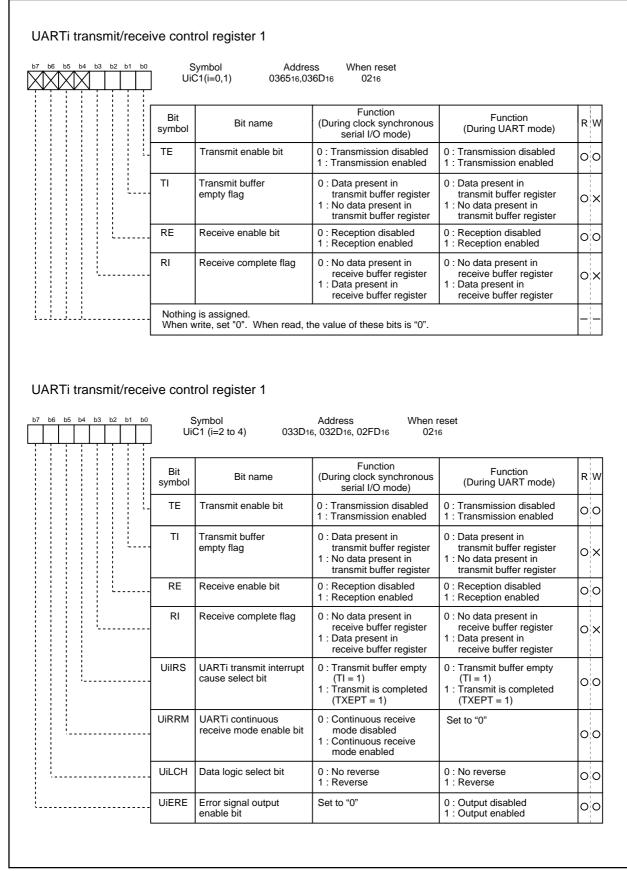
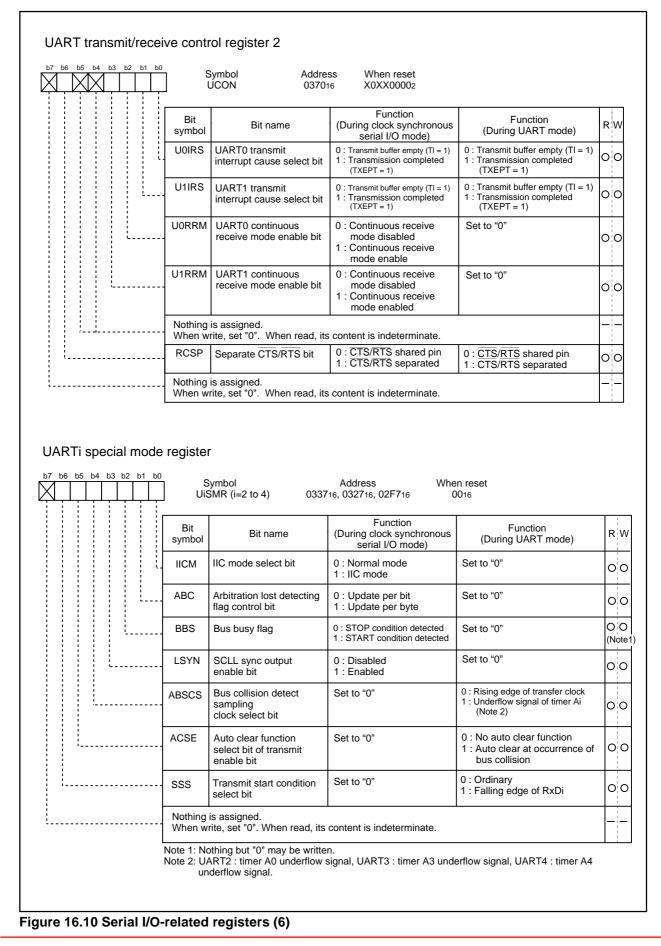



Figure 16.9 Serial I/O-related registers (5)

RENESAS

b7 b6 b5 b4 b3 b2	b1 b0		Symbol SMR2 (i=2 to 4) 0336	Address When reset 16, 032616, 02F616 0016	
		Bit symbol	Bit name	Function	RV
		IICM2	IIC mode select bit 2	 0 : NACK/ACK interrupt DMA source - ACK Transfer to receive buffer at the rising edge of last bit of receive clock Receive interrupt is occurred at the rising edge of last bit of receive clock 1 : UART transfer/receive interrupt DMA source - UART receive Transfer to receive buffer at the falling edge of last bit of receive clock Receive interrupt is occurred at the falling edge of last bit of receive clock 	00
		CSC	Clock synchronous bit	0 : Disabled 1 : Enabled	0
		SWC	SCL wait output bit	0 : Disabled 1 : Enabled	0
		ALS	SDA output stop flag	0 : Disabled 1 : Enabled	00
		STC	UARTi initialize bit	0 : Disabled 1 : Enabled	00
		SWC2	SCL wait output bit 2	0 : UARTi clock 1 : 0 output	00
		SDHI	SDA output inhibit bit	0 : Enabled 1 : Disabled (high impedance)	00
		SHTC	Start/stop condition control bit	Must set to "1" in selecting IIC mode.	0

Figure 16.11 Serial I/O-related registers (7)

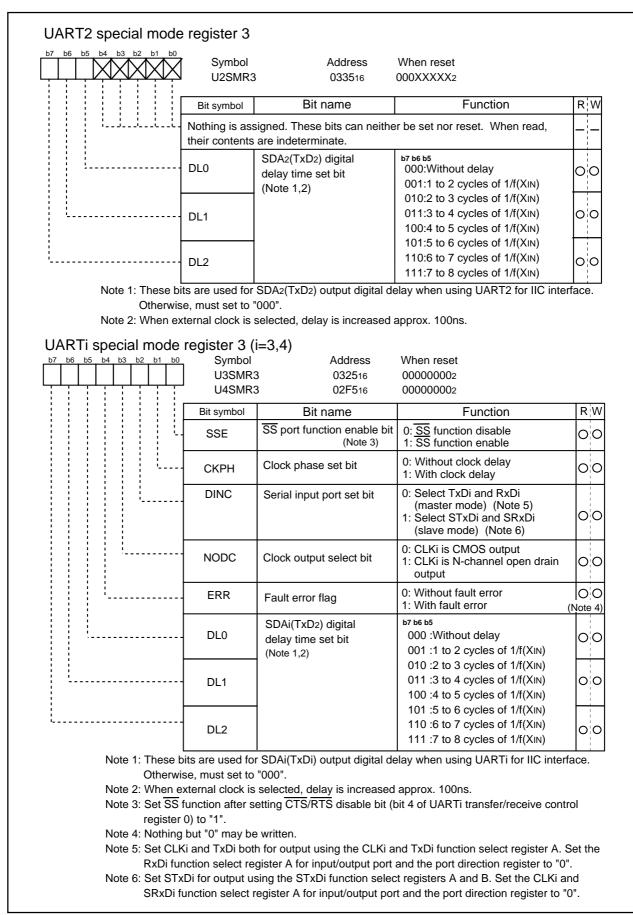


Figure 16.12 Serial I/O-related registers (8)

17. Clock synchronous serial I/O mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Tables 17.1 and 17.2 list the specifications of the clock synchronous serial I/O mode. Figure 17.1 shows the UARTi transmit/receive mode register.

Item	Specification	
Transfer data format	Transfer data length: 8 bits	
Transfer clock	• When internal clock is selected (bit 3 at addresses 036016, 036816, 033816, 032816, 02F816 = "0") : fi/ 2(n+1) (Note) fi = f1, f8, f32	
	- CLK is selected by the corresponding port function select register, periph-	
	eral function select register and peripheral subfunction select register.	
	 When external clock is selected (bit 3 at addresses 036016, 036816, 033816, 032816, 02F816= "1") : Input from CLKi pin 	
	- Set the corresponding function select register A to I/O port	
Transmission/reception control	CTS function/RTS function/CTS, RTS function chosen to be invalid	
Transmission start condition		
Transmission start condition	• To start transmission, the following requirements must be met:	
	- Transmit enable bit (bit 0 at addresses 036516, 036D16, 033D16, 032D16, 02FD16) = "1"	
	 Transmit buffer empty flag (bit 1 at addresses 036516, 036D16, 033D16, 032D16, 02FD16) = "0" When CTS function selected, CTS input level = "L" 	
	– TxD output selected by the corresponding function select register A, B and C.	
	• Furthermore, if external clock is selected, the following requirements must	
	also be met:	
	 CLKi polarity select bit (bit 6 at addresses 036416, 036C16, 033C16, 	
	032C16, 02FC16) = "0": CLKi input level = "H"	
	 CLKi polarity select bit (bit 6 at addresses 036416, 036C16, 033C16, 	
	032C16, 02FC16) = "1": CLKi input level = "L"	
Reception start condition	 To start reception, the following requirements must be met: 	
	– Receive enable bit (bit 2 at addresses 036516, 036D16, 033D16, 032D16, 02FD16) = "1"	
	- Transmit enable bit (bit 0 at addresses 036516, 036D16, 033D16, 032D16, 02FD16) = "1"	
	- Transmit buffer empty flag (bit 1 at addresses 036516, 036D16, 033D16, 032D16, 02FD16) = "0"	
	 Furthermore, if external clock is selected, the following requirements must also be met: 	
	 CLKi polarity select bit (bit 6 at addresses 036416, 036C16, 033C16, 032C16, 032C16, 02FC16) = "0": CLKi input level = "H" 	
	 CLKi polarity select bit (bit 6 at addresses 036416, 036C16, 033C16, 032C16, 032C16, 02FC16) = "1": CLKi input level = "L" 	
	When transmitting	
Interrupt request	- Transmit interrupt cause select bit (bits 0, 1 at address 037016, bit 4 at address	
generation timing	033D16, 032D16, 02FD16) = "0": Interrupts requested when data transfer from	
<u>j</u>	UARTi transfer buffer register to UARTi transmit register is completed	
	- Transmit interrupt cause select bit (bits 0, 1 at address 037016, bit 4 at	
	address 033D16, 032D16, 02FD16) = "1": Interrupts requested when data	
	transmission from UARTi transfer register is completed	
	When receiving	
	- Interrupts requested when data transfer from UARTi receive register to	
	UARTi receive buffer register is completed	

Note : "n" denotes the value 0016 to FF16 that is set to the UART bit rate generator.

Item	Specification
Error detection	Overrun error (Note 1)
	This error occurs when the next data is ready before contents of UARTi
	receive buffer register are read out
Select function	CLK polarity selection
	Whether transmit data is output/input at the rising edge or falling edge of the
	transfer clock can be selected
	LSB first/MSB first selection
	Whether transmission/reception begins with bit 0 or bit 7 can be selected
	Continuous receive mode selection
	Reception is enabled simultaneously by a read from the receive buffer register
	• Transfer clock output from multiple pins selection (UART1) (Note 2)
	UART1 transfer clock can be chosen by software to be output from one of
	the two pins set
	Separate CTS/RTS pins (UART0) (Note 2)
	UART0 CTS and RTS pins each can be assigned to separate pins
	Switching serial data logic (UART2 to UART4)
	Whether to reverse data in writing to the transmission buffer register or
	reading the reception buffer register can be selected.
	• TxD, RxD I/O polarity reverse (UART2 to UART4)
	This function is reversing TxD port output and RxD port input. All I/O data
	level is reversed.

Table 17.2 Specifications of clock synchronous serial I/O mode (2)

Note 1: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit will not change.

Note 2: The transfer clock output from multiple pins and the separate CTS/RTS pins functions cannot be selected simultaneously.

Figure 17.1 UARTi transmit/receive mode register in clock synchronous serial I/O mode

Table 17.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. This table shows the pin functions when the transfer clock output from multiple pins and the separate $\overline{\text{CTS}}/\overline{\text{RTS}}$ pins functions are <u>not selected</u>. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open drain is selected, this pin is in floating state.)

Pin name	Function	Method of selection
TxDi (P63, P67, P70, P92, P96)	Serial data output (Note 1)	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71, P91, P97)	Serial data input (Note 2)	Port P62, P66, P71, P91 and P97 direction register (bits 2 and 6 at address 03C216, bit 1 at address 03C316, bit 1 and 7 at address 03C716)= "0" (Can be used as an input port when performing transmission only)
CLKi (P61, P65, P72,	Transfer clock output (Note 1)	Internal/external clock select bit (bit 3 at addresses 036016, 036816, 033816, 032816, 02F816) = "0"
P90, P95)	Transfer clock input (Note 2)	Internal/external clock select bit (bit 3 at addresses 036016, 036816, 033816, 032816, 02F816) = "1" Port P61, P65, P72, P90 and P95 direction register (bits 1 and 5 at address 03C216, bit 2 at address 03C316, bit 0 and 5 at address 03C716) = "0"
CTSi/RTSi (P60, P64, P73, P93, P94)	CTS input (Note 2)	$\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036416, 036C16, 033C16, 032C16, $\underline{02FC16}$) ="0" $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036416, 036C16, 033C16, 032C16, 032C16, 02FC16) = "0" Port P60, P64, P73, P93 and P94 direction register (bits 0 and 4 at address 03C216, bit 3 at address 03C316, bits 3 and 4 at address 03C716) = "0"
	RTS output (Note 1)	$\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036416, 036C16, 033C16, $\underline{032C16}$, 02FC16) = "0" $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036416, 036C16, 033C16, 032C16, 02FC16) = "1"
	Programmable I/O port (Note 2)	CTS/RTS disable bit (bit 4 at addresses 036416, 036C16, 033C16, 032C16, 032C16, 02FC16) = "1"

 Table 17.3 Input/output pin functions in clock synchronous serial I/O mode

(when transfer clock output from multiple pins and separate CTS/RTS pins functions are not selected)

Note 1: Select TxD output, CLK output and RTS output by the corresponding function select registers A, B and C.

Note 2: Select I/O port by the corresponding function select register A.

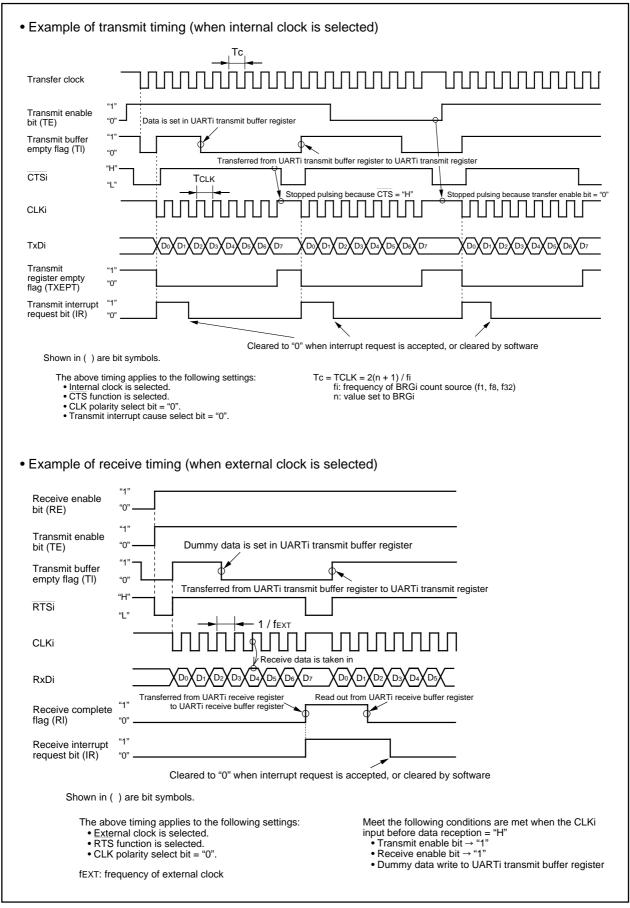


Figure 17.2 Typical transmit/receive timings in clock synchronous serial I/O mode

(a) Polarity select function

As shown in Figure 17.3, the CLK polarity select bit (bit 6 at addresses 036416, 036C16, 033C16, 032C16, 02FC16) allows selection of the polarity of the transfer clock.

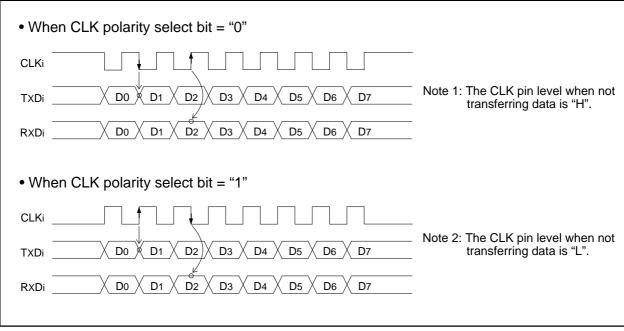


Figure 17.3 Polarity of transfer clock

(b) LSB first/MSB first select function

As shown in Figure 17.4, when the transfer format select bit (bit 7 at addresses 036416, 036C16, 033C16, 032C16, 02FC16) = "0", the transfer format is "LSB first"; when the bit = "1", the transfer format is "MSB first".

• When tr	ansfer format select bit = "0"				
CLKi					
TxDi	$D0$ $D1$ $D2$ $D3$ $D4$ $D5$ $D6$ $D7$ \rightarrow LSB first				
RXDi					
When tra	 When transfer format select bit = "1" 				
CLKi					
TXDi					
RXDi	$ \begin{array}{c} \hline \\ \hline $				
	Note: This applies when the CLK polarity select bit = "0".				
gure 17.4 Transfer format					

(c) Transfer clock output from multiple pins function (UART1)

This function allows the setting two transfer clock output pins and choosing one of the two to output a clock by using the port function select register (bits of related to-P64 and P65). (See Figure 17.5) The multiple pins function is valid only when the internal clock is selected for UART1. Note that when this function is selected, UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$ function cannot be used.

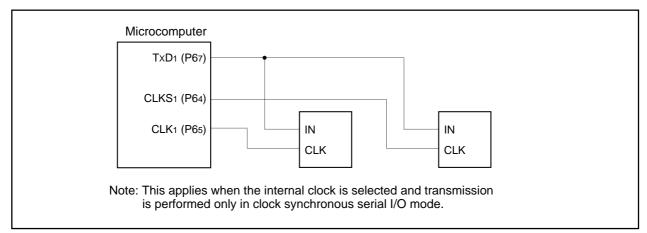


Figure 17.5 The transfer clock output from the multiple pins function usage

(d) Continuous receive mode

If the continuous receive mode enable bit (bits 2 and 3 at address 037016, bit 5 at address 033D16, 032D16, 02FD16) is set to "1", the unit is placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to the transmit buffer register back again.

(e) Separate CTS/RTS pins function (UART0)

This function works the same way as in the clock asynchronous serial I/O (UART) mode. The method of setting and the input/output pin functions are both the same, so refer to select function in the next section, "(2) Clock asynchronous serial I/O (UART) mode." Note that this function is <u>invalid</u> if the transfer clock output from the multiple pins function is selected.

(f) Serial data logic switch function (UART2 to UART4)

When the data logic select bit (bit6 at address 033D16, 032D16, 02FD16) = "1", and writing to transmit buffer register or reading from receive buffer register, data is reversed. Figure 17.6 shows the example of serial data logic switch timing.

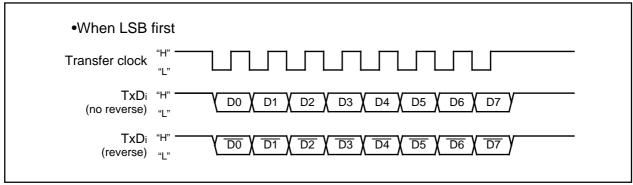


Figure 17.6 Serial data logic switch timing

18. Clock asynchronous serial I/O (UART) mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 18.1 and 18.2 list the specifications of the UART mode. Figure 18.1 shows the UARTi transmit/receive mode register.

816, 032816,
816, 032816,
816, 032816,
816, 032816,
816, 032816,
816, 032816,
alid
6, 032D 16,
33D16,
ister A, B
, 032D16,
, bit 4 at
ata transfer
completed
s, bit 4 at
en data
gister to

Table 18.1 Specifications of UART Mode (1)

Note 1: 'n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator. Note 2: fEXT is input from the CLKi pin.

Item	Specification
Error detection	Overrun error (Note)
	This error occurs when the next data is ready before contents of UARTi
	receive buffer register are read out
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	This error occurs when if parity is enabled, the number of 1's in parity and
	character bits does not match the number of 1's set
	Error sum flag
	This flag is set (= 1) when any of the overrun, framing, and parity errors is
	encountered
Select function	Separate CTS/RTS pins (UART0)
	UART0 $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ pins each can be assigned to separate pins
	 Sleep mode selection (UART0, UART1)
	This mode is used to transfer data to and from one of multiple slave micro-
	computers
	 Serial data logic switch (UART2 to UART4)
	This function is reversing logic value of transferring data. Start bit, parity bit
	and stop bit are not reversed.
	 TxD, RxD I/O polarity switch (UART2 to UART4)
	This function is reversing TxD port output and RxD port input. All I/O data
	level is reversed.

Table 18.2 Specifications of UART Mode (2)

Note: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit will not change.

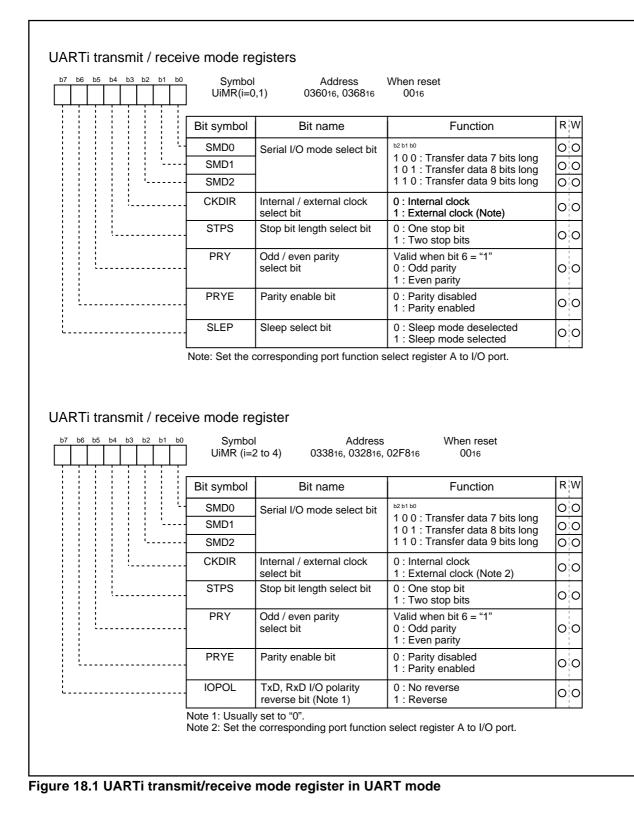


Table 18.3 lists the functions of the input/output pins during UART mode. This table shows the pin functions when the separate $\overline{\text{CTS}}/\overline{\text{RTS}}$ pins function is <u>not selected</u>. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open drain is selected, this pin is in floating state.)

Pin name	Function	Method of selection
TxDi (P63, P67, P70, P92, P96)	Serial data output (Note 1)	
RxDi (P62, P66, P71, P91, P97)	Serial data input (Note 2)	Port P62, P66, P71, P91 and P97 direction register (bits 2 and 6 at address 03C216, bit 1 at address 03C316, bit 1 and 7 at address 03C716)= "0" (Can be used as an input port when performing transmission only)
CLKi (P61, P65, P72,	Programmable I/O port (Note 2)	Internal/external clock select bit (bit 3 at addresses 036016, 036816, 033816, 032816, 02F816) = "0"
P90, P95)	Transfer clock input (Note 2)	Internal/external clock select bit (bit 3 at addresses 036016, 036816, 033816, 032816, 02F816) = "1" Port P61, P65, P72, P90 and P95 direction register (bits 1 and 5 at address 03C216, bit 2 at address 03C316, bits 0 and 5 at address 03C716) = "0"
CTSi/RTSi (P60, P64, P73, P93, P94)	CTS input (Note 2)	$\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036416, 036C16, 033C16, $\underline{032C16}$, 02FC16) ="0" $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036416, 036C16, 033C16, 032C16, 02FC16) = "0" Port P60, P64, P73, P93 and P94 direction register (bits 0 and 4 at address 03C216, bit 3 at address 03C316, bits 3 and 4 at address 03C716) = "0"
	RTS output (Note 1)	$\frac{\text{CTS}/\text{RTS}}{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036416, 036C16, 033C16, 032C16, $\frac{02\text{FC}_{16)}}{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036416, 036C16, 033C16, 032C16, 032C16, 02FC16) = "1"
	Programmable I/O port (Note 2)	CTS/RTS disable bit (bit 4 at addresses 036416, 036C16, 033C16, 032C16, 02FC16) = "1"

Table 18.3 Input/output pin functions in UART mode

(When separate $\overline{\text{CTS}}/\overline{\text{RTS}}$ pins function is not selected)

Note 1: Select TxD output, CLK output and RTS output by the corresponding function select registers A, B and C.

Note 2: Select I/O port by the corresponding function select register A.

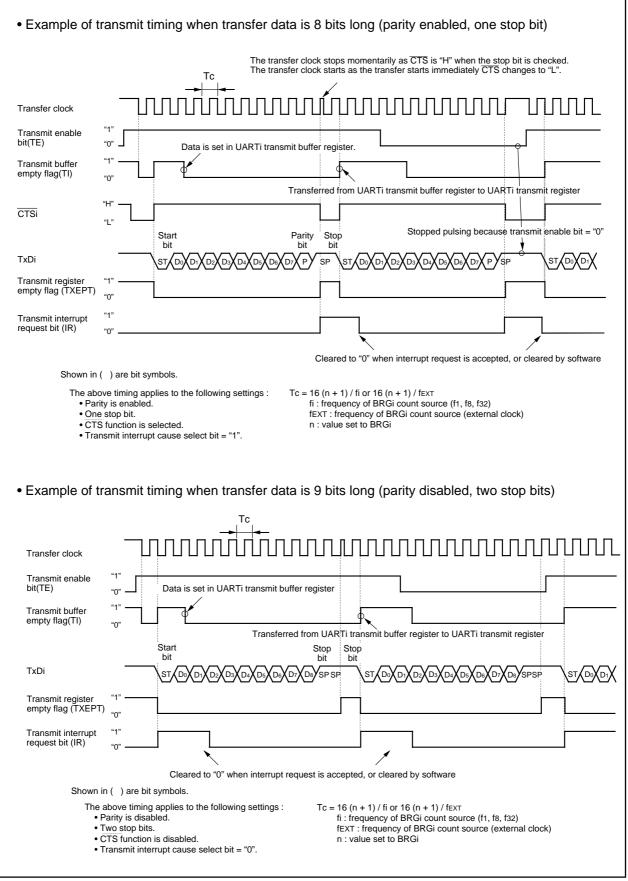


Figure 18.2 Typical transmit timings in UART mode

RENESAS

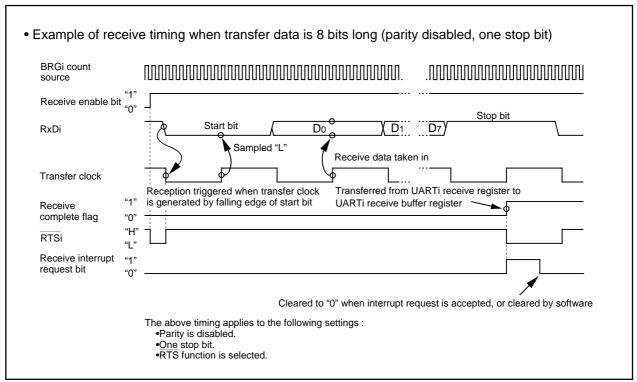
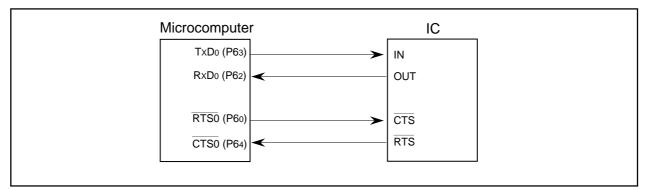



Figure 18.3 Typical receive timing in UART mode

(a) Separate CTS/RTS pins function (UART0)

With the separate $\overline{CTS/RTS}$ bit (bit 6 at address 037016) is set to "1", the unit outputs/inputs the \overline{CTS} and \overline{RTS} signals on different pins. (See Figure 18.4) This function is valid only for UART0. Note that if this function is selected, the $\overline{CTS/RTS}$ function for UART1 cannot be used.

Set both CTS/RTS function select bit (bit 2 at address 036C16) of UART1 and CTS/RTS disable bit (bit 4 at address 036C16) of UART1 to "0" and set P64 to input port by the function select register.

(b) Sleep mode (UART0, UART1)

This mode is used to transfer data between specific microcomputers among multiple microcomputers connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses 036016, 036816) is set to "1" during reception. In this mode, the unit performs receive operation when the MSB of the received data = "1" and does not perform receive operation when the MSB = "0".

(c) Function for switching serial data logic (UART2 to UART4)

When the data logic select bit (bit 6 of address 033D16, 032D16, 02FD16) is assigned 1, data is inverted in writing to the transmission buffer register or reading the reception buffer register. Figure 18.5 shows the example of timing for switching serial data logic.

• When I SB	first, parity enabled, one stop bit
• When Lob	linst, parity enabled, one stop bit
Transfer clock	
TxDi (no reverse)	"H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
TxDi (reverse)	"H" <u>ST (D0) D1) D2) D3) D4) D5) D6 (D7) P</u> SP
	ST : Start bit P : Even parity SP : Stop bit

Figure 18.5 Timing for switching serial data logic

(d) TxD, RxD I/O polarity reverse function (UART2 to UART4)

This function is to reverse TxD pin output and RxD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) is reversed. Set this function to "0" (not to reverse) for usual use.

(e) Bus collision detection function (UART2 to UART4)

This function is to sample the output level of the TxD pin and the input level of the RxD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 18.6 shows the example of detection timing of a buss collision (in UART mode).

Transfer clock	
TxDi	"H" ST / SP
RxDi	с «H" ST / SP
Bus collision detection interrupt request signal	"1" "0"
Bus collision detection interrupt request bit	"Ou
	ST : Start bit SP : Stop bit

Figure 18.6 Detection timing of a bus collision (in UART mode)

19. Clock-asynchronous serial I/O mode (compliant with the SIM interface)

The SIM interface is used for connecting the microcomputer with a memory card I/C or the like; adding some extra settings in UART2 to UART4 clock-asynchronous serial I/O mode allows the user to effect this function. Table 19.1 shows the specifications of clock-asynchronous serial I/O mode (compliant with the SIM interface).

Table 19.1 Specifications of	clock-asynchronous serial I/O mode (compliant with the S	IM interface)
ltem	Specification	

Item	Specification
Transfer data format	• Transfer data 8-bit UART mode (bit 2 to 0 of addresses 033816, 032816, 02F816 = "1012")
	• One stop bit (bit 4 of addresses 033816, 032816, 02F816 = "0")
	With the direct format chosen
	Set parity to "even" (bit 5 and 6 of addresses 033816, 032816, 02F816 = "1" and "1" respectively)
	Set data logic to "direct" (bit 6 of address 033D16, 032D16, 02FD16 = "0").
	Set transfer format to LSB (bit 7 of address 033C16, 032C16, 02FC16 = "0").
	With the inverse format chosen
	Set parity to "odd" (bit 5 and 6 of addresses 033816, 032816, 02F816 = "0" and "1" respectively)
	Set data logic to "inverse" (bit 6 of address 033D16, 032D16, 02FD16 = "1")
	Set transfer format to MSB (bit 7 of address 033C16, 032C16, 02FC16 = "1")
Transfer clock	• With the internal clock chosen (bit 3 of addresses 033816, 032816, 02F816 = "0")
	: fi / 16 (n + 1) (Note 1) : fi=f1, f8, f32
	• With an external clock chosen (bit 3 of addresses 033816, 032816, 02F816 = "1")
	: fEXT / 16 (n+1) (Note 1) (Note 2)
Transmission / reception control	• Disable the CTS and RTS function (bit 4 of address 033C16, 032C16, 02FC16 = "1")
Other settings	The sleep mode select function is not available for UART2 and UART3
	• Set transmission interrupt factor to "transmission completed" (bit 4 of address 033D16,
	032D16, 02FD16 = "1")
	• Set N-channel open drain output to TxD and RxD pins in UART3 and 4 (bit 5 of
	address 032C16, 02FC16 = "1")
Transmission start condition	• To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 of address 033D16, 032D16, 02FD16) = "1"
	- Transmit buffer empty flag (bit 1 of address 033D16, 032D16, 02FD16) = "0"
Reception start condition	• To start reception, the following requirements must be met:
	- Reception enable bit (bit 2 of address 033D16, 032D16, 02FD16) = "1"
	- Detection of a start bit
Interrupt request	When transmitting
generation timing	When data transmission from the UART2 to UART4 transfer register is completed (bit
5 5	4 of address 033D16, 032D16, 02FD16 = "1")
	When receiving
	When data transfer from the UART2 to UART4 receive register to the UART2 to
	UART4 receive buffer register is completed
Error detection	• Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 3)
	• Framing error (see the specifications of clock-asynchronous serial I/O)
	• Parity error (see the specifications of clock-asynchronous serial I/O)
	- On the reception side, an "L" level is output from the TxDi pin by use of the parity
	error signal output function (bit 7 of address 033D16, 032D16, 02FD16 = "1") when a
	parity error is detected
	- On the transmission side, a parity error is detected by the level of input to the RxDi
	pin when a transmission interrupt occurs
	• The error sum flag (see the specifications of clock-asynchronous serial I/O)
Note 1: 'n' denotes the value (D016 to FF16 that is set to the UARTi bit rate generator.

Note 2: fEXT is input from the CLKi pin.

Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit will not change.

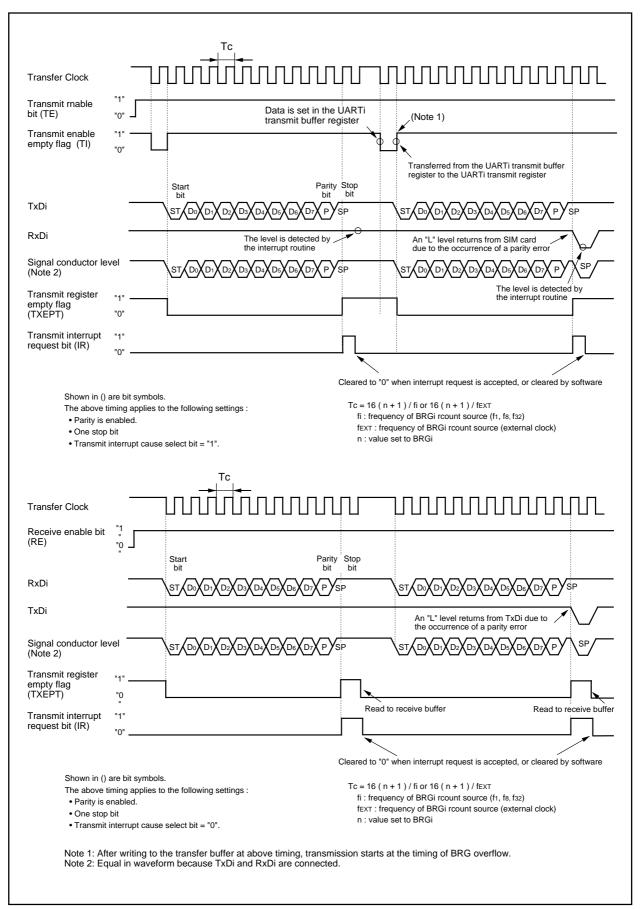


Figure 19.1 Typical transmit/receive timing in UART mode (compliant with the SIM interface)

RENESAS

(a) Function for outputting a parity error signal

During reception, with the error signal output enable bit (bit 7 of address 033D16, 032D16, 02FD16) assigned "1", you can output an "L" level from the TxDi pin when a parity error is detected. If the UARTi receive buffer register is read while outputting a parity error signal, the parity error flag is cleared to "0" and at the same time the TxDi output is returned high. And during transmission, comparing with the case in which the error signal output enable bit (bit 7 of address 033D16, 032D16, 02FD16) is assigned "0", the transmission completion interrupt occurs in the half cycle later of the transfer clock. Therefore parity error signals can be detected by a transmission completion interrupt program. Figure 19.2 shows the output timing of the parity error signal.

• LSB first	
Transfer clock	
RxDi	"H" ST (D0) D1 (D2) D3) D4 (D5) D6) D7 (P) SP
TxDi	"H" Hi-Z
Receive complete flag	"0"
	ST : Start bit P : Even Parity SP : Stop bit

Figure 19.2 Output timing of the parity error signal

(b) Direct format/inverse format

Connecting the SIM card allows you to switch between direct format and inverse format. If you choose the direct format, D0 data is output from TxDi. If you choose the inverse format, D7 data is inverted and output from TxDi.

Figure 19.3 shows the SIM interface format.

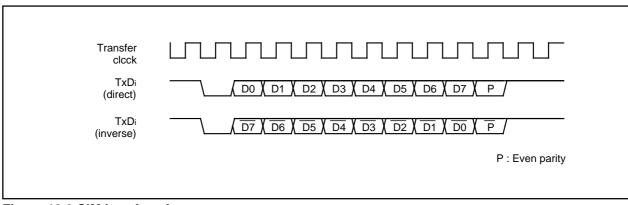
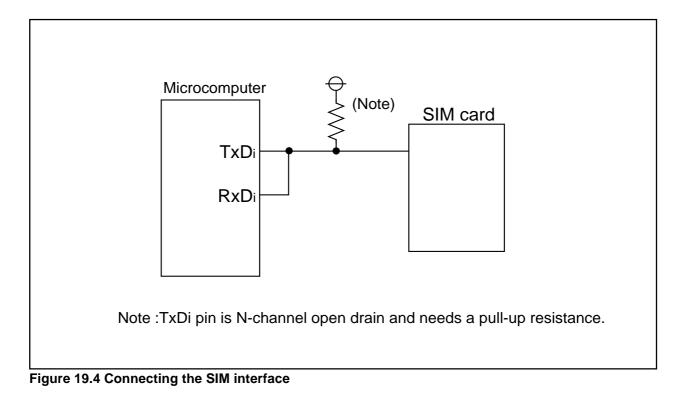



Figure 19.3 SIM interface format

Figure 19.4 shows the example of connecting the SIM interface. Connect TxDi and RxDi and apply pullup.

20. UARTi Special Mode Register (i = 2 to 4)

UART2 to UART4 operate the IIC bus interface (simple IIC bus) using the UARTi special mode register (addresses 033616, 032616 and 02F616 [i = 2 to 4]) and UARTi special mode register 2 (addresses 033616, 032616 and 02F616 [i = 2 to 4]). UART3 and UART4 add special functions using UARTi special mode resister 3 (addresses 032516 and 02F516 [i = 3 or 4]).

(1) IIC Bus Interface Mode

The I²C bus interface mode is provided with UART2 to UART4.

Table 20.1 shows the construction of the UARTi special mode register and UARTi special mode register 2.

When the I^2C mode select bit (bit 0 in addresses 033716, 032716 and 02F716) is set to "1", the I^2C bus (simple I^2C bus) interface circuit is enabled.

To use the I²C bus, set the SCLi and the SDAi of both master and slave to output with the function select register. In UART3 and 4, set the data output select bit (bit 5 in address 032C16 and 02FC16) to N-channel open drain output.

Table 20.1 shows the relationship of the IIC mode select bit to control. To use the chip in the clock synchronized serial I/O mode or clock asynchronized serial I/O mode, always set this bit to "0".

	Function	Normal mode	I ² C mode (Note 1)
1	Factor of interrupt number 39 to 41 (Note 2)	Bus collision detection	Start condition detection or stop condition detection
2	Factor of interrupt number 33, 35, 37 (Note 2)	UARTi transmission	No acknowledgment detection (NACK)
3	Factor of interrupt number 34, 36, 38 (Note 2)	UARTi reception	Acknowledgment detection (ACK)
4	UARTi transmission output delay	Not delayed	Delayed
5	P70, P92, P96 at the time when UARTi is in use	TxDi (output)	SDAi (input/output) (Note 3)
6	P71, P91, P97 at the time when UARTi is in use	RxDi (input)	SCLi (input/output)
7	P72, P90, P95 at the time when UARTi is in use	CLKi	P72, P90, P95
8	DMA1 factor at the time when 1 1 0 1 is assigned to the DMA request factor selection bits	UARTi reception	Acknowledgment detection (ACK)
9	Noise filter width	15ns	50ns
10	Reading P71, P91, P97	Reading the terminal when 0 is assigned to the direction register	Reading the terminal regardless of the value of the direction register
11	Initial value of UARTi output	H level (when 0 is assigned to the CLK polarity select bit)	The value set in latch P70, P92, P96 when the port is selected (Note 3)

Table 20.1 Features in I²C mode

Note 1: Make the settings given below when I^2C mode is in use.

Set 0 1 0 in bits 2, 1, 0 of the UARTi transmission/reception mode register.

Disable the RTS/CTS function. Choose the MSB First function.

Note 2: Follow the steps given below to switch from a factor to another.

- 1. Disable the interrupt of the corresponding number.
- 2. Switch from a factor to another.
- 3. Reset the interrupt request flag of the corresponding number.

Set an interrupt level of the corresponding number.

Note 3: Set an initial value of SDA transmission output when IIC mode (IIC mode select bit = "1") is valid and serial I/O is invalid.

Figure 20.1 UART2 special mode register

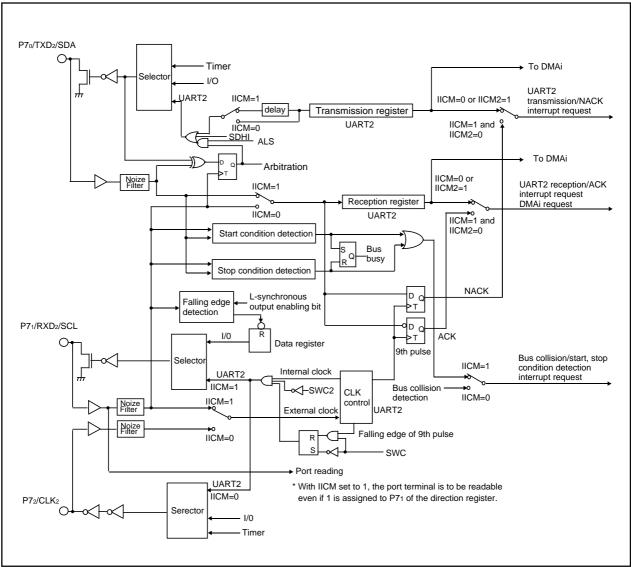


Figure 20.2 Functional block diagram for I²C mode

Figure 20.2 is a block diagram of the IIC bus interface.

To explain the control bit of the IIC bus interface, UART2 is used as an example.

UART2 Special Mode Register (Address 033716)

Bit 0 is the <u>IIC mode select bit</u>. When set to "1", ports P70, P71 and P72 operate respectively as the SDA2 data transmission-reception pin, SCL2 clock I/O pin and port P72. A delay circuit is added to SDA2 transmission output, therefore after SCL2 is sufficiently L level, SDA2 output changes. Port P71 (SCL2) is designed to read pin level regardless of the content of the port direction register. SDA2 transmission output is initially set to port P70 in this mode. Furthermore, interrupt factors for the bus collision detection interrupt, UART2 transmission interrupt and UART2 reception interrupt change respectively to the start/stop condition detection interrupts, acknowledge non-detection interrupt and acknowledge detection interrupt.

The start condition detection interrupt is generated when the fall at the SDA2 pin (P70) is detected while the SCL2 pin (P71) is in the H state. The stop condition detection interrupt is generated when the rise at the SDA2 pin (P70) is detected while the SCL2 pin (P71) is in the H state.

The acknowledge non-detection interrupt is generated when the H level at the SDA2 pin is detected at the 9th rise of the transmission clock.

The acknowledge detection interrupt is generated when the L level at the SDA2 pin is detected at the 9th rise of the transmission clock. Also, DMA transfer can be started when the acknowledge is detected if UART2 transmission is selected as the DMAi request factor.

Bit 2 is the <u>bus busy flag</u>. It is set to "1" when the start condition is detected, and reset to "0" when the stop condition is detected.

Bit 1 is the <u>arbitration lost detection flag control bit</u>. Arbitration detects a conflict between data transmitted at SCL2 rise and data at the SDA2 pin. This detection flag is allocated to bit 11 in UART2 transmission buffer register (address 033E16). It is set to "1" when a conflict is detected. With the arbitration lost detection flag control bit, it can be selected to update the flag in units of bits or bytes. When this bit is set to "1", update is set to units of byte. If a conflict is then detected, the arbitration lost detection flag control bit will be set to "1" at the 9th rise of the clock. When updating in units of byte, always clear ("0" interrupt) the arbitration lost detection flag control bit after the 1st byte has been acknowledged but before the next byte starts transmitting.

Bit 3 is the <u>SCL2 L synchronization output enable bit</u>. When this bit is set to "1", the P71 data register is set to "0" in sync with the L level at the SCL2 pin.

Bit 4 is the <u>bus collision detection sampling clock select bit</u>. The bus collision detection interrupt is generated when RxDi and TxDi level do not conflict with one another. When this bit is "0", a conflict is detected in sync with the rise of the transfer clock. When this bit is "1", detection is made when timer Ai (timer A0 with UART2, timer A3 with UART3 and timer A4 with UART4) underflows. Operation is shown in Figure 20.3.

Bit 5 is the <u>transmission enable bit automatic clear select bit</u>. By setting this bit to "1", the transmission bit is automatically reset to "0" when the bus collision detection interrupt factor bit is "1" (when a conflict is detected).

Bit 6 is the <u>transmission start condition select bit</u>. By setting this bit to "1", TxDi transmission starts in sync with the falling at the RxDi pin.

1. Bus collision	n detect sampling clock select bit (Bit 4 of the UARTi special mode register) 0: Rising edges of the transfer clock
CLKi	
TxDi/RxDi	1: Timer A0 underflow-
Timer Ai -	unction select bit of transmit enable bit (Bit 5 of the UARTi special mode
register) CLKi	
- TxDi/RxDi Bus collision	
detect interrupt request bit	
Transmit enable bit 3. Transmit sta	art condition select bit (Bit 6 of the UARTi special mode register)
0: In normal st	· · · · ·
TxDi	t L L L L L L L L L_
With "1: falling	edge of RxDi" selected
CLKi	
TxDi	
RxDi	

Figure 20.3 Some other functions added

UARTi Special Mode Register 2(i=2 to 4) (Address 033616,032616,02F616)

Bit 0 is the <u>IIC mode select bit 2</u>. Table 20.2 gives control changes by bit when the IIC mode select bit is "1". Start and stop condition detection timing characteristics are shown in Figure 20.4. Always set bit 7 (start/stop condition control bit) to "1".

Bit 1 is the <u>clock synchronization bit</u>. When this bit is set to "1", if the rise edge is detected at pin SCLi while the internal SCL is H level, the internal SCL is changed to L level, the UARTi bit rate generator value is reloaded and the L sector count starts. Also, while the SCLi pin is L level, if the internal SCL changes from L level to H, the count stops. If the SCLi pin is H level, counting restarts. Because of this function, the UARTi transmission-reception clock takes the AND condition for the internal SCL and SCLi pin signals. This function operates from the clock half period before the 1st rise of the UARTi clock to the 9th rise. To use this function, select the internal clock as the transfer clock.

Bit 2 is the <u>SCL wait output bit</u>. When this bit is set to "1", output from the SCLi pin is fixed to L level at the clock's 9th rise. When set to "0", the L output lock is released.

Bit 3 is the <u>SDA output stop bit</u>. When this bit is set to "1", an arbitration lost is generated. If the arbitration lost detection flag is "1", the SDAi pin simultaneously becomes high impedance.

Bit 4 is the <u>UARTi initialize bit</u>. While this bit is set to "1", the following operations are performed when the start condition is detected.

- The transmission shift register is initialized and the content of the transmission register is transmitted to the transmission shift register. As such, transmission starts with the 1st bit of the next input clock. However, the UARTi output value remains the same as when the start condition was detected, without changing from when the clock is input to when the 1st bit of data is output.
- 2. The reception shift register is initialized and reception starts with the 1st bit of the next input clock.
- 3. The SCL wait output bit is set to "1". As such, the SCLi pin becomes L level at the rise of the 9th bit of the clock.

When UART transmission-reception has been started using this function, the content of the transmission buffer available flag does not change. Also, to use this function, select an external clock as the transfer clock.

Bit 5 is <u>SCL wait output bit 2</u>. When this bit is set to "1" and serial I/O has been selected, an L level can be forcefully output from the SCLi pin even during UART operation. When this bit is set to "0', the L output from the SCLi pin is canceled and the UARTi clock is input and output.

Bit 6 is the <u>SDA output disable bit</u>. When this bit is set to "1", the SDAi pin is forcefully made high impedance. To overwrite this bit, do so at the rise of the UARTi transfer clock. The arbitration lost detection flag may be set.

Function	IICM2 = 0	IICM2 = 1
Interrupt no. 33, 35, 37 factor	Acknowrege not detect (NACK)	UART2 transfer (rising edge of)
Interrupt no. 34, 36, 38 factor	Acknowrege detect (ACK)	Acknowrege detect (ACK)
DMA factor	Acknowrege detect (ACK)	Acknowrege detect (ACK)
Data transfer timing from UARTi (i	Rising edge of the last bit of re-	Rising edge of the last bit of re-
= 2 to 4) receive shift register to re-	ceive clock	ceive clock
ceive buffer		
UARTi(i = 2 to 4) receive / ACK in-	Rising edge of the last bit of re-	Rising edge of the last bit of re-
terrupt request generation timing	ceive clock	ceive clock

Table 20.2 Functions changed by I²C mode select bit 2

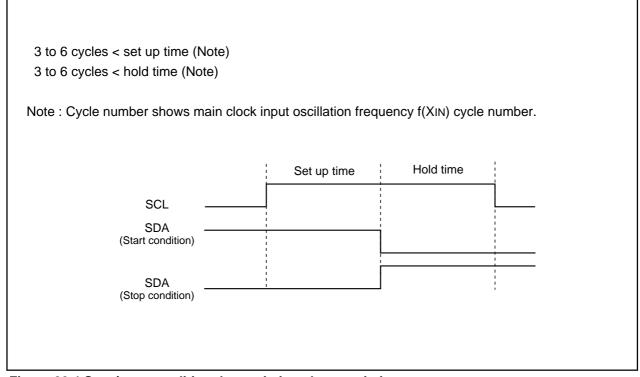


Figure 20.4 Start/stop condition detect timing characteristics

UARTi Special Mode Register 3(i=2 to 4)(Address 033516,032516,02F516)

Bits 5 to 7 are the SDAi digital delay setting bits. By setting these bits, it is possible to turn the SDAi delay OFF or set the f(XIN) delay to 2 to 8 cycles.

(2) Serial Interface Special Function

UART 3 and UART4 can control communications on the serial bus using the \overline{SSi} input pins (Figure 20.5). The master outputting the transfer clock transfers data to the slave inputting the transfer clock. In this case, in order to prevent a data collision on the bus, the master floats the output pin of other slaves/ masters using the \overline{SSi} input pins. Figure 20.6 shows the structure of UARTi special mode register 3 (addresses 032516 and 02F516 [i = 3 or 4]) which controls this mode. \overline{SSi} input pins function between the master and slave are as follows.

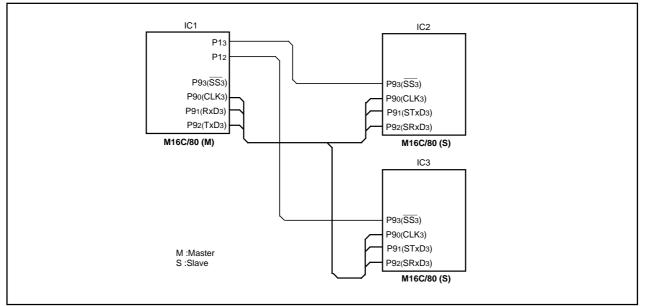


Figure 20.5 Serial bus communication control example using the SSi input pins

< Slave Mode (STxDi and SRxDi are selected, DINC = 1) >

When an H level signal is input to an \overline{SSi} input pin, the STxDi and SRxDi pins both become high impedance, hence clock input is ignored. When an "L" level signal is input to an SSi input pin, clock input becomes effective and serial communications are enabled. (i = 3 or 4)

< Master Mode (TxDi and RxDi are selected, DINC = 0) >

The \overline{SSi} input pins are used with a multiple master system. When an \overline{SSi} input pin is H level, transmission has priority and serial communications are enabled. When an L signal is input to an \overline{SSi} input pin, another master exists, and the TxDi, RxDi and CLKi pins all become high impedance. Moreover, the trouble error interrupt request bit becomes "1". Communications do not stop even when a trouble error is generated during communications. To stop communications, set bits 0, 1 and 2 of the UARTi transmission-reception mode register (address 032816 and 02F816 [i = 3 or 4]) to "0".

The trouble error interrupt is used by both the bus collision interrupt and start/stop condition detection interrupts, but the trouble error interrupt itself can be selected by setting bit 0 of UARTi special mode register 3 (address 032516 and 02F516 [i = 3 or 4]) to "1".

When the trouble error flag is set to "0", output is restored to the clock output and data output pins. In the master mode, if an \overline{SSi} input pin is H level, "0" can be written for the trouble error flag. When an \overline{SSi} input pin is L level, "0" cannot be written for the trouble error flag. In the slave mode, the "0" can be written for the trouble error flag regardless of the input to the \overline{SSi} input pins.

RENESAS

b7 b6 b5 b4 b3 b2 b1 b0	Symbol U3SMR3 U4SMR3		When reset 000000002 000000002	
	Bit symbol	Bit name	Function	RV
	SSE	SS port function enable bit (Note 3)	0: <u>SS</u> function disable 1: SS function enable	0
· · · · · · · · · · · · · · · · · · ·	СКРН	Clock phase set bit	0: Without clock delay 1: With clock delay	0
· · · · · · · · · · · · · · · · · · ·	DINC	Serial input port set bit	0: Select TxDi and RxDi (master mode) (Note 5) 1: Select STxDi and SRxDi (slave mode) (Note 6)	00
· · · · · · · · · · · · · · · · · · ·	NODC	Clock output select bit	0: CLKi is CMOS output 1: CLKi is N-channel open drain output	0
	ERR	Fault error flag	0: Without fault error 1: With fault error	O C (Note 4
	DL0	SDAi(TxD2) digital delay time set bit (Note 1,2)	b7 b6 b5 000 :Without delay 001 :1 to 2 cycles of 1/f(XIN)	0
	DL1		010 :2 to 3 cycles of 1/f(XIN) 011 :3 to 4 cycles of 1/f(XIN) 100 :4 to 5 cycles of 1/f(XIN)	00
·	DL2		101 :5 to 6 cycles of 1/f(XIN) 110 :6 to 7 cycles of 1/f(XIN) 111 :7 to 8 cycles of 1/f(XIN)	00
Otherwis Note 2: When ex Note 3: Set SS f register Note 4: Nothing Note 5: Set CLK RxDi fun Note 6: Set STxl	e, must set to ternal clock is unction after so) to "1". but "0" may be i and TxDi both ction select reg Di for output us	"000". selected, delay is increased etting CTS/RTS disable bit (b e written. h for output using the CLKi a gister A for input/output port sing the STxDi function select	elay when using UARTi for IIC inter approx. 100ns. bit 4 of UARTi transfer/receive cont nd TxDi function select register A. 3 and the port direction register to "0 ct registers A and B. Set the CLKi a t and the port direction register to "	rol Set th ". nd

Clock Phase Setting

With bit 1 of UARTi special mode register 3 (addresses 032516 and 02F516 [i = 3 or 4]) and bit 6 of UARTi transmission-reception control register 0 (addresses 032C16 and 02FC16 [i = 3 or 4]), four combinations of transfer clock phase and polarity can be selected.

Bit 6 of UARTi transmission-reception control register 0 (addresses $032C_{16}$ and $02FC_{16}$ [i = 3 or 4]) sets transfer clock polarity, whereas bit 1 of UARTi special mode register 3 (addresses 0325_{16} and $02F5_{16}$ [i = 3 or 4]) sets transfer clock phase.

Transfer clock phase and polarity must be the same between the master and slave involved in the transfer.

< Master (Internal Clock) (DINC = 0) >

Figure 20.7 shows the transmission and reception timing.

< Slave (External Clock) (DINC = 1) >

- With "0" for bit 1 (CKPH) of UARTi special mode register 3 (addresses 032516 and 02F516 [i = 3 or 4]), when an SSi input pin is H level, output data is high impedance. When an SSi input pin is L level, the serial transmission start condition is satisfied, though output is indeterminate. After that, serial transmission is synchronized with the clock. Figure 20.8 shows the timing.
- With "1" for bit 1 (CKPH) of UARTi special mode register 3 (addresses 032516 and 02F516 [i = 3 or 4]), when an SSi input pin is H level, output data is high impedance. When an SSi input pin is L level, the first data is output. After that, serial transmission is synchronized with the clock. Figure 20.9 shows the timing.

Master SS input	"H" "L"
Clock output (CKPOL=0, CKPH=0)	
Clock output (CKPOL=1, CKPH=0)	
Clock output (CKPOL=0, CKPH=1)	
Clock output (CKPOL=1, CKPH=1)	
Data output timing	"H"D0 \1 \2 \3 \4 \5 \6 \7
Data input timing	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Figure 20.7 The transmission and reception timing in master mode (internal clock)

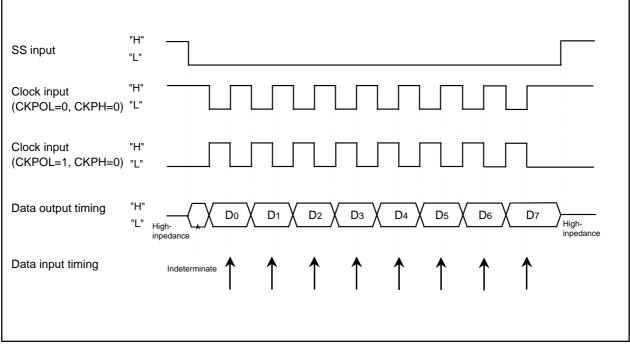


Figure 20.8 The transmission and reception timing (CKPH=0) in slave mode (external clock)

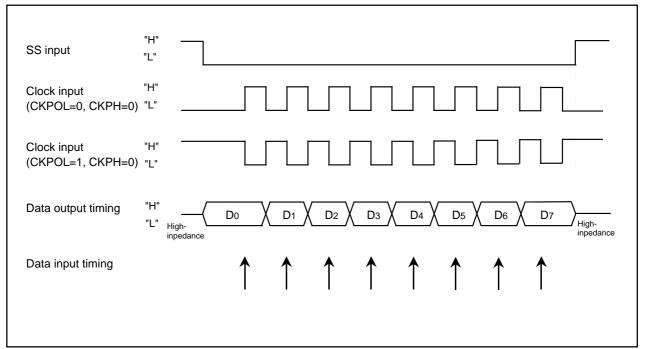


Figure 20.9 The transmission and reception timing (CKPH=1) in slave mode (external clock)

21. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive coupling amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The direction registers of these pins for A/D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 039716) can be used to isolate the resistance ladder of the A/D converter from the reference voltage input pin (VREF) when the A/D converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power dissipation. When using the A/D converter, start A/D conversion only after setting bit 5 of 039716 to connect VREF.

The result of A/D conversion is stored in the A/D registers of the selected pins. When set to 10-bit precision, the low 8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit precision, the low 8 bits are stored in the even addresses.

Table 21.1 shows the performance of the A/D converter. Figure 21.1 shows the block diagram of the A/D converter, and Figures 21.2 and 21.3 show the A/D converter-related registers.

Item	Performance			
Method of A/D conversion	Successive approximation (capacitive coupling amplifier)			
Analog input voltage (Note 1)	0V to AVcc (Vcc)			
Operating clock fAD (Note 2)	VCC = 5V fAD, fAD/2, fAD/4 $fAD=f(XIN)$			
	VCC = $3V$ fAD/2, fAD/4 fAD=f(XIN)			
Resolution	8-bit or 10-bit (selectable)			
Absolute precision	VCC = 5V			
	8-bit resolution			
	±2LSB			
	• 10-bit resolution			
	±3LSB			
	However, when using ANo to AN7 in the mode which external operation amp			
	is connected : ±7LSB			
	VCC = 3V			
	 Without sample and hold function (8-bit resolution) 			
	±2LSB			
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,			
	and repeat sweep mode 1			
Analog input pins	8 pins (ANo to AN7) + 2 pins (ANEXo and ANEX1)			
A/D conversion start condition	Software trigger			
	A/D conversion starts when the A/D conversion start flag changes to "1"			
	External trigger (can be retriggered)			
	A/D conversion starts when the A/D conversion start flag is "1" and the			
	ADTRG/P97 input changes from "H" to "L"			
Conversion speed per pin	Without sample and hold function			
	8-bit resolution: 49 fAD cycles, 10-bit resolution: 59 fAD cycles			
	With sample and hold function			
	8-bit resolution: 28 fAD cycles, 10-bit resolution: 33 fAD cycles			
Note 1: Does not depend on	use of sample and hold function.			

Table 21.1 Performance of A/D converter

Note 1: Does not depend on use of sample and hold function.

Note 2: When f(XIN) is over 10 MHz, the fAD frequency must be under 10 MHz by dividing.

Without sample and hold function, set the fAD frequency to 250kHz min.

With the sample and hold function, set the fAD frequency to 1MHz min.

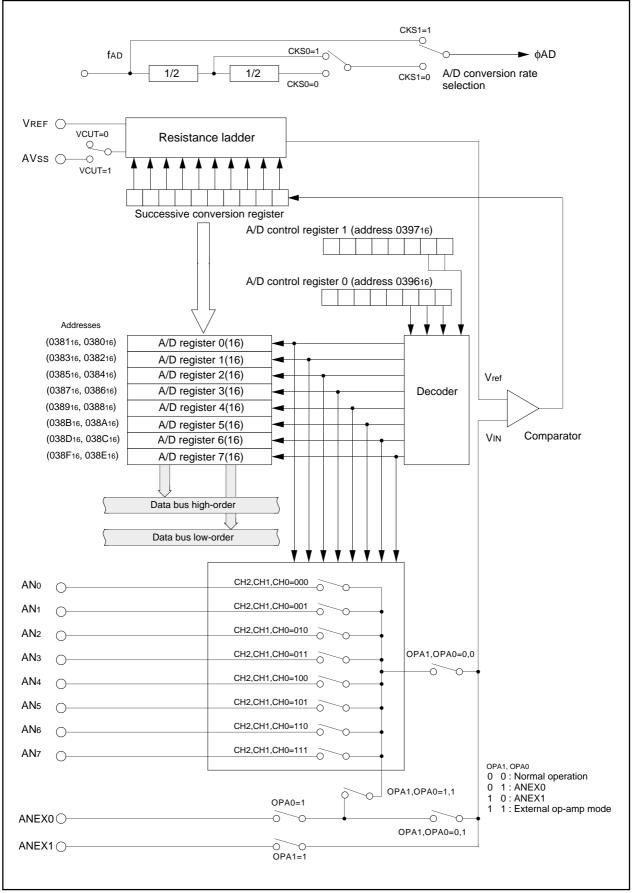


Figure 21.1 Block diagram of A/D converter

└╷└╷╽╷╽╷╽╷╽	Symbol ADCON	Address 0 039616		When reset 00000XXX2	
	Bit symbol	Bit name		Function	RW
	CH0	Analog input pin selec	t bit	b2 b1 b0 0 0 0 : ANo is selected 0 0 1 : AN1 is selected	00
	CH1			0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected	00
	CH2			1 0 1 : ANs is selected 1 1 0 : ANs is selected 1 1 1 : AN7 is selected (Note 2)	00
	MD0	A/D operation mode s bit 0	elect	0 0 : One-shot mode 0 1 : Repeat mode	00
	MD1			1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 (Note 2) Repeat sweep mode 1	00
L	TRG	Trigger select bit		0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	00
	ADST	A/D conversion start f	lag	0 : A/D conversion disabled 1 : A/D conversion started	00
	CKS0	Frequency select bit 0)	0 : fAD/4 is selected 1 : fAD/2 is selected	00
				0010	
7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON	Address 1 039716	; \	When reset 0016	
	Bit symbol	Bit name A/D sweep pin		Function In single sweep and repeat sweep	RW
	Bit symbol SCAN0		mod ^{b1 b0} 0 0 0 1 1 0 1 1	Function en single sweep and repeat sweep e 0 are selected 2 : ANo, AN1 (2 pins) : ANo to AN3 (4 pins) 2 : ANo to AN5 (6 pins) : AN0 to AN7 (8 pins)	R W
		A/D sweep pin	mod ^{b1 b0} 0 0 0 1 1 0 1 1 Whe ^{b1 b0} 0 0 0 1 1 0	Function en single sweep and repeat sweep e 0 are selected 2 ANo, AN1 (2 pins) : ANo to AN3 (4 pins) : ANo to AN5 (6 pins) : ANo to AN7 (8 pins) n repeat sweep mode 1 is selected	
	SCAN0	A/D sweep pin	mod ^{b1 b0} 0 0 0 1 1 0 1 1 Whe ^{b1 b0} 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1	Function en single sweep and repeat sweep e 0 are selected 2 ANo, AN1 (2 pins) : ANo to AN3 (4 pins) : ANo to AN5 (6 pins) : ANo to AN7 (8 pins) n repeat sweep mode 1 is selected 2 AN0 (1 pin) : AN0, AN1 (2 pins) : AN0, to AN2 (3 pins)	00
	SCAN0	A/D sweep pin select bit A/D operation mode	mod ^{b1 b0} 0 0 0 1 1 0 1 1 Whe ^{b1 b0} 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0	Function en single sweep and repeat sweep e 0 are selected 0 1: AN0, AN1 (2 pins) 1: AN0 to AN3 (4 pins) 1: AN0 to AN5 (6 pins) 1: AN0 to AN7 (8 pins) 1: AN0 (1 pin) 1: AN0 to AN2 (3 pins) 1: AN0 to AN3 (4 pins) 1: AN0 to AN3 (4 pins)	00
	SCAN0 SCAN1 MD2	A/D sweep pin select bit A/D operation mode select bit 1 8/10-bit mode select	mod b1 b0 0 0 0 1 1 0 1 1 Whe b1 b0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0	Function en single sweep and repeat sweep e 0 are selected 0 1: AN0, AN1 (2 pins) 1: AN0 to AN3 (4 pins) 1: AN0 to AN5 (6 pins) 1: AN0 to AN7 (8 pins) 1: AN0 to AN7 (8 pins) 1: AN0 to AN7 (2 pins) 1: AN0 to AN2 (3 pins) 1: AN0 to AN3 (4 pins)	00
	SCAN0 SCAN1 MD2 BITS	A/D sweep pin select bit A/D operation mode select bit 1 8/10-bit mode select bit Frequency select bit	mod b1 b2 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0	Function en single sweep and repeat sweep e 0 are selected and the selected and the selected and the selected and the selected b AN0, AN1 (2 pins) AN0 to AN3 (4 pins) AN0 to AN7 (8 pins) AN0 to AN7 (8 pins) AN0 to AN7 (8 pins) AN0 to AN2 (3 pins) AN0 to AN3 (4 pins) A	0 0 0 0 0 0
	SCAN0 SCAN1 MD2 BITS CKS1	A/D sweep pin select bit A/D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 (Note 2)	modd b1 bb b0 0 0 00 1 10 1 10 0 11 0 0 00 1 10 0 11 0 0 00 1 11 0 0 00 1 11 0 0 00 1 1 11 0 0 0 00 1 1 11 0 0 00 0 0 00 0 0 00 0 0 00	Function en single sweep and repeat sweep e 0 are selected 0 : ANo, AN1 (2 pins) : ANo to AN3 (4 pins) : ANo to AN3 (4 pins) : ANo to AN3 (6 pins) : ANo to AN5 (6 pins) : ANo to AN7 (8 pins) : ANo to AN7 (8 pins) : ANo to AN7 (2 pins) : ANo (1 pin) : ANo to AN2 (3 pins) : ANo to AN3 (4 pins) my mode other than repeat sweep mode 1 tepeat sweep mode 1 -bit mode 0-bit mode MD/2 or fAD/4 is selected AD is selected 'ref not connected	0 0 0 0 0 0
	SCAN0 SCAN1 MD2 BITS CKS1 VCUT	A/D sweep pin select bit A/D operation mode select bit 1 8/10-bit mode select bit Frequency select bit 1 (Note 2) Vref connect bit External op-amp		Function en single sweep and repeat sweep e 0 are selected 0 1 AN0, AN1 (2 pins) 1 AN0 to AN3 (4 pins) 2 AN0 to AN3 (4 pins) 2 AN0 to AN3 (6 pins) 1 AN0 to AN5 (6 pins) 2 AN0 to AN7 (8 pins) 2 AN0 (1 pin) 2 AN0 to AN2 (3 pins) 2 AN0 to AN3 (4 pins) . AN0 to AN2 (3 pins) . AN0 to AN3 (4 pins) . AN0 to AN4 (5 selected . O-bit mode . O-bit mode . D/2 or fAD/4 is selected . Is selected . ref not connected . ref connected . ANEX0 and ANEX1 are not used(Note 3)	

Figure 21.2 A/D converter-related registers (1)

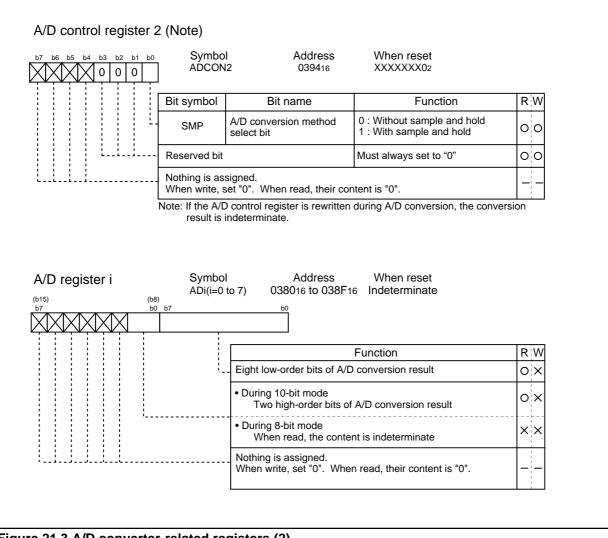
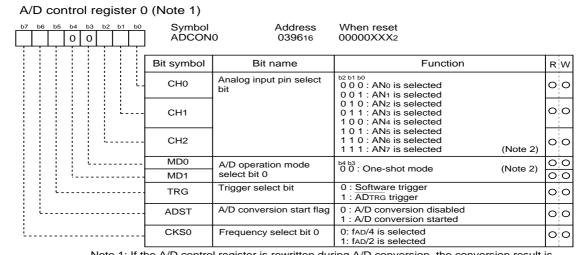


Figure 21.3 A/D converter-related registers (2)



(1) One-shot mode

In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A/D conversion. Table 21.2 shows the specifications of one-shot mode. Figure 21.4 shows the A/D control register in one-shot mode.

Table 21.2 One-shot mode specifications

Item	Specification							
Function	The pin selected by the analog input pin select bit is used for one A/D conversion							
Start condition	Writing "1" to A/D conversion start flag							
Stop condition	 End of A/D conversion (A/D conversion start flag changes to "0", except 							
	en external trigger is selected)							
	 Writing "0" to A/D conversion start flag 							
Interrupt request generation timing	End of A/D conversion							
Input pin	One of AN ₀ to AN ₇ , as selected							
Reading of result of A/D converter	Read A/D register corresponding to selected pin							

Note 1: If the A/D control register is rewritten during A/D conversion, the conversion result is indeterminate.

Note 2: When changing A/D operation mode, set analog input pin again.

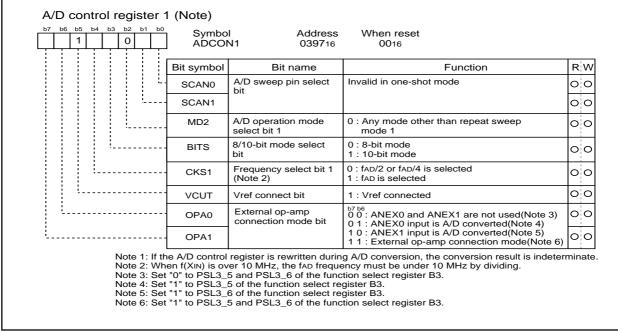


Figure 21.4 A/D conversion register in one-shot mode

(2) Repeat mode

In repeat mode, the pin selected using the analog input pin select bit is used for repeated A/D conversion. Table 21.3 shows the specifications of repeat mode. Figure 21.5 shows the A/D control register in repeat mode.

Table 21.3 Repeat mode specifications

Item	Specification
Function	The pin selected by the analog input pin select bit is used for repeated A/D
	conversion
Star condition	Writing "1" to A/D conversion start flag
Stop condition	Writing "0" to A/D conversion start flag
Interrupt request generation timing	None generated
Input pin	One of AN ₀ to AN ₇ , as selected
Reading of result of A/D converter	Read A/D register corresponding to selected pin (at any time)

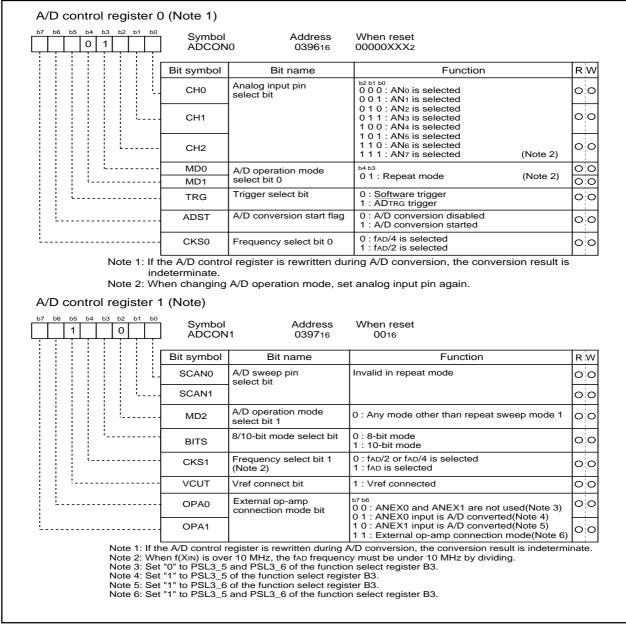


Figure 21.5 A/D conversion register in repeat mode

(3) Single sweep mode

In single sweep mode, the pins selected using the A/D sweep pin select bit are used for one-by-one A/D conversion. Table 21.4 shows the specifications of single sweep mode. Figure 21.6 shows the A/D control register in single sweep mode.

Table 21.4 Single sweep mode specifications

Item	Specification
Function	The pins selected by the A/D sweep pin select bit are used for one-by-one
	A/D conversion
Start condition	Writing "1" to A/D converter start flag
Stop condition	 End of A/D conversion (A/D conversion start flag changes to "0", except
	when external trigger is selected)
	 Writing "0" to A/D conversion start flag
Interrupt request generation timing	
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7
	(8 pins)
Reading of result of A/D converter	Read A/D register corresponding to selected pin

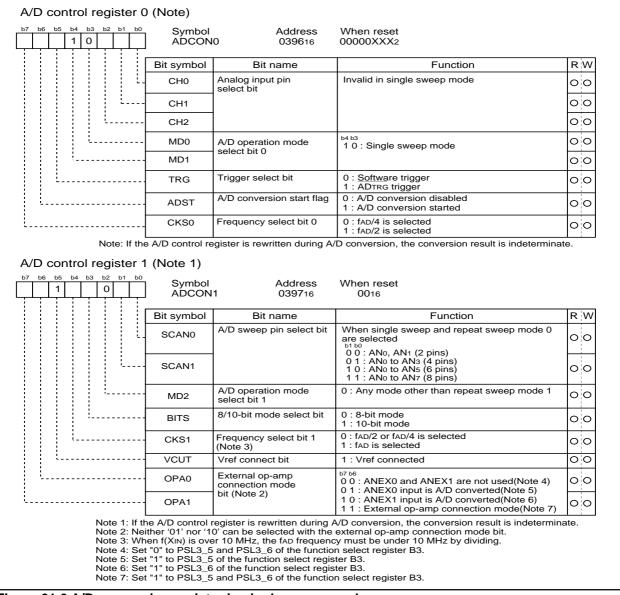


Figure 21.6 A/D conversion register in single sweep mode

(4) Repeat sweep mode 0

In repeat sweep mode 0, the pins selected using the A/D sweep pin select bit are used for repeat sweep A/D conversion. Table 21.5 shows the specifications of repeat sweep mode 0. Figure 21.7 shows the A/D control register in repeat sweep mode 0.

Table 21.5 Repeat sweep mode 0 specifications

Item	Specification
Function	The pins selected by the A/D sweep pin select bit are used for repeat sweep
	A/D conversion
Start condition	Writing "1" to A/D conversion start flag
Stop condition	Writing "0" to A/D conversion start flag
Interrupt request generation timing	
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7
	(8 pins)
Reading of result of A/D converter	Read A/D register corresponding to selected pin (at any time)

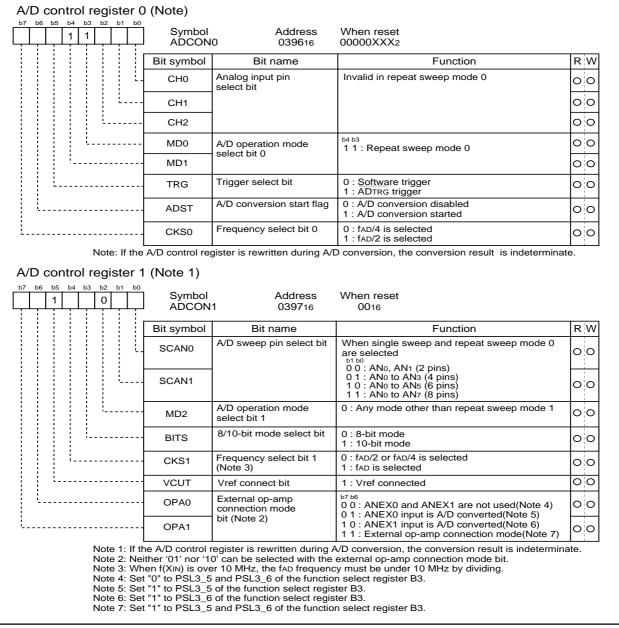


Figure 21.7 A/D conversion register in repeat sweep mode 0

(5) Repeat sweep mode 1

In repeat sweep mode 1, all pins are used for A/D conversion with emphasis on the pin or pins selected using the A/D sweep pin select bit. Table 21.6 shows the specifications of repeat sweep mode 1. Figure 21.8 shows the A/D control register in repeat sweep mode 1.

Table 21.6 Repeat	t sweep mode 1	specifications
-------------------	----------------	----------------

Item	Specification
Function	All pins perform repeat sweep A/D conversion, with emphasis on the pin or
	pins selected by the A/D sweep pin select bit
	Example : ANo selected ANo \rightarrow AN1 \rightarrow ANo \rightarrow AN2 \rightarrow ANo \rightarrow AN3, etc
Start condition	Writing "1" to A/D conversion start flag
Stop condition	Writing "0" to A/D conversion start flag
Interrupt request generation timing	None generated
Input pin	ANo to AN7
With emphasis on the pin	ANo (1 pin), ANo and AN1 (2 pins), ANo to AN2 (3 pins), ANo to AN3 (4 pins)
Reading of result of A/D converter	Read A/D register corresponding to selected pin (at any time)

b7 b6 b5 b4 b	3 b2 b1 b0	Symbol	Address 0 039616	When reset 00000XXX2					
		Bit symbol	Bit name	Function	RW				
	ADCO Bit symbol CH0 CH0 CH0 CH0 CH0 CH1 CH2 MD0 MD1 TRG ADST CKS0 Note: If the A/D control CKS0 Note: If the A/D control Bit symbol ADST CKS0 Note: If the A/D control Bit symbol ADCO Note: If the A/D control Bit symbol ADCO Note: If the A/D control CKS1 CKS1 CKS1 VCUT OPA0 OPA1 Note 1: If the A/D control Note 2: Neither '01' nor Note 3: When f(Xin) is o	CH0	Analog input pin select bit	Invalid in repeat sweep mode 1					
		CH1			00				
		CH2			00				
	b1 b0 Symbol ADCON0 Address 039616 Bit symbol Bit name CH0 Analog input pin select bit CH1 CH2 MD0 A/D operation mode select bit 0 MD1 Trigger select bit ADST A/D conversion start flag CKS0 Frequency select bit 0 Note: If the A/D control register is rewritten dur register 1 (Note 1) Bit symbol Bit name SCAN0 A/D sweep pin select bit MD2 A/D operation mode select bit 1 BITS 8/10-bit mode select bit CKS1 Frequency select bit 1 (Note 3) VCUT Vref connect bit OPA0 External op-amp connection mode bit (Note 2)			^{b4 b3} 1 1 : Repeat sweep mode 1	00				
	bit bit bit bit bit bit bit bit cmal cmal <thcmal< th=""> <thcmal<< td=""><td>Select bit 0</td><td colspan="6"></td></thcmal<<></thcmal<>	Select bit 0							
			00						
		A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	00					
		CKS0	Frequency select bit 0		00				
	Note: I	f the A/D contro	ol register is rewritten during	A/D conversion, the conversion result is indeterm	ninate.				
b7 b6 b5 b4 b	3 b2 b1 b0	Symbol							
		Bit symbol	Bit name	Function	RW				
		SCAN0	A/D sweep pin select bit	When repeat sweep mode 1 is selected	00				
		SCAN1		0 1 : ANo, AN1 (2 pins) 1 0 : ANo to AN2 (3 pins) 1 1 : ANo to AN3 (4 pins)	00				
	Symbol Address M ADCON0 039616 O Bit symbol Bit name O CH0 Analog input pin select bit Inselect bit CH1 CH2 O MD0 A/D operation mode select bit Inselect bit MD1 CH2 O MD1 Trigger select bit O MD1 ADST A/D conversion start flag O Note: If the A/D control register is rewritten during A O MD2 Symbol Address M MD1 Symbol Address M Note: If the A/D control register is rewritten during A MD2 Symbol Address M MD2 SCAN0 A/D sweep pin select bit M MD2 SCAN1 G Select bit 1 O MD2 SCAN1 Select bit 1 O I MD2 SCAN1 Select bit 1 I I MD2 SCAN1 Select bit 1 I I MD2 SCAN1 I I		1 : Repeat sweep mode 1	00					
			00						
		CKS1		0 : fAD/2 or fAD/4 is selected 1 : fAD is selected	00				
		VCUT	Vref connect bit	1 : Vref connected	00				
		OPA0	connection mode	0 0 : ANEX0 and ANEX1 are not used(Note 4)	00				
ι		OPA1	bit (Note 2)	0 1 : ANEX0 input is A/D converted(Note 5) 1 0 : ANEX1 input is A/D converted(Note 6) 1 1 : External op-amp connection mode(Note 7)					
	Note 2: Nei Note 3: Wh Note 4: Set Note 5: Set Note 6: Set	ther '01' nor '1 en f(XIN) is ove : "0" to PSL3_5 : "1" to PSL3_5 : "1" to PSL3_6	0' can be selected with the r 10 MHz, the fAD frequence and PSL3_6 of the function of the function select regis of the function select regis	external op-amp connection mode bit. y must be under 10 MHz by dividing. n select register B3. ter B3. ter B3.	ate.				

Figure 21.8 A/D conversion register in repeat sweep mode 1

(a) Sample and hold

Sample and hold is selected by setting bit 0 of the A/D control register 2 (address 039416) to "1". When sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 fAD cycle is achieved with 8-bit resolution and 33 fAD with 10-bit resolution. Sample and hold can be selected in all modes. However, in all modes, be sure to specify before starting A/D conversion whether sample and hold is to be used.

(b) Extended analog input pins

In one-shot mode and repeat mode, the input via the extended analog input pins ANEX₀ and ANEX₁ can also be converted from analog to digital.

When bit 6 of the A/D control register 1 (address 039716) is "1" and bit 7 is "0", input via ANEX₀ is converted from analog to digital. The result of conversion is stored in A/D register 0.

When bit 6 of the A/D control register 1 (address 039716) is "0" and bit 7 is "1", input via ANEX1 is converted from analog to digital. The result of conversion is stored in A/D register 1.

Set the related input peripheral function of the function select register B3 to disabled.

(c) External operation amp connection mode

In this mode, multiple external analog inputs via the extended analog input pins, ANEX₀ and ANEX₁, can be amplified together by just one operation amp and used as the input for A/D conversion.

When bit 6 of the A/D control register 1 (address 039716) is "1" and bit 7 is "1", input via ANo to AN7 is output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the corresponding A/D register. The speed of A/D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 21.9 is an example of how to connect the pins in external operation amp mode.

Set the related input peripheral function of the function select register B3 to disabled.

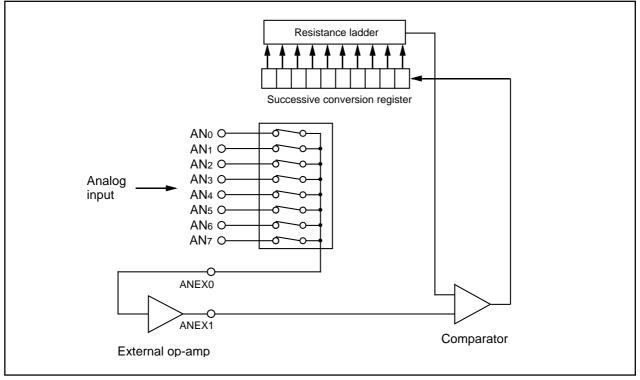


Figure 21.9 Example of external op-amp connection mode

22. D/A Converter

This is an 8-bit, R-2R type D/A converter. The microcomputer contains two independent D/A converters of this type. D/A conversion is performed when a value is written to the corresponding D/A register. Bits 0 and 1 (D/A output enable bits) of the D/A control register decide if the result of conversion is to be output. Set the function select register A3 to I/O port, the related input peripheral function of the function select register B3 to disabled and the direction register to input mode. When the D/A output is enabled, the pull-up function of the corresponding port is automatically disabled.

Output analog voltage (V) is determined by a set value (n : decimal) in the D/A register.

V = VREF X n / 256 (n = 0 to 255)

VREF : reference voltage

Table 22.1 lists the performance of the D/A converter. Figure 22.1 shows the block diagram of the D/A converter. Figure 22.2 shows the D/A control register.

Item	Performance
Conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 channels

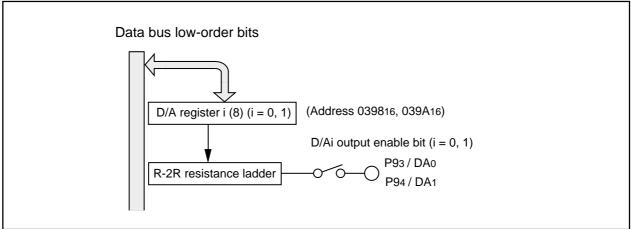


Figure 22.1 Block diagram of D/A converter

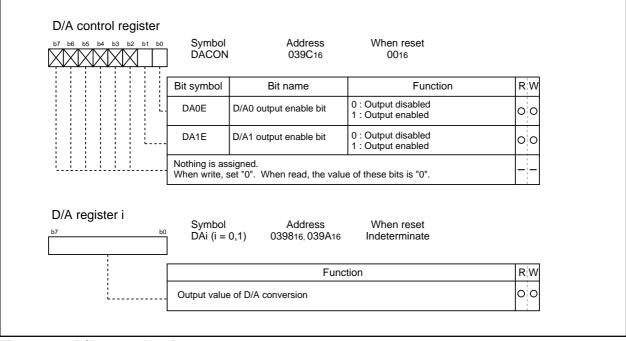
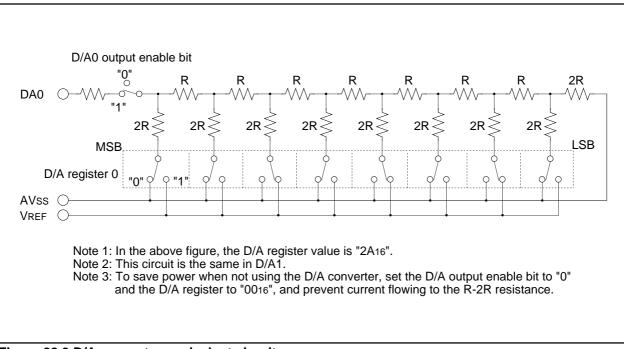
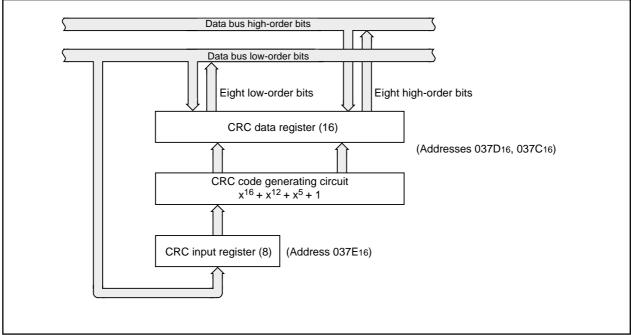



Figure 22.2 D/A control register



23. CRC Calculation Circuit

The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC code is set in a CRC data register each time one byte of data is transferred to a CRC input register after writing an initial value into the CRC data register. Generation of CRC code for one byte of data is completed in two machine cycles.

Figure 23.1 shows the block diagram of the CRC circuit. Figure 23.2 shows the CRC-related registers.

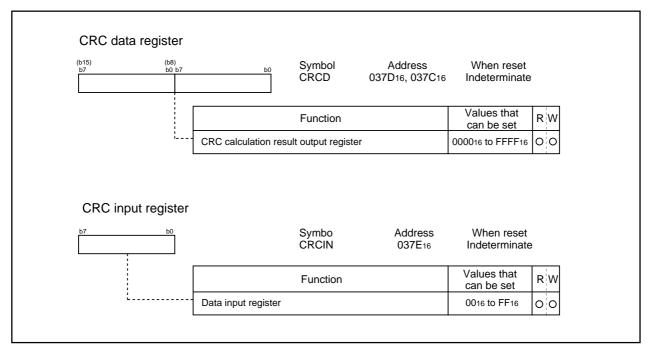
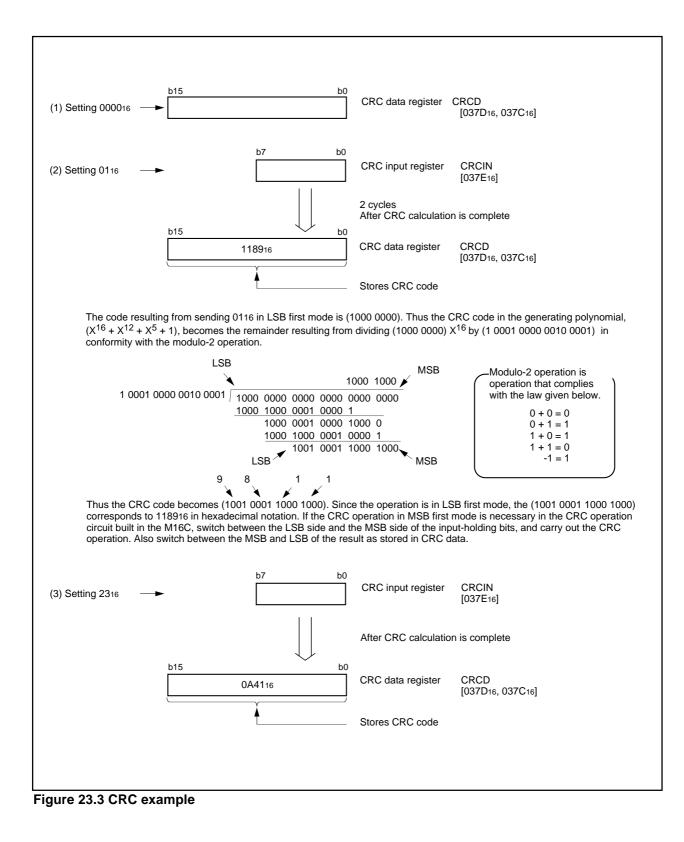
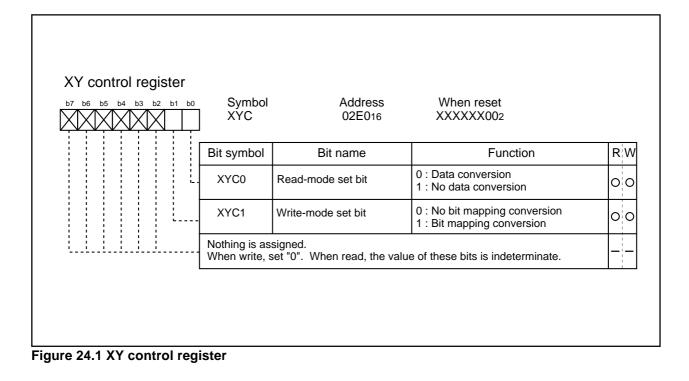



Figure 23.2 CRC-related registers



24. XY Converter

XY conversion rotates the 16 x 16 matrix data by 90 degrees. It can also be used to invert the top and bottom of the 16-bit data. Figure 24.1 shows the XY control register.

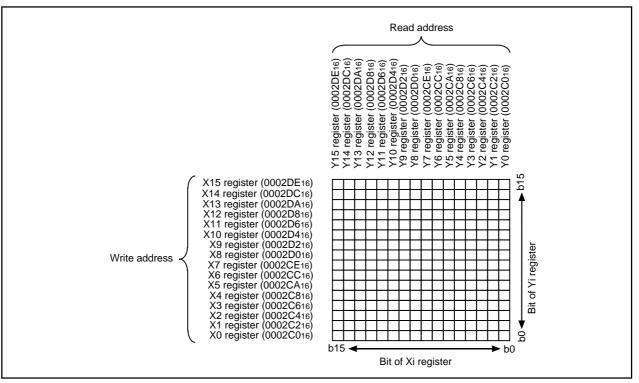
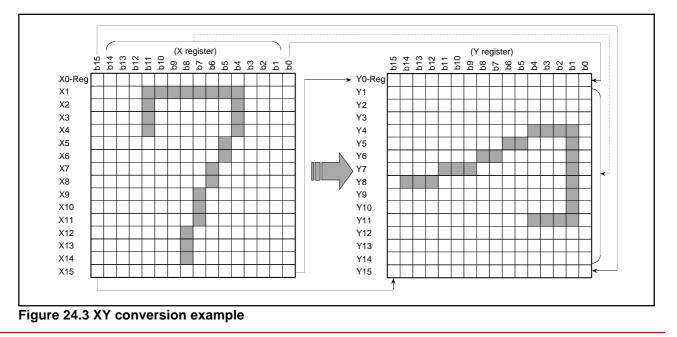
The Xi and the Yi registers are 16-bit registers. There are 16 of each (where i= 0 to 15).

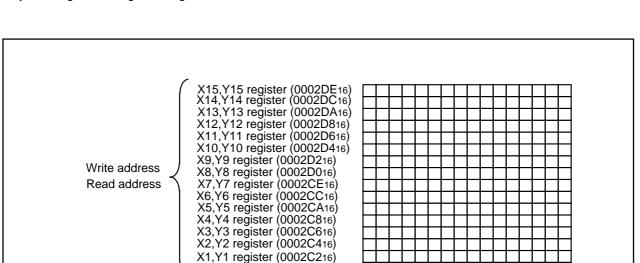
The Xi and Yi registers are mapped to the same address. The Xi register is a write-only register, while the Yi register is a read-only register. Be sure to access the Xi and Yi registers in 16-bit units from an even address. Operation cannot be guaranteed if you attempt to access these registers in 8-bit units.

The reading of the Yi register is controlled by the read-mode set bit (bit 0 at address 02E016). When the read-mode set bit (bit 0 at address 02E016) is "0", specific bits in the Xi register can be read at the same time as the Yi register is read.

For example, when you read the Y0 register, bit 0 is read as bit 0 of the X0 register, bit 1 is read as bit 0 of the X1 register, ..., bit 14 is read as bit 0 of the X14 register, bit 15 as bit 0 of the X15 register. Similarly, when you read the Y15 register, bit 0 is bit 15 of the X0 register, bit 1 is bit 15 of the X1 register, ..., bit 14 is bit 15 of the X14 register, bit 15 of the X14 register, bit 15 of the X14 register.

Figure 24.2 shows the conversion table when the read mode set bit = "0". Figure 24.3 shows the XY conversion example.


Figure 24.2 Conversion table when the read mode set bit = "0"

b0

Bit of Xi register Bit of Yi register

b15 <

When the read-mode set bit (bit 0 at address 02E016) is "1", you can read the value written to the Xi register by reading the Yi register. Figure 24.4 shows the conversion table when the read mode set bit = "1".

Figure 24.4 Conversion table when the read mode set bit = "1"

The value written to the Xi register is controlled by the write mode set bit (bit 1 at address 02E016).

X0,Y0 register (0002C016)

When the write mode set bit (bit 1 at address 02E016) is "0" and data is written to the Xi register, the bit stream is written directly.

When the write mode set bit (bit 1 at address 02E016) is "1" and data is written to the Xi register, the bit sequence is reversed so that the high becomes low and vice versa. Figure 24.5 shows the conversion table when the write mode set bit = "1".

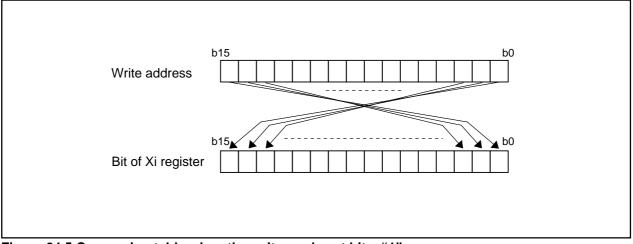


Figure 24.5 Conversion table when the write mode set bit = "1"

25. DRAM Controller

There is a built in DRAM controller to which it is possible to connect between 512 Kbytes and 8 Mbytes of DRAM. Table 25.1 shows the functions of the DRAM controller.

Table 25.1	DRAM	Controller	Functions
------------	------	------------	-----------

DRAM space	512KB, 1MB, 2MB, 4MB, 8MB
Bus control	2CAS/1W
Refresh	CAS before RAS refresh
	Self refresh-compatible
Function modes	EDO-compatible, fast page mode-compatible
Waits	1 wait or 2 waits, programmable

To use the DRAM controller, use the DRAM space select bit of the DRAM control register (address 004016) to specify the DRAM size. Figure 25.1 shows the DRAM control register.

The DRAM controller cannot be used in external memory mode 3 (bits 1 and 2 at address 000516 are "112"). Always use the DRAM controller in external memory modes 0, 1, or 2.

When the data bus width is 16-bit in DRAM area, set "1" to R/W mode select bit (bit 2 at address 000416). Set wait time between after DRAM power ON and before memory processing, and processing necessary for dummy cycle to refresh DRAM by software.

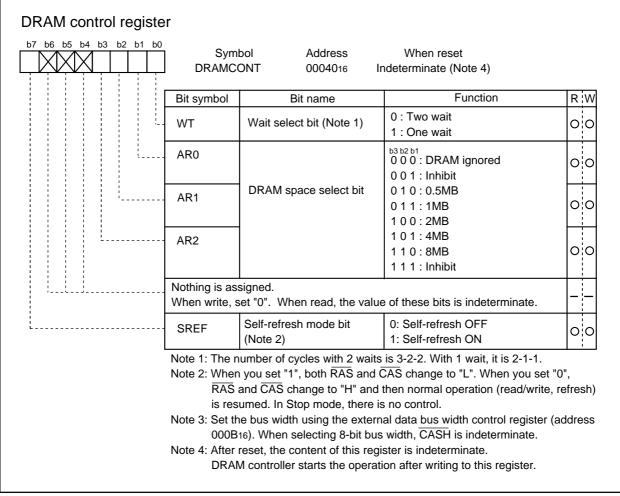


Figure 25.1 DRAM control register

• DRAM Controller Multiplex Address Output

The DRAM controller outputs the row addresses and column addresses as a multiplexed signal to the address bus A8 to A20. Figure 25.2 shows the output format for multiplexed addresses.

Pin function	MA12 (A20)	MA11 (A19)	MA10 (A18)	MA9 (A17)	MA8 (A16)	MA7 (A15)	MA6 (A14)	MA5 (A13)	MA4 (A12)	MA3 (A11)	MA2 (A10)	MA1 (A9)	MA0 (A8)
Row address	(A20)	(A19)	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	_
Column address	(A22)	(A22)	A19	A8	A7	A6	A5	A4	A3	A2	A1	A0	_
	512KB, 1MB												
Row address	(A20)	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	-
Column address	(A22)	A21	A20	A8	A7	A6	A5	A4	A3	A2	A1	A0	_
		-				2M	B, 4MB						
Row address	A20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	_
Column address	(A22)	A22	A21	A8	A7	A6	A5	A4	A3	A2	A1	A0	_
	-					8ME	3						
bit bus mode	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
Pin function	(A20)	(A19)	(A18)	(A17)	(A16)	(A15)	(A14)	(A13)	(A12)	(A11)	(A10)	(A9)	(A8)
Row address	(A20)	(A19)	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column address	(A22)	(A20)	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	-
			◄			5	12KB						
Row address	(A20)	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column address	(A22)	A20	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	_
		-				1MB,	2MB						
Row address	A20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column address	A22	A21	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	-
	-			4	MB, 8N	/IB (Not	e 2)						
Note 1: () invalio space). Note 2: The figu use com	re is fo binatio	r 4Mx1 ns of t	he follo	t chanç lx4 me owing:	ge acco mory o For ro	ording configu w addı	to sele ration.	lf you , MA0	are us to MA1	sing a 12; for	4Mx16	config n addre	uratio esses

Figure 25.2 Output format for multiplexed addresses

Refresh

The refresh method is CAS before RAS. The refresh interval is set by the DRAM refresh interval set register (address 004116). The refresh signal is not output in HOLD state. Figure 25.3 shows the DRAM refresh interval set register.

Use the following formula to determine the value to set in the refresh interval set register.

Refresh interval set register value (0 to 255) = refresh interval time / (BCLK frequency X 32) - 1

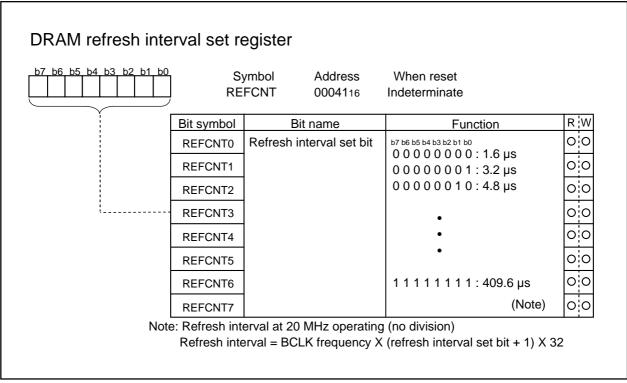


Figure 25.3 DRAM refresh interval set register

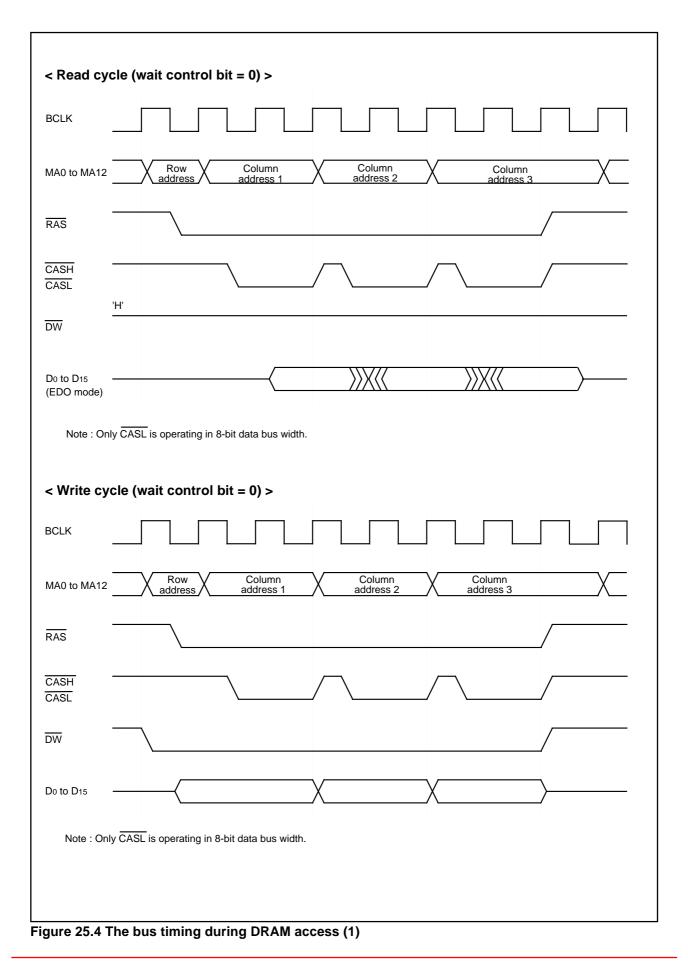
The DRAM self-refresh operates in STOP mode, etc.

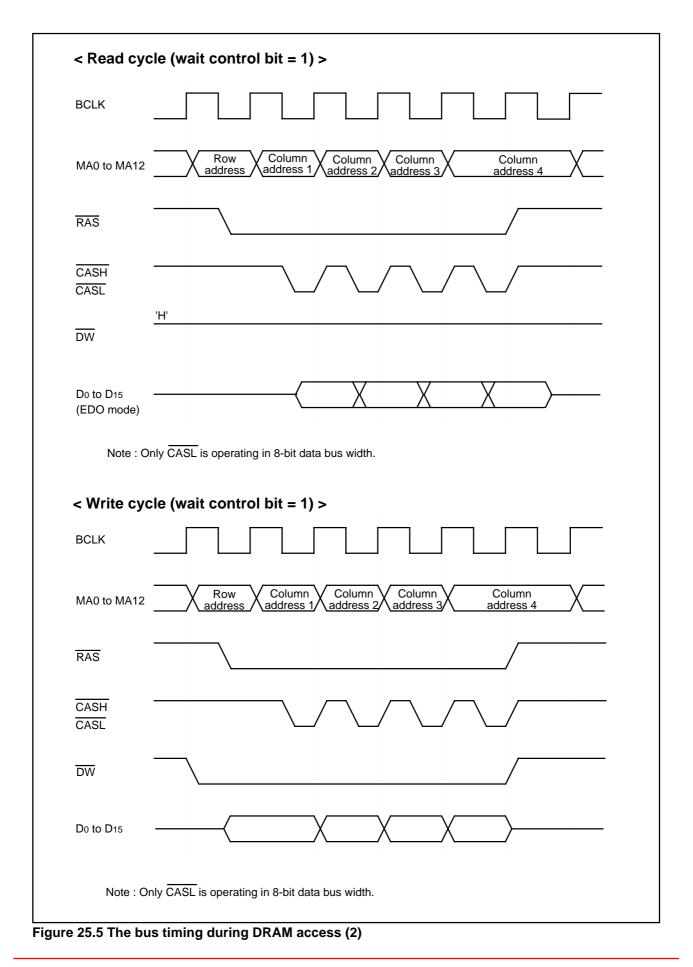
When shifting to self-refresh, select DRAM ignored by the DRAM space select bit. In the next instruction, simultaneously set the DRAM space select bit and self-refresh ON by self-refresh mode bit. Also, insert two NOPs after the instruction that sets the self-refresh mode bit to "1".

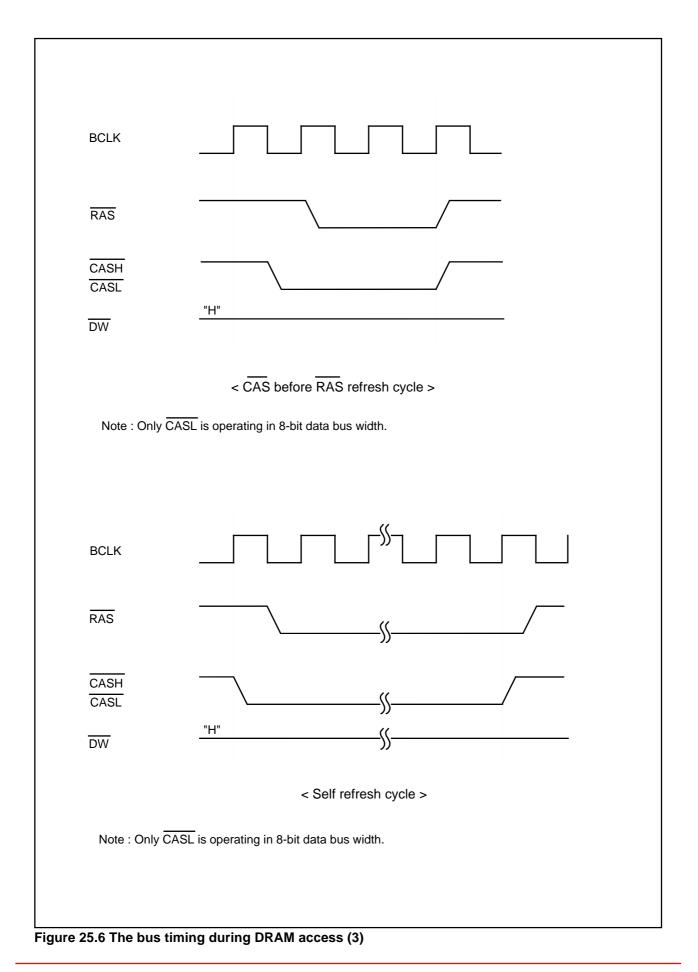
Do not access external memory while operating in self-refresh. (All external memory space access is inhibited.)

When disabling self-refresh, simultaneously select DRAM ignored by the DRAM space select bit and self-refresh OFF by self-refresh mode bit. In the next instruction, set the DRAM space select bit. Do not access the DRAM space immediately after setting the DRAM space select bit.

Example) One wait is selected by the wait select bit and 4MB is selected by the DRAM space select bit Shifting to self-refresh


•••		
mov.b	#00000001b,DRAMCONT	;DRAM ignored, one wait is selected
mov.b	#10001011b,DRAMCONT	;Set self-refresh, select 4MB and one wait
nop		;Two nops are needed
nop		;
•••		


Disable self-refresh


•••		
mov.b	#00000001b,DRAMCONT	;Disable self-refresh, DRAM ignored, one wait is ;selected
mov.b	#00001011b,DRAMCONT	;Select 4MB and one wait
nop		;Inhibit instruction to access DRAM area
nop		
•••		

Figures 25.4 to 25.6 show the bus timing during DRAM access.

26. Programmable I/O Ports

There are 87 programmable I/O ports for 100-pin version: P0 to P10 (excluding P85). There are 123 programmable I/O ports for 144-pin version: P0 to P15 (excluding P85). Each port can be set independently for input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is an input-only port and has no built-in pull-up resistance.

Figures 26.1 to 26.3 show the programmable I/O ports.

Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.

To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D/A converter), set the corresponding function select registers A, B and C. When pins are to be used as the outputs for the D/A converter, set the function select register of each pin to I/O port, and set the direction registers to input mode.

Table 26.1 lists each port and peripheral function.

See the descriptions of the respective functions for how to set up the built-in peripheral devices.

(1) Direction registers

Figures 26.4 and 26.5 show the direction registers.

These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin.

In memory expansion and microprocessor mode, the contents of corresponding direction register of pins A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS 3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY are not changed. Note: There is no direction register bit for P85.

Note. There is no direction register bit for i

(2) Port registers

Figures 26.6 and 26.7 show the port registers.

These registers are used to write and read data for input and output to and from an external device. A port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit in port registers corresponds one for one to each I/O pin.

In memory expansion and microprocessor mode, the contents of corresponding port register of pins A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS 3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY are not changed.

(3) Function select register A

Figures 26.8 and 26.9 show the function select registers A.

The register is used to select port output and peripheral function output when the port functions for both port output and peripheral function output.

Each bit of this register corresponds to each pin that functions for both port output and peripheral function output.

(4) Function select register B

Figures 26.10 and 26.11 show the function select registers B.

This register selects the 1st peripheral function output and second peripheral function output when multiple peripheral function outputs are assigned to a pin. For pins with a third peripheral function, this register selects whether to enable the function select register C, or output the second peripheral function. Each bit of this register corresponds to each pin that has multiple peripheral function outputs assigned to it.

This register is enabled when the bits of the corresponding function select register A are set for peripheral functions.

The bit 3 to bit 6 of function select register B3 is ignored bit for input peripheral function. When using DA0/ DA1 and ANEX0/ANEX1, set related bit to "1". When not using DA0/DA1 or ANEX0/ANEX1, set related bit to "0".

(5) Function select register C

Figure 26.12 shows the function select register C.

This register is used to select the first peripheral function output and the third peripheral function output when three peripheral function outputs are assigned to a pin.

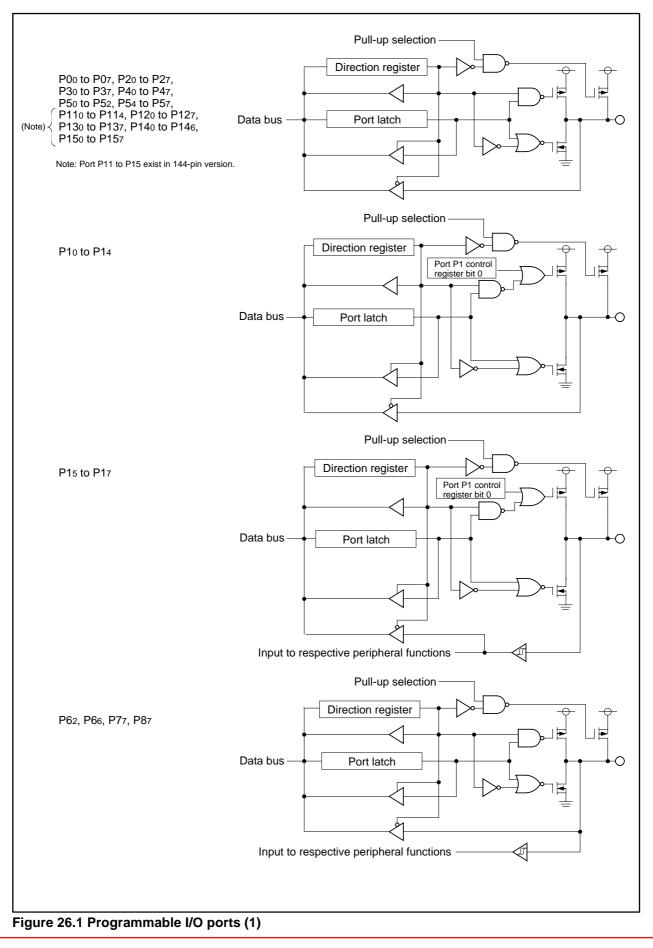
This register is effective when the bits of the function select register A of the counterpart pin have selected a peripheral function and when the function select register B has made effective the function select register C.

The bit 7 (PSC_7) is assigned the key-in interrupt inhibit bit. Setting 1 in the key-in interrupt inhibit bit causes no key-in interrupts regardless of the settings in the interrupt control register even if L is entered in pins Klo to Kl3. With 1 set in the key-in interrupt inhibit bit, input from a port pin cannot be effected even if the port direction register is set to input mode.

(6) Pull-up control registers

Figures 26.13 and 26.14 show the pull-up control registers.

The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is set for input.


Since P0 to P5 operate as the bus in memory expansion mode and microprocessor mode, do not set the pull-up control register. However, it is possible to select pull-up resistance presence to the usable port as I/O port by setting.

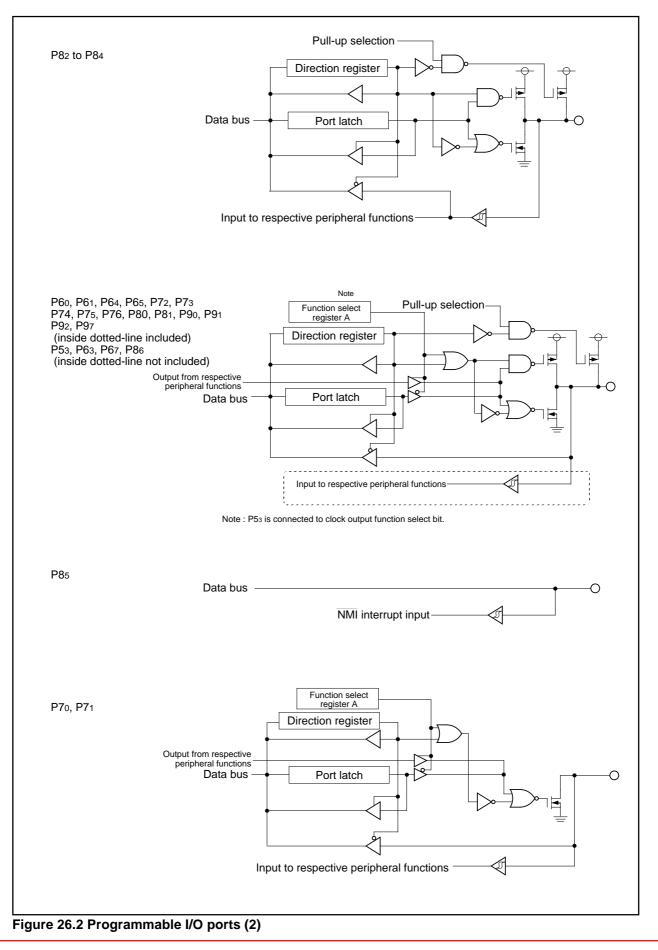
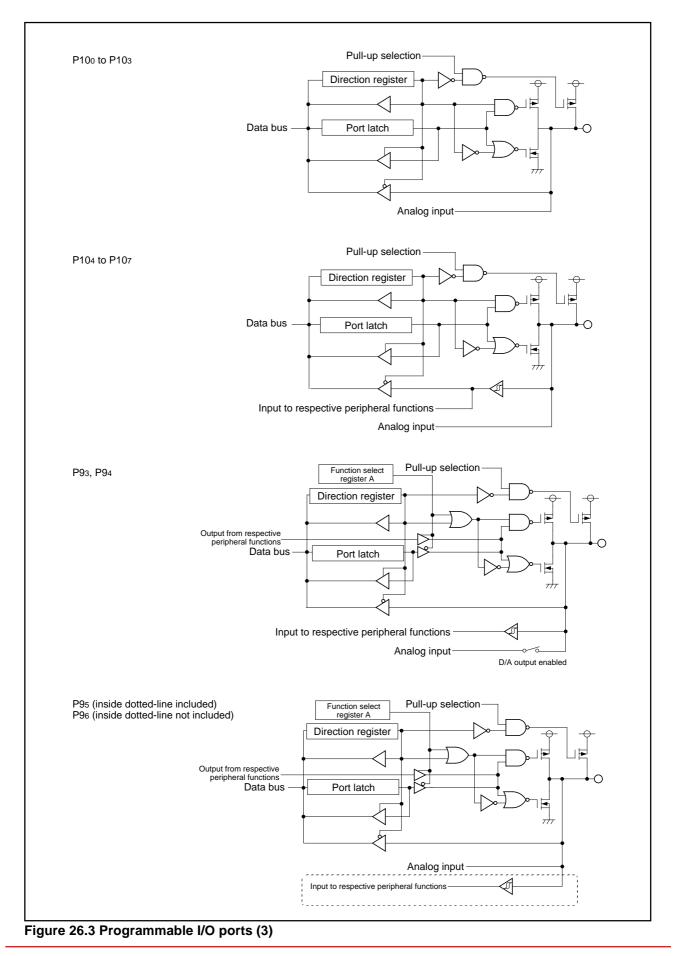

(7) Port control register

Figure 26.15 shows the port control register.


This register is used to choose whether to make port P1 a CMOS port or an Nch open drain. In the Nch open drain, the port P1 has no function that a complete open drain but keeps the CMOS port's Pch always turned off. Thus the absolute maximum rating of the input voltage falls within the range from - 0.3 V to Vcc + 0.3 V.

The port control register functions similarly to the above also in the case in which port P1 can be used as a port when the bus width in the full external areas comprises 8 bits in either microprocessor mode or in memory expansion mode.

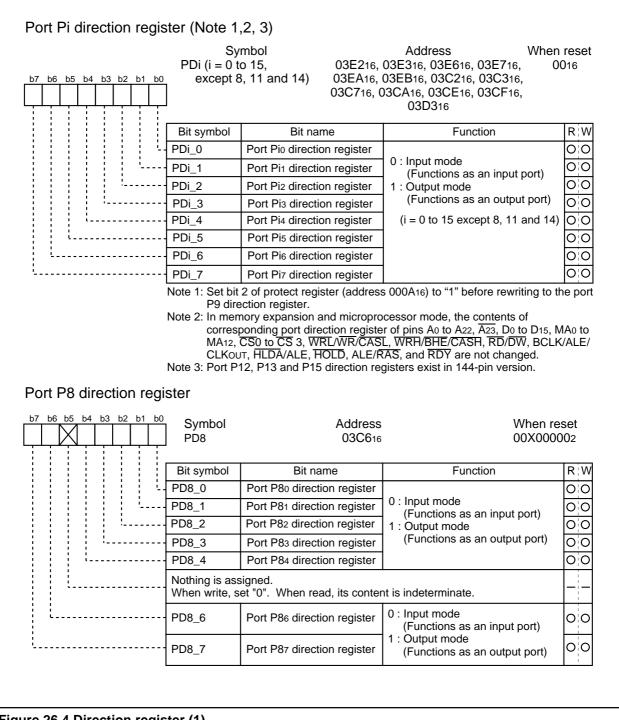


Figure 26.4 Direction register (1)

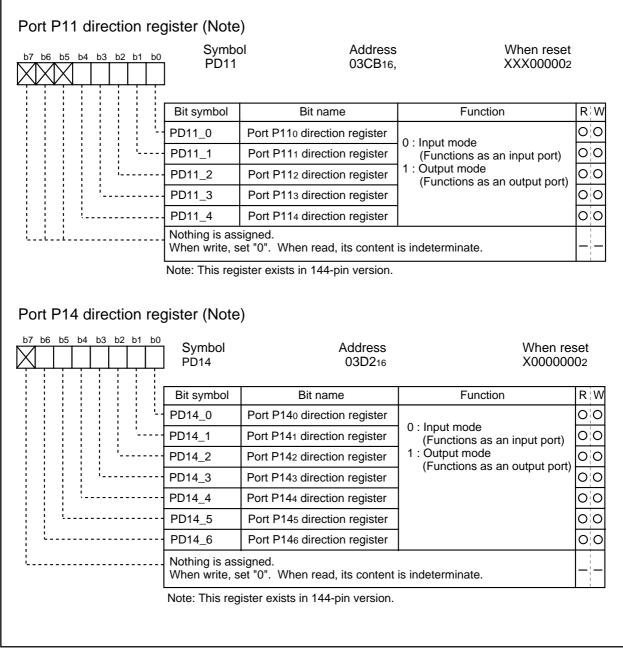
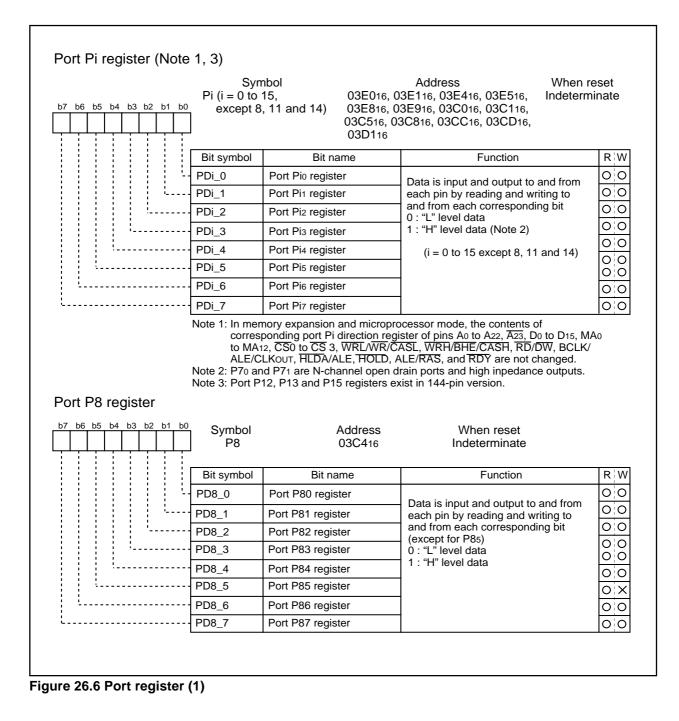



Figure 26.5 Direction register (2)

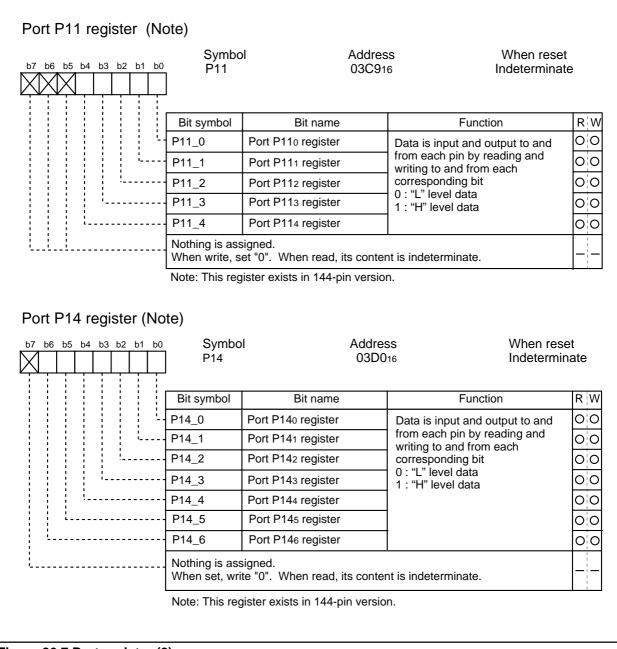
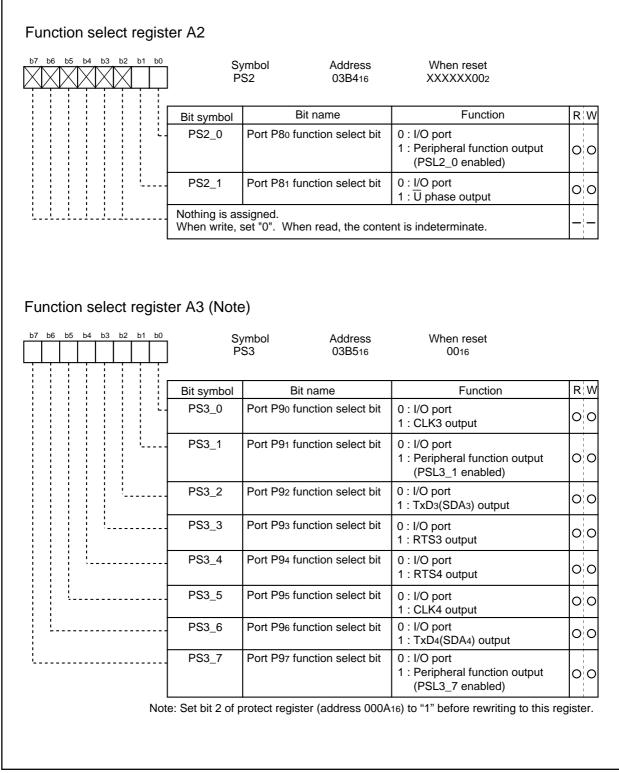
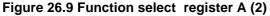


Figure 26.7 Port register (2)

Port	Periphral output function 1	Periphraloutput function 2	Periphral output function 3
P60	RTS0 output		
P61	CLKo output		
P62			
P63	TxDo output		
P64	RTS1 output	CLKS1 output	
P65	CLK1 output		
P66			
P67	TxD1 output		
P70(Note 2)	TxD2(SDA2) output	TA0o∪⊤ output	
P71 ^(Note 2)	SCL2 output		
P72	CLK2 output	TA10∪⊤ output	V phase output
P73	RTS2 output	\overline{V} phase output	
P74	TA20UT output	W phase output	
P75	W phase output		
P76	TA30UT output		
P77			
P80	TA40UT output	U phase output	
P81	U phase output		
P82			
P83			
P84			
P85			
P86			
P87			
P90	CLK3 output		
P91	SCL3 output	STxD3 output	
P92	TxD3(SDA3) output		
P93	RTS3 output		
P94	RTS4 output		
P95	CLK4 output		
P96	TXD4(SDA4) output		
P97	SCL3 output	STxD4 output	

Table 26.1	Each port and	peripheral	output function	(Note 1)
------------	---------------	------------	-----------------	----------


Note 1: When using peripheral input function, set the corresponding function select register A to "0" (I/O port). Note 2: N-channel open drain output.



b6 b5 b4 b3 b2			ymbol Addres S0 03B016		
		Bit symbol	Bit name	Function	F
		PS0_0	Port P60 function select	: bit 0 : I/O port 1 : RTS₀ output	0
		PS0_1	Port P61 function select	· · · · · · · · · · · · · · · · · · ·	(
		Nothing is as When write,	signed. set "0". When read, the o	content is indeterminate.	-
		PS0_3	Port P63 function select	: bit 0 : I/O port 1 : TXD₀ output	0
		PS0_4	Port P64 function select		(
		PS0_5	Port P65 function select		(
L		Nothing is a When write,	ssigned. set "0". When read, the	content is indeterminate.	-
		PS0_7	Port P67 function select	: bit 0 : I/O port 1 : TXD1 output	
	Ū.	S	ymbol Addres S1 03B116		
	Ū.	S P			
	Ū.	S	S1 03B116	6 X0000002	
	Ū.	S P Bit symbol	S1 03B116 Bit name Port P70 function select	6 X0000002 Function i bit 0 : I/O port 1 : Peripheral function output (PSL1_0 enabled)	(
	Ū.	S P Bit symbol PS1_0	S1 03B116 Bit name Port P70 function select (Note) Port P71 function select	6 X0000002 Function : bit 0 : I/O port 1 : Peripheral function output (PSL1_0 enabled) : bit 0 : I/O port 1 : SCL2 output	(
	Ū.	S P Bit symbol PS1_0 PS1_1	S1 03B116 Bit name Port P70 function select (Note) Port P71 function select (Note)	6 X0000002 Function : bit 0 : I/O port 1 : Peripheral function output (PSL1_0 enabled) : bit 0 : I/O port 1 : SCL2 output : bit 0 : I/O port 1 : Peripheral function output (PSL1_2, PSC_0 enabled)	(
	Ū.	S P PS1_0 PS1_1 PS1_2	S1 03B116 Bit name Port P70 function select (Note) Port P71 function select (Note) Port P72 function select	6 X0000002 Function : bit 0 : I/O port 1 : Peripheral function output (PSL1_0 enabled) : bit 0 : I/O port 1 : SCL2 output : bit 0 : I/O port 1 : Peripheral function output (PSL1_2, PSC_0 enabled) : bit 0 : I/O port 1 : Peripheral function output (PSL1_2, PSC_0 enabled) : bit 0 : I/O port 1 : Peripheral function output (PSL1_3 enabled)	
	Ū.	S PS1_0 PS1_1 PS1_2 PS1_2 PS1_3	S1 03B116 Bit name Port P70 function select (Note) Port P71 function select (Note) Port P72 function select Port P73 function select	6 X0000002 Function Function Function State	
	Ū.	S P Bit symbol PS1_0 PS1_1 PS1_2 PS1_2 PS1_3 PS1_4	S1 03B116 Bit name Port P70 function select (Note) Port P71 function select (Note) Port P72 function select Port P73 function select Port P74 function select	6 X0000002 Function : bit 0 : I/O port 1 : Peripheral function output (PSL1_0 enabled) : bit 0 : I/O port 1 : SCL2 output : bit 0 : I/O port 1 : Peripheral function output (PSL1_2, PSC_0 enabled) : bit 0 : I/O port 1 : Peripheral function output (PSL1_3 enabled) : bit 0 : I/O port 1 : Peripheral function output (PSL1_3 enabled) : bit 0 : I/O port 1 : Peripheral function output (PSL1_4 enabled) : bit 0 : I/O port 1 : W phase output	

Figure 26.8 Function select register A (1)

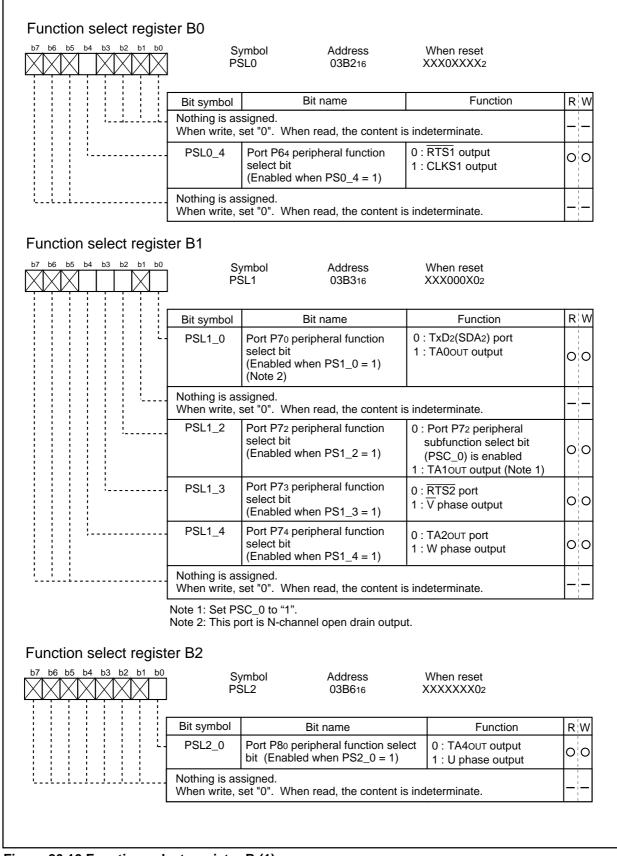
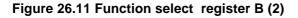



Figure 26.10 Function select register B (1)

Г

		ymbol Address SL3 03B7 ₁₆	When reset 00000X0X2	
	Bit symbol	Bit name	Function	RW
	Nothing is as When write,	ssigned. set "0". When read, the conter	nt is indeterminate.	
	PSL3_1	Port P91 peripheral function select bit	0 : SCL3 output 1 : STxD3 output	oc
· · · · · · · · · · · · · · · · · · ·	Nothing is as When write,	ssigned. set "0". When read, the conter	nt is indeterminate.	
· · · · · · · · · · · · · · · · · · ·	PSL3_3	Port P93 peripheral function	 0 : Input peripheral function enabled (Except DA0 output) (Note) 1 : Input peripheral function disabled (DA0 output) 	oc
	PSL3_4	Port P94 peripheral function	 0 : Input peripheral function enabled (Except DA1 output) (Note) 1 : Input peripheral function disabled (DA1 output) 	oc
	PSL3_5	Port P95 peripheral function	 0 : Input peripheral function enabled (Except ANEX0 use) (Note) 1 : Input peripheral function disabled (ANEX0 use) 	oc
	PSL3_6	Port P96 peripheral function	0 : Input peripheral function enabled (Except ANEX1 use) (Note) 1 : Input peripheral function disabled (ANEX1 use)	oc
·	PSL3_7	Port P97 peripheral function select bit	0 : SCL4 output 1 : STxD4 output	oc

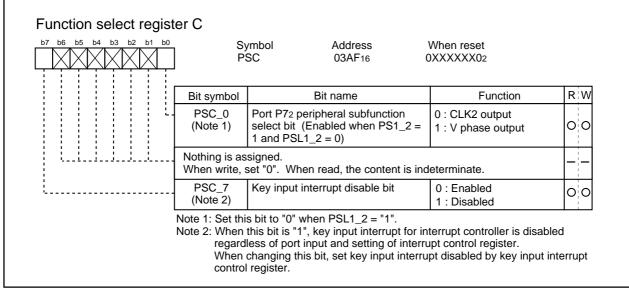


Figure 26.12 Function select register C

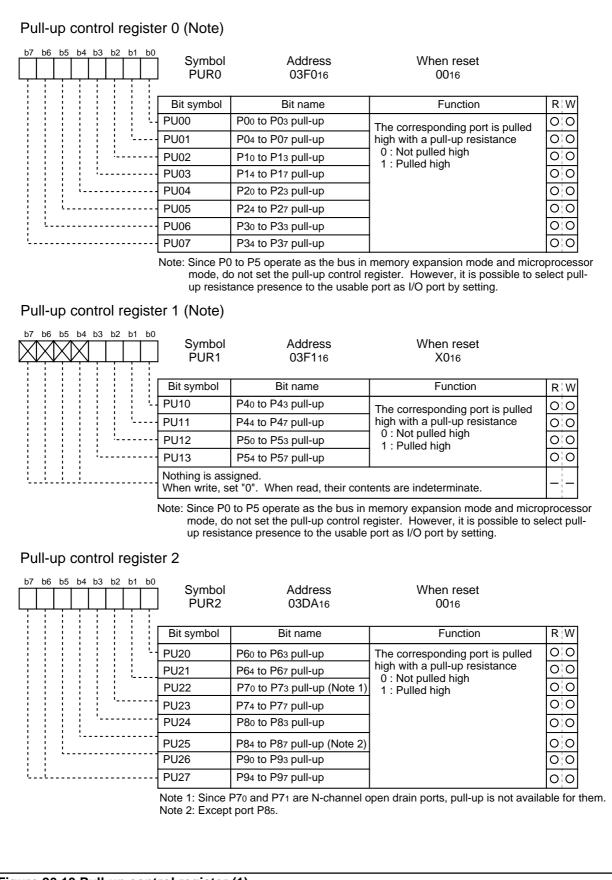


Figure 26.13 Pull-up control register (1)

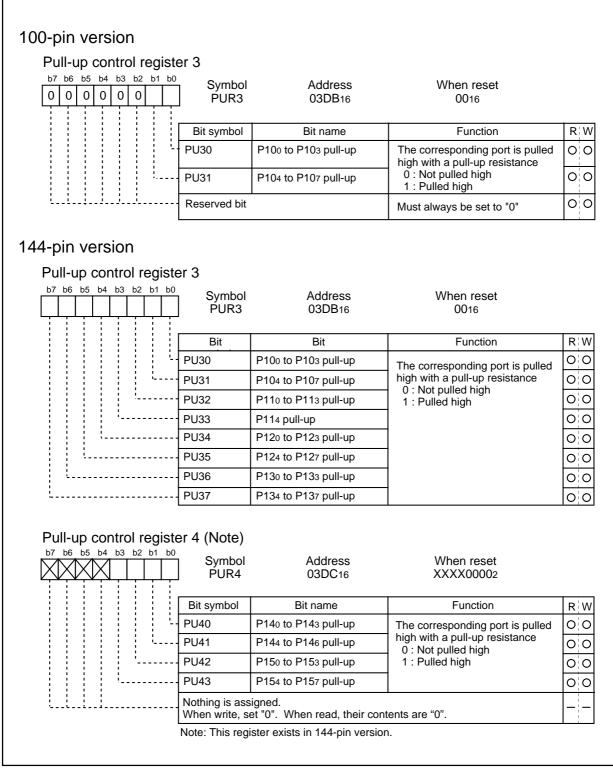


Figure 26.14 Pull-up control register (2)

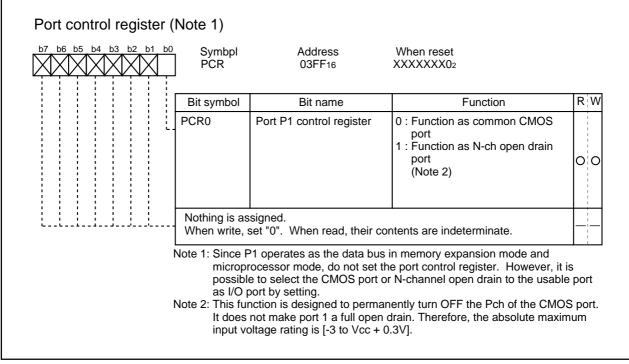


Figure 26.15 Port control register

Pin name	Connection
Ports P0 to P15 (excluding P85) Note 1)	(After setting for input mode, connect every pin to Vss via a resistance (pull-down); or after setting for output mode, leave these pins open.
XOUT (Note 2)	Open
NMI	Connect via resistance to Vcc (pull-up)
AVcc	Connect to Vcc
AVSS, VREF, BYTE	Connect to Vss

Note 1: Port P11 to P15 exist in 144-pin version.

Note 2: With external clock input to XIN pin.

Table 26.3 Example connection of unused pins in memory expansion mode and microprocessor mode

Pin name	Connection
Ports P6 to P15(excluding P85) Note 1)	(After setting for input mode, connect every pin to Vss via a resistance (pull-down); or after setting for output mode, leave these pins open.
BHE, ALE, HLDA, XOUT(Note 2), BCLK	Open
HOLD, RDY, NMI	Connect via resistance to Vcc (pull-up)
AVcc	Connect to Vcc
AVSS, VREF	Connect to Vss

Note 1: Port P11 to P15 exist in 144-pin version.

Note 2: With external clock input to XIN pin.

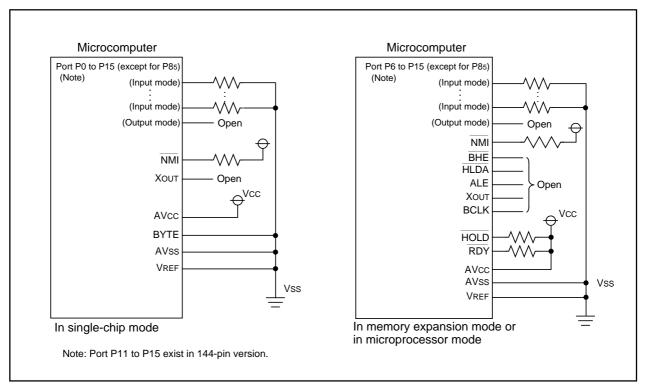


Figure 26.16 Example connection of unused pins

27. Usage Precaution

SFR (100-pin version)

(1) Addresses 03C916, 03CB16 to 03D316, 03DC16 area is for future plan. Must set "FF16" to address 03CB16, 03CE16, 03CF16, 03D216, 03D316 and "0016" to address 03DC16 at initial setting.

Timer

(1) A timer Ai register and a timer Bi register are unstable after MCU resetting. Please start a count after setting a value as the timer Ai register or timer Bi register to be used, when using a timer.

Timer A (timer mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

Timer A (event counter mode)

- (1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
- (2) When stop counting in free run type, set timer again.
- (3) In the case of using as "Free-Run type", the timer register contents may be unknown when counting begins. If the timer register is set before counting has started, then the starting value will be unknown.
 - In the case where the up/down count will not be changed.
 - Enable the "Reload" function and write to the timer register before counting begins. Rewrite the value to the timer register immediately after counting has started. If counting up, rewrite "000016" to the timer register. If counting down, rewrite "FFFF16" to the timer register. This will cause the same operation as "Free-Run type" mode.
 - In the case where the up/down count has changed.
 - First set to "Reload type" operation. Once the first counting pulse has occurred, the timer may be changed to "Free-Run type".

Timer A (one-shot timer mode)

- (1) Setting the count start flag to "0" while a count is in progress causes as follows:
 - The counter stops counting and a content of reload register is reloaded.
 - The TAiOUT pin outputs "L" level.
 - The interrupt request generated and the timer Ai interrupt request bit goes to "1".
- (2) The output from the one-shot timer synchronizes with the count source generated internally. Therefore, when an external trigger has been selected, a delay of one cycle of count source as maximum occurs between the trigger input to the TAilN pin and the one-shot timer output.
- (3) The timer Ai interrupt request bit goes to "1" if the timer's operation mode is set using any of the following procedures:
 - Selecting one-shot timer mode after reset.
 - Changing operation mode from timer mode to one-shot timer mode.
 - Changing operation mode from event counter mode to one-shot timer mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

- (4) If a trigger occurs while a count is in progress, after the counter performs one down count following the reoccurrence of a trigger, the reload register contents are reloaded, and the count continues. To generate a trigger while a count is in progress, generate the second trigger after an elapse longer than one cycle of the timer's count source after the previous trigger occurred.
- (5) If an external trigger input is used to start counting, the next external trigger input must be avoided within 300ns before the timer A reaches "0000h".

Timer A (pulse width modulation mode)

(1) The timer Ai interrupt request bit becomes "1" if setting operation mode of the timer in compliance with any of the following procedures:

- Selecting PWM mode after reset.
- Changing operation mode from timer mode to PWM mode.
- Changing operation mode from event counter mode to PWM mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(2) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiOUT pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to "1". If the TAiOUT pin is outputting an "L" level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes "1".

Timer B (timer mode, event counter mode)

(1) The TBi (i=0 to 5) register indicates the countervalue during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

Timer B (pulse period/pulse width measurement mode)

- (1) If the measurement mode select bit setting is changed after counting is started, the timer Bi interrupt request bit is set to "1".
- (2) Indeterminate values are transferred to the reload register during the first valid edge input after counting is started. The timer Bi interrupt request is not generated at this time.
- (3) The counter value is indeterminate when counting is started. Therefore, the timer Bi overflow flag setting may change to "1" and causes the timer Bi interrupt requests to be generated until a valid edge is input after counting is started.
- (4) The timer Bi overflow flag is set to "0" by writting to the timer Bi mode register at or after counting timing of the next count source, after the count start flag is set to "1" and the timer Bi overflow flag is set to "1".

Stop Mode and Wait Mode

- (1) To exit stop mode by hardware reset, provide an "L" signal input to the RESET pin until main clock oscillation is stable.
- (2) When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after the WAIT instruction.
- (3) When entering stop mode, the instruction lined in the instruction queue is executed before the interrupt for recovery is done. Write the JMP.B instruction, as follows, after the instruction setting the all clock stop control bit to "1".

bset 0,prcr bset 0,cm1 jmp.b LABEL_001	; protection removed ; all clocks stopped (entering stop mode) ; JMP.B instruction executed (Jump to the next instruction soon
LABEL_001:	; with no instruction between JMP.B and LABEL.)
nop	; nop(1)
nop	; nop(2)
nop	; nop(3)
nop	; nop(4)
mov.b #0,prcr	; protection set

- (4) Use the following procedure to enter stop mode.
 - Initial Setting

Set each interrupt priority level after setting the interrupt priority level required to exit stop mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Stop Mode
 - [1] Set the interrupt priority level of the interrupt being used to exit stop mode
 - [2] Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0".
 - [3] Set the IPL in the FLG register. Then set the exit priority level to the same level as the IPL.
 (Interrupt priority level of the interrupt used to exit stop mode > exit priority level
 ≥ interrupt priority level of the interrupts not used to exit stop mode)
 - [4] Set the I flag to "1"
 - [5] Set the CM10 bit in the CM1 register to "1" (all clocks stop) after setting the PRC0 bit in the PRCR register to "1" (write enabled)
- After Exiting Stop Mode

Set the exit priority level to "7" as soon as exiting stop mode.

(5) When microcomputer enters stop mode again after exiting from stop mode using the NMI interrupt, use the following procedure to set the CM10 bit to "1".

[1] Exit stop mode using the NMI interrupt

- [2] Generate a dummy interrupt
- [3] Set the CM10 bit to "1"

Example:

INT#63; Dummy interruptBSETCM1; All clocks stopped (in stop mode)

- ; /*for dummy interrupt* /
- DUMMY:

REIT

- (6) Use the following procedure to enter wait mode.
 - Initial Setting

Set each interrupt priority level after setting the interrupt priority level required to exit wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Wait Mode
 - [1] Set the interrupt priority level of the interrupt being used to exit wait mode
 - [2] Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0".
 - [3] Set the IPL in the FLG register. Then set the exit priority level to the same level as the IPL.
 (Interrupt priority level of the interrupt used to exit wait mode > exit priority level
 ≥ interrupt priority level of the interrupts not used to exit wait mode)
 - [4] Set the I flag to "1"
 - [5] Execute the WAIT instruction
 - After Exiting Wait Mode

Set the exit priority level to "7" as soon as exiting wait mode.

RENESAS

A/D Converter

- (1) Write to each bit (except bit 6) of A/D control register 0, to each bit of A/D control register 1, and to bit 0 of A/D control register 2 when A/D conversion is stopped (before a trigger occurs).
 In particular, when the Vref connection bit is changed from "0" to "1", start A/D conversion after an elapse of 1 µs or longer.
- (2) When changing A/D operation mode, select analog input pin again.
- (3) Using one-shot mode or single sweep mode
 Read the correspondence A/D register after confirming A/D conversion is finished. (It is known by A/D conversion interrupt request bit.)
 Use the undivided main clock as the internal CPU clock.
- (4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1
- (5) When f(XIN) is faster than 10 MHz, make the frequency 10 MHz or less by dividing.
- (6) If A/D conversion is stopped by program while in progress of A/D conversion, the conversion result of A/D converter becomes indeterminate. The contents of A/D registers irrelevant to A/D conversion may become indeterminate. If A/D conversion is stopped by program while in progress of A/D conversion, ignore the values of all A/D registers.
- (7) Output impedance of sensor at A/D conversion (Reference value)

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 27.1 has to be completed within a specified period of time T. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A/D converter be X, and the A/D converter's resolution be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

Vc is generally Vc = VIN
$$\{1 - e - \frac{t}{C(R0 + R)}\}$$

And when t = T,
$$VC=VIN - \frac{X}{Y}VIN=VIN(1 - \frac{X}{Y})$$

 $e^{-\frac{T}{C(R0+R)}} = \frac{X}{Y}$
 $-\frac{T}{C(R0+R)} = In \frac{X}{Y}$
Hence, R0 = $-\frac{T}{C \cdot ln \frac{X}{Y}}$

With the model shown in Figure 27.1 as an example, when the difference between VIN and Vc becomes 0.1LSB, we find impedance R0 when voltage between pins Vc changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB. When f(XIN) = 10 MHz, T = 0.3 us in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.3 $\mu s,\,R$ = 7.8 kΩ, C = 3 pF, X = 0.1, and Y = 1024 . Hence,

$$R0 = -\frac{0.3 \times 10^{-6}}{3.0 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} \doteqdot 3.0 \times 10^{3}$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A/D converter turns out to be approximately 3.0 k Ω . Tables 27.1 and 27.2 show output impedance values based on the LSB values.

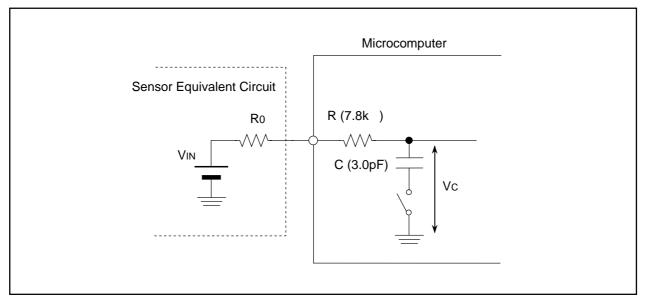


Figure 27.1 Anolog Input Pin and External Sensor Equivalent Circuit

f(XIN) (MHz)	Cycle (µs)	Sampling time (µs)	R (Kohm)	C (pF)	Resolution (LSB)	R0max (Kohm)
10	0.1	0.3	7.8	3.0	0.1	3.0
		(3 X cycle,			0.3	4.5
		Sample & hold			0.5	5.3
		bit is enabled)			0.7	5.9
					0.9	6.4
					1.1	6.8
					1.3	7.2
					1.5	7.5
					1.7	7.8
					1.9	8.1
10	0.1	0.2	7.8	3.0	0.3	0.4
		(2 X cycle,			0.5	0.9
		Sample & hold			0.7	1.3
		bit is enabled)			0.9	1.7
					1.1	2.0
					1.3	2.2
					1.5	2.4
					1.7	2.6
					1.9	2.8

Tables 27.1 Output impedance values based on the LSB values (10-bit mode) Reference value

Tables 27.2 Output impedance values based on the LSB values (8-bit mode) Reference value

f(XIN) (MHz)	Cycle (µs)	Sampling time (µs)	R (Kohm)	C (pF)	Resolution (LSB)	R0max (Kohm)
10	0.1	0.3	7.8	3.0	0.1	4.9
		(3 X cycle,			0.3	7.0
		Sample & hold			0.5	8.2
		bit is enabled)			0.7	9.1
					0.9	9.9
					1.1	10.5
					1.3	11.1
					1.5	11.7
					1.7	12.1
					1.9	12.6
10	0.1	0.2	7.8	3.0	0.1	0.7
		(2 X cycle,			0.3	2.1
		Sample & hold			0.5	2.9
		bit is enabled)			0.7	3.5
					0.9	4.0
					1.1	4.4
					1.3	4.8
					1.5	5.2
					1.7	5.5
					1.9	5.8

Interrupts

- (1) Setting the stack pointer
 - The value of the stack pointer is initialized to 00000016 immediately after reset. Accepting an interrupt before setting a value in the stack pointer may cause runaway. Be sure to set a value in the stack pointer before accepting an interrupt.

When using the $\overline{\text{NMI}}$ interrupt, initialize the stack pointer at the beginning of a program. Regarding the first instruction immediately after reset, generating any interrupts including the $\overline{\text{NMI}}$ interrupt is prohibited.

Set an even address to the stack pointer so that operating efficiency is increased.

- (2) The NMI interrupt
 - As for the NMI interrupt pin, an interrupt cannot be prohibited. Connect it to the Vcc pin via a resistance (pulled-up) if unused.
 - The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
 - Signals input to NMI pin require "L" level and "H" level of 2 clock + 300ns or more, from the operation clock of CPU.
- (3) Address match interrupt

Example 1)

- Do not set the following addresses to the address match interrupt register.
- 1. The address of the starting instruction in an interrupt routine.
- 2. Any of the next 7 instructions addresses immediately after an instruction to clear an interrupt request bit of an interrupt control register or an instruction to rewrite an interrupt priority level to a smaller value.
- 3. Any of the next 3 instructions addresses immediately after an instruction to set the interrupt enable flag (I flag).
- 4. Any of the next 3 instructions addresses immediately after an instruction to rewrite a processor interrupt priority level (IPL) to a smaller value.

upt_A:	; Interrupt A routine
pushm R0,R1,R2	2,R3,A0,A1 ; < Do not set address match interrupt to the ; start address of an interrupt instruction
b #0,TA0IC	;Change TA0 interrupt priority level to a smaller value
	; 1st instruction
	; 2nd instruction
	; 3rd instruction
	; 4th instruction > Do not set address match interrupt
	; 5th instruction during this period
	; 6th instruction
	; 7th instruction
I ; Set I flag ((interrupt enabled)
; 1st instruc	
; 2nd instru	
; 3rd instruc	ction J during this period
	pushm R0,R1,R:

RENESAS

.

...

Example 4)

ldipl #0	; Rewrite IPL to a smaller value		
nop	; 1st instruction		
nop	; 2nd instruction > Do not set address match interrupt		
nop	; 3rd instruction during this period		

• To return from an interrupt to the address set in an address match interrupt register using return instruction (reit or freit)

To rewrite the interrupt control register within the interrupt routine, add the below processing to the end of the routine (immediately before the reit or freit instruction). Also, if multiple interrupts are enabled with other interrupts, add the below processing to the end of the interrupt that enables the multiple interrupts.

If the interrupt control register is being rewritten within the non-maskable interrupt routine, add the below processing to the end of all interrupts.

. .

- 61 -

Additional process

	; Execute after the register reset instruction (popm instruction)
fclr U	; Select ISP (Unnecessary if the ISP has been selected)
pushm R0	; Store R0 register
mov.w 6[SP],R0	; Read FLG on stack (use "stc SVF,R0" when high-speed
	; interrupt)
ldc R0,FLG	; Set in FLG
popm R0	; Restore R0 register
nop	; Dummy
reit	; Interrupt completed (use freit when high-speed interrupt)

Example 5)

If rewriting the interrupt control register for interrupt B with the interrupt A routine and enabling multiple interrupts with interrupt C, the above processing is required at the end of the interrupt A and interrupt C routines.

Interrup	A routine	
errupt_A:		
pushm R0,R1,F	2,R3,A0,A1 ; Store	registers
••••		
bclr 3,TAOIC	; Rewr	ite interrupt control register of interrupt B
••••		
popm R0,R1,F	2,R3,A0,A1 ; Resto	ore registers
fclr U	; Selec	t ISP (Unnecessary if the ISP has been selected)
pushm R0	; Store	R0 register
mov.w 6[SP],R	; Read	FLG on stack
ldc R0,FLG	; Set ir	n FLG
popm R0	; Resto	pre R0 register
nop	; Dumr	ny
reit	; Interr	upt completed
eeee 3,TA0IC bclr 3,TA0IC eeee 7 fclr U pushm R0 mov.w 6[SP],R ldc R0,FLG popm R0 nop	; Rewr 2,R3,A0,A1 ; Resto ; Selec ; Store ; Read ; Set ir ; Resto ; Dumr	ite interrupt control register of interrupt B ore registers ct ISP (Unnecessary if the ISP has been selecto R0 register FLG on stack or FLG ore R0 register my


```
Interrupt C routine
Interrupt_C:
   pushm R0,R1,R2,R3,A0,A1
                                    ; Store registers
                                    ; Multiple interrupt enabled
   fset
          I
   ....
   ....
   popm R0,R1,R2,R3,A0,A1
                                    ;Restore registers
   fclr
          U
                                    ; Select ISP (Unnecessary if the ISP has been selected)
   pushm R0
                                    ; Store R0 register
   mov.w 6[SP],R0
                                    ; Read FLG on stack
   ldc
          R0.FLG
                                    : Set in FLG
   popm R0
                                    ; Restore R0 register
                                    ; Dummy
   nop
   reit
                                    ; Interrupt completed
```

(4) External interrupt

• Edge sense

Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INTo to INT5 regardless of the CPU operation clock.

• Level sense

Either an "L" level or an "H" level of 1 cycle of BCLK + at least 200 ns width is necessary for the signal input to pins INTo to INT5 regardless of the CPU operation clock. (When XIN=20MHz and no division mode, at least 250 ns width is necessary.)

• When the polarity of the INT₀ to INT₅ pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 27.2 shows the procedure for changing the INT interrupt generate factor.

Figure 27.2 Switching condition of INT interrupt request

- (5) Rewrite the interrupt control register
 - When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

 When attempting to clear the interrupt request bit of an interrupt control register, the interrupt request bit is not cleared sometimes. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
 Instructions : MOV

DMAC

- (1) Do not clear the DMA request bit of the DMAi request cause select register. In M16C/80, when a DMA request is generated while the channel is disabled (Note), the DMA transfer is not executed and the DMA request bit is cleared automatically. Note :The DMA is disabled or the transfer count register is "0".
- (2) When DMA transfer is done by a software trigger, set DSR and DRQ of the DMAi request cause select register to "1" simultaneously using the OR instruction.
 - e.g.) OR.B #0A0h, DMiSL ; DMiSL is DMAi request cause select register
- (3) When changing the DMAi request cause select bit of the DMAi request cause select register, set "1" to the DMA request bit, simultaneously. In this case, set the corresponding DMA channel to disabled before changing the DMAi request cause select bit. At least 26 cycles are needed from the instruction to write to the DMAi request cause select register to enable DMA.

Example) When DMA request cause is changed to timer A0 and using DMA0 in single transfer after DMA initial setting

push	.w R0		; Store R0 register	
stc	DMD0, R	0	; Read DMA mode register	0
and.	o #111111(00b, R0L	; Clear DMA0 transfer mode	e select bit to "00"
ldc	R0, DMD	0	; DMA0 disabled	
mov.	b #100000 ²	1b, DM0SL	; Select timer A0	
			; (Write "1" to DMA reques	st bit simultaneously)
push	.w R0		; Sotre R0 register	
mov.	w #6,R0		;	
dummy_loo	p:			At least 26 cycles are
sbjnz	w #1,R0,du	mmy_loop	; Dummy cycle	> needed until DMA enabled.
pop.	w R0		; Restore R0 register	enableu.
or.b	#000000	01b, R0L	; Set DMA0 single transfer	
ldc	R0, DMD	0	; DMA0 enabled	
pop.	w R0		; Restore R0 register	

- (4) Recommended procedure for starting DMA transfer
 - •When writing to the DMAi request cause register including overwriting the same value to the DMAi request cause register;
 - 1. Disable the corresponding channel i DMA in DMA mode registers 0 and 1.
 - 2. Set up the peripheral used as the source of the DMA transfer. However, the peripheral should remain disabled at this time. For example, when using UART0 transmit, disable UART0 transmit.
 - 3. Set the DMAi request cause select register. At this time, write a '1' to the DMA request bit (bit 7)
 - 4. Set the following SFR registers:
 - •DMAiSFR address register
 - •DMAI memory address reload register
 - •DMAi memory address register
 - •DMAi transfer count reload register
 - •DMAi transfer count register
 - 5. At this point, if the number of elapsed cycles are less than 26, add code (NOP's or other processing) to make up some time.
 - 6. Enable the corresponding channel i DMA in the DMA mode registers 0 and 1.
 - 7. Enable the peripheral used as the source of the DMA transfer. For example, when using UART0 transmit, enable UART0 transmit.

•When not writing to the DMAi request cause register;

- 1. Disable the corresponding channel i DMA in the DMA mode registers 0 and 1.
- 2. Set up the peripheral used as the source of the DMA transfer. However, the peripheral should remain disabled at this time. For example, when using UART0 transmit, disable UART0 transmit.
- 3. Set up the following SFR registers:
- •DMAiSFR address register
- •DMAI memory address reload register
- •DMAi memory address register
- •DMAi transfer count reload register
- •DMAi transfer count register
- 4. Enable the corresponding channel i DMA in the DMA mode registers 0 and 1.
- 5. Enable the peripheral used as the source of the DMA transfer. For example, when using UART0 transmit, enable UART0 transmit.
- (5) Recommended procedure after completing DMA transfer
 - •Disable the peripheral used as source of the DMA transfer to prevent generating a DMA request.
 - •Disable the corresponding channel i DMA in the DMA mode registers 0 and 1.

Noise

(1) A bypass capacitor should be inserted between Vcc-Vss line for reducing noise and latch-up Connect a bypass capacitor (approx. 0.1µF) between the Vcc and Vss pins using short wiring and thicker circuit traces.

Precautions for using CLKOUT pin

When using the Clock Output function of P53/CLKOUT pin (f8, f32 or fc output) in single chip mode, use port P57 as an input only port (port P57 direction register is "0").

Although port P57 may be set as an output port, it will become high impedance and will not output "H" or "L" levels.

HOLD signal

When P40 to P47 and P50 to P52 are set to output port (the direction register is "1") in single-chip mode, then the MCU is changed to microprocessor mode or memory expansion mode. Although the HOLD pin may be held "L", P40 to P47 (A16 to A23, CS0 to CS3, MA8 to MA12) and P50 to P52 (RD/WR/BHE, RD/WRL/WRH, CASL/CASH/DW) will not become high-impedance ports.

When using the HOLD input while P40 to P47 and P50 to P52 are set as output ports in single-chip mode, you must first set all pins for P40 to P47 and P50 to P52 as input ports, then shift to microprocessor mode or memory expansion mode.

Reducing power consumption

- (1) When A/D conversion is not performed, select the Vref not connected with the Vref connect bit of A/D control register 1. When A/D conversion is performed, start the A/D conversion at least 1 μs or longer after connecting Vref.
- (2) When using AN4 (P104) to AN7 (P107), select the input disable of the key input interrupt signal with the key input interrupt disable bit of the function select register C. When selecting the input disable of the key input interrupt signal, the key input interrupt cannot be used. Also, the port cannot be input even if the direction register of P104 to P107 is set to input (the input result becomes undefined). When the input disable of the key input interrupt signal is selected, use all AN4 to AN7 as A/D inputs.
- (3) When ANEX0 and ANEX1 are used, select the input peripheral function disable with port P95 and P96 input peripheral function select bit of the function select register B3. When the input peripheral function disable is selected, the port cannot be input even if the port direction register is set to input (the input result becomes undefined). Also, it is not possible to input a peripheral function except ANEX0 and ANEX1.
- (4) When D/A converter is not used, set output disabled with the D/A output enable bit of D/A control register and set the D/A register to "0016".
- (5) When D/A conversion is used, select the input peripheral function disabled with port P93 and P94 input peripheral function select bit of the function select register B3.
 When the input peripheral function disabled is selected, the port cannot be input even if the port direction register is set to input (the input result becomes undefined).
 Also, it is not possible to input a peripheral function.

DRAM controller

When shifting to self-refresh, select DRAM ignored by the DRAM space select bit. In the next instruction, simultaneously set the DRAM space select bit and self-refresh ON by self-refresh mode bit. Also, insert two NOPs after the instruction that sets the self-refresh mode bit to "1".

Do not access external memory while operating in self-refresh. (All external memory space access is inhibited.)

When disabling self-refresh, simultaneously select DRAM ignored by the DRAM space select bit and self-refresh OFF by self-refresh mode bit. In the next instruction, set the DRAM space select bit.

Do not access the DRAM space immediately after setting the DRAM space select bit.

Example) One wait is selected by the wait select bit and 4MB is selected by the DRAM space select bit Shifting to self-refresh

	•••		
	mov.b mov.b nop nop	#00000001b,DRAMCONT #10001011b,DRAMCONT	;DRAM ignored, one wait is selected ;Set self-refresh, select 4MB and one wait ;Two nops are needed ;
Disab	le self-re	efresh	
	•••		
	mov.b	#00000001b,DRAMCONT	;Disable self-refresh, DRAM ignored, one wait is ;selected
	mov.b	#00001011b,DRAMCONT	Select 4MB and one wait
	nop		Inhibit instruction to access DRAM area
	nop		,
	•••		

Setting the registers

The registers shown in Table 27.3 include indeterminate bit when read. Set immidiate to these registers. Store the content of the frequently used register to RAM, change the content of RAM, then transfer to the register.

Table 27.3 The object registers

Register name	Symbol	Address
UART4 bit rate generator	U4BRG	02F916
UART4 transfer buffer register	U4TB	02FB16, 02FA16
Dead time timer	DTT	030C16
Timer B2 interrupt occurrence frequency set counter	ICTB2	030D16
UART3 bit rate generator	U3BRG	032916
UART3 transfer buffer register	U3TB	032B16, 032A16
UART2 bit rate generator	U2BRG	033916
UART2 transfer buffer register	U2TB	033B16, 033A16
Up-down flag	UDF	034416
Timer A0 register (Note)	TA0	034716, 034616
Timer A1 register (Note)	TA1	034916, 034816
Timer A2 register (Note)	TA2	034B16, 034A16
Timer A3 register (Note)	TA3	034D16, 034C16
Timer A4 register (Note)	TA4	034F16, 034E16
UART0 bit rate generator	U0BRG	036116
UART0 transfer buffer register	U0TB	036316, 036216
UART1 bit rate generator	U1BRG	036916
UART1 transfer buffer register	U1TB	036B16, 036A16

Note: In one-shot timer mode and pulse widt modulation mode.

External ROM version (144-pin version)

The external ROM version is operated only in microprocessor mode, so be sure to perform the following: • Connect CNVss pin to Vcc.

Notes on CNVss pin reset at "H" level

When the CNVss pin is reset at "H" level, the contents of internal ROM cannot be read out.

Microprocesser mode or Memory expansion mode

When the MCU enters wait mode while operating in memory expansion mode or microprocessor mode, a pin functioning as part of the address or data bus retains it's state on the bus before wait mode is entered. Shift to single-chip mode and output an arbitrary value in order to reduce current consumption. By shifting to single-chip mode, a pin which was functioning as part of the bus becomes a general-purpose port and can output an arbitrary value. Set the port registers and direction registers after shifting to single-chip mode (this implies that any control pins (\overline{CS} , \overline{WR} , \overline{RD} ,etc..) being used for access of an external device be changed as well).

If the port registers and direction registers are set while in memory expansion mode or microprocessor mode, the operation will be ignored.

This is similar when entering stop mode.

Setting procedure is following.

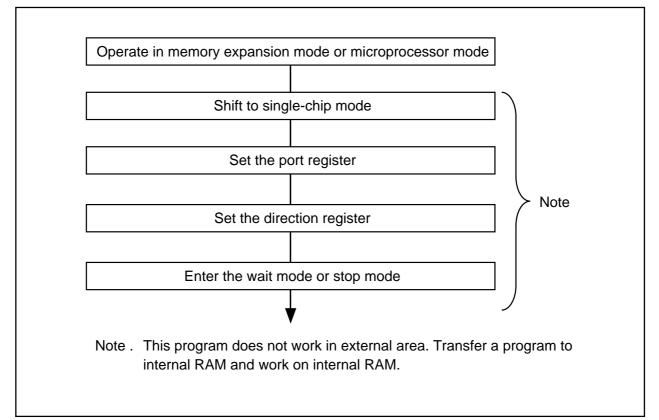


Figure 27.3 Setting procedure of the port register and direction register.

Microprocessor

If the software reset is executed when the CNVss pin is connected to Vcc to start up in microprocessor mode, write at least three NOP instructions following the writing instruction to the PM0 Register.

example:

```
mov.b #02H,PRCRbset 3,PM0; or "mov.b #8BH,PM0" (instruction to execute software reset)nop; write at least three NOP instructionsnopnopnop
```


Flash memory version

Bit 7 and bit 6 of the processor mode register 1 (address 000516) must be set to "112" and this setting should be done when the main clock is divided by 8.

Rewrite program of external ROM version with built-in boot loader

- Do not use interrupts in rewrite program.
- Do not use absolute address jump instructions (JMP.A, JMPI.A) and absolute address subroutine call instructions (JSR.A, JSRI.A) in rewrite program.

28. Electrical characteristics

Table 28.1	Absolute	maximum	ratings
------------	----------	---------	---------

Symbol		Parameter	Condition	Rated value	Unit
Vcc	Supply volta	age	Vcc=AVcc	-0.3 to 6.5	V
AVcc	Analog sup	ply voltage	Vcc=AVcc	-0.3 to 6.5	V
VI	Input voltage	RESET, (maskROM : CNVss, BYTE), P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157, VREF, XIN (Note 1)		-0.3 to Vcc+0.3	V
		P70, P71		-0.3 to 6.5	V
Vo	Output voltage	P00-P07, P10-P17, P20-P27, P30-P37,P40-P47, P50-P57, P60-P67,P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157, XOUT (Note 1)		-0.3 to Vcc+0.3	V
		P70, P71		-0.3 to 6.5	V
Pd	Power dissi	pation	Topr=25 °C	500	mW
Topr	Operating a	ambient temperature		-20 to 85 / -40 to 85 (Note 2)	°C
Tstg	Storage ten	nperature		-65 to 150	°C

Note 1: Port P11 to P15 exist in 144-pin version.

Note 2: Specify a product of -40 to 85°C to use it.

Symbol		Parameter				Standard			
-			Paramete			Min	Тур.	Max.	Unit
Vcc	Supply volt	age				2.7	5.0	5.5	V
AVcc	Analog sup	oply volta	ge				Vcc		V
Vss	Supply vol	tage					0		V
AVss	Analog sup	oply volta	ge				0		V
	HIGH input voltage	P72-P77, P110-P1	P50-P57, P60-P67, P80-P87, P90-P97, P10 14, P120-P127, P <u>130-P1</u> 57 (Note 5), XIN, RESET	37, P140-P14		0.8Vcc		Vcc	V
Viн		P70, P71				0.8Vcc		6.5	V
•			P10-P17, P20-P27, P30 gle-chip mode)	-P37		0.8Vcc		Vcc	V
			P10-P17, P20-P27, P30 t function during memory e		microprocessor modes)	0.5Vcc		Vcc	V
	LOW input voltage	P70-P77, P110-P11	P50-P57, P60-P67, P80-P87, P90-P97, P10 4, P120-P127, P <u>130-P13</u> 57 (Note 5), XIN, RESET	37, P140-P14		0		0.2Vcc	V
VIL			P10-P17, P20-P27, P30 gle-chip mode)	-P37		0		0.2Vcc	V
			P10-P17, P20-P27, P30 t function during memory e		microprocessor modes)	0		0.16Vcc	V
I _{OH (peak)}	HIGH peak current	output	P00-P07, P10-P17, P20 P40-P47, P50-P57, P60 P80-P84, P86, P87, P90 P110-P114, P120-P12 P150-P157 (Note 5)	0-P67, P72-P 0-P97, P100-P	77, 107,			-10.0	mA
I _{OH (avg)}	HIGH avera current	ge output	P00-P07, P10-P17, P20 P40-P47, P50-P57, P60 P80-P84, P86, P87, P90 P110-P114, P120-P12 P150-P157 (Note 5)	0-P67, P72-P 0-P97, P100-F	77, 2107,			-5.0	mA
I OL (peak)	LOW peak output current P00-P07, P10-P17, P20-P27, P30-P37 P40-P47, P50-P57, P60-P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 (Note 5)		77, 2107,			10.0	mA		
I _{OL (avg)}	LOW averaç output curre		P00-P07, P10-P17, P2 P40-P47, P50-P57, P6 P80-P84, P86, P87, P90 P110-P114, P120-P12 P150-P157 (Note 5)	0-P67, P70-P)-P97, P100-F	77, 107,			5.0	mA
f (Xın)	Main clock	input osc	cillation frequency	No wait	Vcc=4.2V to 5.5V	0		20	MHz
					Vcc=2.7V to 4.2V	0		10	MHz
f (Xcin)	Subclock c	scillation	frequency				32.768	50	kHz

Table 28.2 Recommended operating conditions (referenced to $V_{CC} = 2.7V$ to 5.5V at Topr = - 20 to 85°C / - 40 to 85°C (Note3) unless otherwise specified)

Note 1: The mean output current is the mean value within 100ms.

Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA max. The total IOH (peak) for ports P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be -80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7,P80 to P84, P12 and P13 must be 80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P77, P80 to P84, P12 and P13 must be -80mA max.

Note 3: Specify a product of -40 to 85°C to use it.

Note 4: The specification of VIH and VIL of P87 is not when using as XCIN but when using programmable input port.

Note 5: Port P11 to P15 exist in 144-pin version.

Symbol	Parameter		Measurement Condition	Standard			Unit	
Symbol	rai	ameter	iviea:			Тур.	Max.	
-	Resolution		Vref=Vcc				10	Bits
-	Absolute accuracy (10 bits)	Vref=Vcc	ANo to AN7 input ANEX0, ANEX1 input			±3	LSB
			=5V	External op-amp connection mode			±7	LSB
	Absolute accuracy (8 bits)	Vref=Vcc=	=5V			±2	LSB
	Absolute accuracy (8 bits)	Sample & hold function not available	VREF=VCC=3V, Ø AD=fad/2				±2	LSB
RLADDER	Ladder tesistance		VREF=VCC		10		40	kΩ
tCONV	Conversion time (10 bits)	Sample & hold function available	VREF=VCC=5V, Ø AD=10MHz		3.3			μs
tCONV	Conversion time (8 bits)	Sample & hold function available	VREF=VCC=5V, Ø AD=10MHz		2.8			μs
tconv	Conversion time (8 bits)	Sample & hold function not available	VREF=VCC=3V, Ø AD=fad/2=5MHz		9.8			μs
tsamp	Sampling time				0.3			μs
VREF	Reference voltage		VREF=VCC=	=4.2 to 5.5V	2.0			V
V KEF	Reference voltage		VREF=VCC=	=2.7 to 5.5V	2.7			V
Via	Analog input voltage)			0		Vref	V

Table 28.3 A/D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, Vss = AVSS = 0V at Topr = 25°C, f(XIN)=20MHz unless otherwise specified)

Note 1: DO f(XIN) in range of main clock input oscillation frequency prescribed with recommended operating conditions of table 28.2. Divide the fAD if f(XIN) exceeds 10 MHz, and make AD operation clock frequency (ØAD) equal to or lower than 10 MHz. And divide the fAD if VCC is less than 4.2V, and make AD operation clock frequency (ØAD) equal to or lower than fAD/2.

Note 2 : A case without sample & hold function turn AD operation clock frequency (ØAD) into 250 kHz or more in addition to a limit of Note 1.

Note 3 : Connect AVcc pin to Vcc pin and apply the same electric potential.

Table 28.4 D/A conversion characteristics (referenced to VCC = VREF = 5V, Vss = AVSS = 0V at Topr = 25°C, f(XIN)=20MHz unless otherwise specified)

Question	Deremeter		5	ا ا سا ا		
Symbol	Parameter	Measuring condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
t su	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
L	Deference never eventy input evenent	VREF = VCC = 5V(Note 1)			1.5	mA
IVREF	Reference power supply input current	VREF = VCC = 3V(Note 1)			1.0	mA

Note 1: This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "0016".

The A/D converter's ladder resistance is not included.

Also, when D/A register contents are not "0016" the current IVREF always flows even though Vref may have been set to be unconnected by the A/D control register.

$V_{\rm CC} = 5V$

Table 28.5 Electrical characteristics (referenced to VCC=5V, VSS=0V at Topr=25°C, f(XIN)=20MHZ unless otherwise specified)

0		D- i				Standa	rd	
Symbol		Parameter		Measuring condition	Min	Тур.	Max.	Unit
Vон	voltage	P50-P57, P60-P67, P72 P90-P97, P100-P107, P P130-P137, P140-P146	, P150-P157 (Note 1)	Іон= - 5mA, Vcc=5.0V	3.0			v
Vон	HIGH output voltage	P00-P07, P10-P17, P20 P50-P57, P60-P67, P72 P90-P97, P100-P107, P P130-P137, P140-P146		Іон= - 200µА, Vcc=5.0V	4.7			v
	HIGH output	Хоит	HIGHPOWER	Іон= - 1mA, Vcc=5.0V	3.0			v
Vон	voltage	X001	LOWPOWER	Iон= - 0.5mA, Vcc=5.0V	3.0			v
	HIGH output	Хсоит	HIGHPOWER	With no load applied, Vcc=5.0V		3.0		v
Vol	voltage LOW output voltage			With no load applied, Vcc=5.0V		1.6	2.0	v
Vol	LOW output voltage	P00-P07, P10-P17, P20	-P27, P30-P37, P40-P47, -P77, P80-P84, P86, P87, P110-P114, P120-P127,	Ιο∟=200μΑ, Vcc=5.0V			0.45	v
Vol	LOW output	Хоит	HIGHPOWER	IoL=1mA, Vcc=5.0V			2.0	
VOL	voltage		LOWPOWER	Iol=0.5mA, Vcc=5.0V			2.0	V
	LOW output	Хсоит	HIGHPOWER	With no load applied, Vcc=5.0V		0		
	voltage	70001	LOWPOWER	With no load applied, Vcc=5.0V		0		V
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN-TA INT0-INT5, ADTRG, CT TA00UT-TA40UT, NMI, I SCL2-SCL4, SDA2-SDA	So-CTS4, CLK0-CLK4, Klo-Kl3,RxD0-RxD4,	Vcc=5.0V	0.2		1.0	v
VT+-VT-	Hysteresis	RESET		Vcc=5.0V	0.2		1.8	V
Іін	current	P90-P97,P100-P107, P	-P67, P70-P77, P80-P87, 110-P114, P140-P146, P150-P157,	VI=5V, Vcc=5.0V			5.0	μA
Ι _{IL}	current	P90-P97, P100-P107, P1	P67, P70-P77, P80-P87, 10-P114, P140-P146, P150-P157,	VI=0V, Vcc=5.0V			- 5.0	μA
Rpullup	resistance			VI=0V, Vcc=5.0V	30.0	50.0	167.0	kΩ
R _{fXIN}	Feedback res	sistance XIN				1.0		MΩ
R _{fXCIN}		sistance Xcin				6.0		MΩ
V RAM	RAM retentio	n voltage	()(_)	When clock is stopped	2.0			V
		Measuring condition: In single-chip mode, the output	f(XIN)=20MHz Square wave, no division	Mask ROM 128 KB version ROMless RAM 10 KB version(Note 2) Mask ROM 256 KB version ROMMERS RAM 04 (Reversion (Note 2))		45.0 50.0	72.0 80.0	mA
		pins are open and	1	ROMIess RAM 24 KB version (Note 2)		50.0	80.0	-
lcc	Power supply current	other pins are VSS		Flash memory version Mask ROM 128 KB version		50.0 90.0	80.0	
	current		l f(Xcin)=32kHz Square wave	ROMIess RAM 10 KB version(Note 2) Mask ROM 256 KB version		100.0		μA
			 	ROMIess RAM 24 KB version (Note 2)				- A
			f(XCIN)=32kHz_When a	Flash memory version a WAIT instruction is executed		7.0 4.0		mA
			Topr=25°C when clock is stopped	Mask ROM 128 KB version ROMIess RAM 10KB version (Note 2)		4.0	1.0	μΑ μΑ
				Mask ROM 256 KB version ROMIess RAM 24KB version (Note 2)			2.0	
			I	Flash memory version			1.0	
			Topr=85°C when clock	is stopped			20.0	

Note 1: Port P11 to P15 exist in 144-pin version.

Note 2: ROMless version exists in 144-pin version.

Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 28.6 External clock input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc	External clock input cycle time	50		ns
tw(H)	External clock input HIGH pulse width	22		ns
tw(L)	External clock input LOW pulse width	22		ns
tr	External clock rise time		5	ns
tf	External clock fall time		5	ns

Table 28.7 Memory expansion and microprocessor modes

Symbol	Deremeter	Star	ndard	Unit
Symbol	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (RD standard, no wait)		(Note)	ns
tac1(AD-DB)	Data input access time (AD standard, CS standard, no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (RD standard, with wait)		(Note)	ns
tac2(AD-DB)	Data input access time (AD standard, CS standard, with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (RD standard, when accessing multiplex bus area)		(Note)	ns
tac3(AD-DB)	Data input access time (AD standard, CS standard, when accessing multiplex bus area)		(Note)	ns
tac4(RAS-DB)	Data input access time (RAS standard, DRAM access)		(Note)	ns
tac4(CAS-DB)	Data input access time (CAS standard, DRAM access)		(Note)	ns
tac4(CAD-DB)	Data input access time (CAD standard, DRAM access)		(Note)	ns
tsu(DB-BCLK)	Data input setup time	26		ns
tsu(RDY-BCLK)	RDY input setup time	26		ns
tsu(HOLD-BCLK)	HOLD input setup time	30		ns
th(RD-DB)	Data input hold time	0		ns
th(CAS -DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		25	ns

Note: Calculated according to the BCLK frequency as follows:

Note that inserting wait or using lower operation frequency f(BCLK) is needed when calculated value is negative.

$$tac1(RD - DB) = \frac{10^9}{f(BCLK) X 2} - 35 \quad [ns]$$

$$tac1(AD - DB) = \frac{10^9}{f(BCLK)} - 35 \quad [ns]$$

$$tac2(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35 \quad [ns] (m=3, 5 and 7 when 1 wait, 2 wait and 3 wait, respectively)$$

$$tac2(AD - DB) = \frac{10^9 X n}{f(BCLK)} - 35 \quad [ns] (n=2, 3 and 4 when 1 wait, 2 wait and 3 wait, respectively)$$

$$tac3(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35 \quad [ns] (m=3 and 5 when 2 wait and 3 wait, respectively)$$

$$tac3(AD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35 \quad [ns] (n=5 and 7 when 2 wait and 3 wait, respectively)$$

$$tac4(RAS - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35 \quad [ns] (m=3 and 5 when 1 wait and 2 wait, respectively)$$

$$tac4(CAS - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 35 \quad [ns] (n=1 and 3 when 1 wait and 2 wait, respectively)$$

$$tac4(CAD - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 35 \quad [ns] (n=1 and 3 when 1 wait and 2 wait, respectively)$$

Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 28.8 Timer A input (counter input in event counter mode)

	Demonster	Star	ndard	11.34
Symbol Parameter		Min.	Max.	Unit
tc(TA)	TAilN input cycle time	100		ns
tw(TAH)	TAilN input HIGH pulse width	40		ns
tw(TAL)	TAilN input LOW pulse width	40		ns

Table 28.9 Timer A input (gating input in timer mode)

	bol Parameter		dard	11.21
Symbol			Max.	Unit
tc(TA)	TAil input cycle time	400		ns
tw(TAH)	TAilN input HIGH pulse width	200		ns
tw(TAL)	TAilN input LOW pulse width	200		ns

Table 28.10 Timer A input (external trigger input in one-shot timer mode)

Symbol	Deremeter	Standard		Linit	
	Parameter	Min.	Max.	Unit	
tc(TA)	TAilN input cycle time	200		ns	
tw(TAH)	TAilN input HIGH pulse width	100		ns	
tw(TAL)	TAilN input LOW pulse width	100		ns	

Table 28.11 Timer A input (external trigger input in pulse width modulation mode)

Cumhal	Deremeter	Stan	dard	ا ایم ا
Symbol	Parameter	Min.	Max.	Unit
tw(TAH)	TAilN input HIGH pulse width	100		ns
tw(TAL)	TAilN input LOW pulse width	100		ns

Table 28.12 Timer A input (up/down input in event counter mode)

Symbol	Parameter	Standard		1.1	
		Min.	Max.	Unit	
tc(UP)	TAiout input cycle time	2000		ns	
tw(UPH)	TAIOUT input HIGH pulse width	1000		ns	
tw(UPL)	TAIOUT input LOW pulse width	1000		ns	
tsu(UP-TIN)	TAiout input setup time	400		ns	
th(TIN-UP)	TAiOUT input hold time	400		ns	

Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 28.13 Timer B input (counter input in event counter mode)

Civing had	Deservator	Stan	dard	1.1
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBilN input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBilN input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBiln input cycle time (counted on both edges)	200		ns
tw(TBH)	TBilN input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBilN input LOW pulse width (counted on both edges)	80		ns

Table 28.14 Timer B input (pulse period measurement mode)

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(TB)	TBilN input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 28.15 Timer B input (pulse width measurement mode)

Symbol	Derometor	Standard Min. Max.	dard	Unit
	Parameter		Unit	
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 28.16 A/D trigger input

Symbol Parameter	Standard		Unit	
Symbol	Faidmelei	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 28.17 Serial I/O

Symbol	Parameter	Standard		Unit
Symbol	Farameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(C-D)	RxDi input hold time	90		ns

Table 28.18 External interrupt INTi inputs

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C unless otherwise specified)

Ourseland		Measuring condition	Stand	dard	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		-3		ns
th(RD-CS)	Chip select output hold time (RD standard)	-	0		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time	Figure 28.1		18	ns
th(BCLK-ALE)	ALE signal output hold time	_	- 2		ns
td(BCLK-RD)	RD signal output delay time	_		10	ns
th(BCLK-RD)	RD signal output hold time	_	-5		ns
td(BCLK-WR)	WR signal output delay time	_		18	ns
th(BCLK-WR)	WR signal output hold time	_	-3		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
tw(WR)	WR signal width		(Note 1)		ns

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) X 2} - 15 \text{ [ns]}$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C unless otherwise specified)

Table 28.20 Memory expansion mode and microprocessor mode (with wait, accessing external memory)

		Measuring condition	Stan	Standard	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		- 3		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)	_	(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)	_	- 3		ns
th(RD-CS)	Chip select output hold time (RD standard)	_	0		ns
th(WR-CS)	Chip select output hold time (WR standard)	_	(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time	Figure 28.1		18	ns
th(BCLK-ALE)	ALE signal output hold time	_	- 2		ns
td(BCLK-RD)	RD signal output delay time	_		10	ns
th(BCLK-RD)	RD signal output hold time	_	- 5		ns
td(BCLK-WR)	WR signal output delay time	_		18	ns
th(BCLK-WR)	WR signal output hold time		- 3		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
tw(WR)	WR signal width		(Note 1)		ns

$$td(DB - WR) = \frac{10^9 X n}{f(BCLK)} - 20 \quad [ns] \text{ (n=1, 2 and 3 when 1 wait, 2 wait and 3 wait, respectively)}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns]$$

$$tw(WR) = \frac{10^9 X n}{f(BCLK) X 2} - 15 \quad [ns] \text{ (n=1, 3 and 5 when 1 wait, 2 wait and 3 wait, respectively)}$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C unless otherwise specified)

	(with wait, accessing external memory, m	uitiplex bus area	selecte	a)	
Cumhal	Deverseter	Measuring condition	Standard		1.1
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns
th(RD-AD)	Address output hold time (RD standard)		(Note 1)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		-3		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note 1)		ns
td(BCLK-RD)	RD signal output delay time	Figure 28.1		18	ns
th(BCLK-RD)	RD signal output hold time		-5		ns
td(BCLK-WR)	WR signal output delay time	_		18	ns
th(BCLK-WR)	WR signal output hold time		-3		ns
td(DB-WR)	Data output delay time (WR standard)	_	(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		- 2		ns
td(AD-ALE)	ALE signal output delay time (address standard)		(Note 1)		ns
th(ALE-AD)	ALE signal output hold time (address standard)		(Note 1)		ns
tdz(RD-AD)	Address output flowting start time			8	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		-5		ns

Table 28.21 Memory expansion mode and microprocessor mode (with wait accessing external memory, multiplex bus area selected)

$$\begin{aligned} th(RD - AD) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(WR - AD) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(RD - CS) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(RD - CS) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(WR - CS) &= \frac{10^9 X m}{f(BCLK) X 2} - 25 \quad [ns] \quad (m=3 \text{ and } 5 \text{ when } 2 \text{ wait and } 3 \text{ wait, respectively}) \\ td(DB - WR) &= \frac{10^9 X m}{f(BCLK) X 2} - 25 \quad [ns] \quad (m=3 \text{ and } 5 \text{ when } 2 \text{ wait and } 3 \text{ wait, respectively}) \\ th(WR - DB) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ td(AD - ALE) &= \frac{10^9}{f(BCLK) X 2} - 23 \quad [ns] \\ th(ALE - AD) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \end{aligned}$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C unless otherwise specified)

Table 28.22 Memory expansion mode and microprocessor mode (with wait, accessing external memory, DRAM area selected)

Symbol	Parameter	Measuring condition	Standard		
			Min.	Max.	Unit
td(BCLK-RAD)	Row address output delay time	Figure 28.1		18	ns
th(BCLK-RAD)	Row address output hold time (BCLK standard)		-3		ns
td(BCLK-CAD)	String address output delay time			18	ns
th(BCLK-CAD)	String address output hold time (BCLK standard)		-3		ns
th(RAS-RAD)	Row address output hold time after RAS output		(Note 1)		ns
td(BCLK-RAS)	RAS output delay time (BCLK standard)			18	ns
th(BCLK-RAS)	RAS output hold time (BCLK standard)		-3		ns
tRP	RAS "H" hold time		(Note 1)		ns
td(BCLK-CAS)	CAS output delay time (BCLK standard)			18	ns
th(BCLK-CAS)	CAS output hold time (BCLK standard)		-3		ns
td(BCLK-DW)	Data output delay time (BCLK standard)			18	ns
th(BCLK-DW)	Data output hold time (BCLK standard)		-5		ns
tsu(DB-CAS)	CAS after DB output setup time		(Note 1)		ns
th(BCLK-DB)	DB signal output hold time (BCLK standard)		-7		ns
tsu(CAS-RAS)	CAS before RAS setup time (refresh)		(Note 1)		ns

$$th(RAS - RAD) = \frac{10^9}{f(BCLK) X 2} - 13 \text{ [ns]}$$

$$tRP = \frac{10^9 X 3}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$tsu(DB - CAS) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$tsu(CAS - RAS) = \frac{10^9}{f(BCLK) X 2} - 13 \text{ [ns]}$$

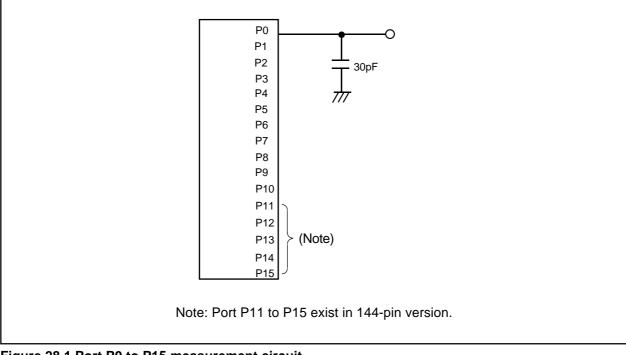


Figure 28.1 Port P0 to P15 measurement circuit

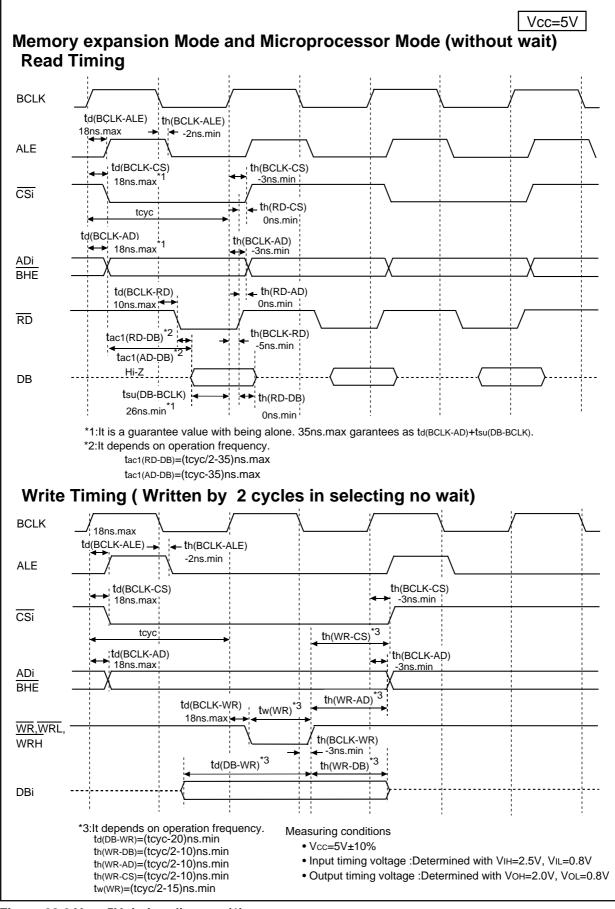


Figure 28.2 Vcc=5V timing diagram (1)

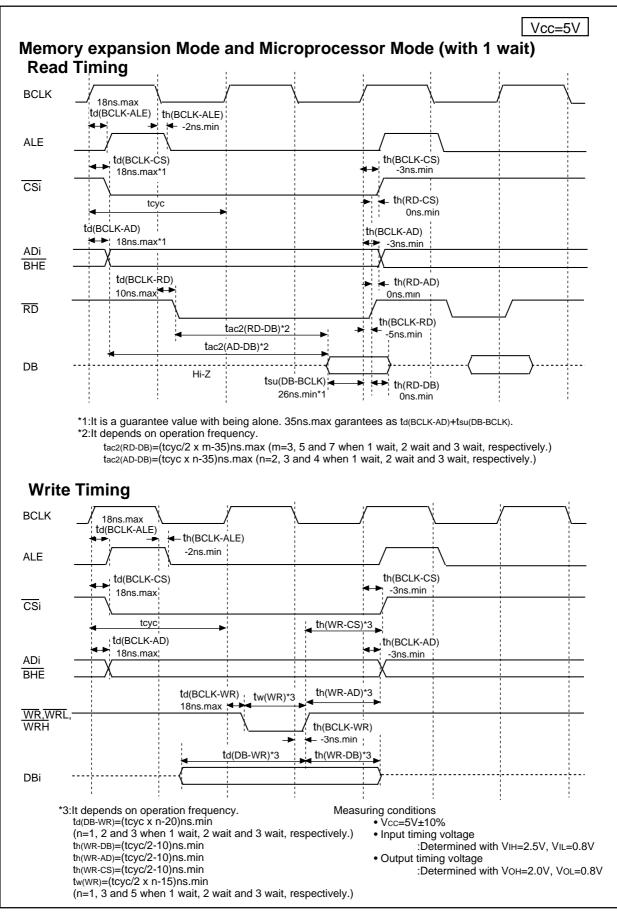


Figure 28.3 Vcc=5V timing diagram (2)

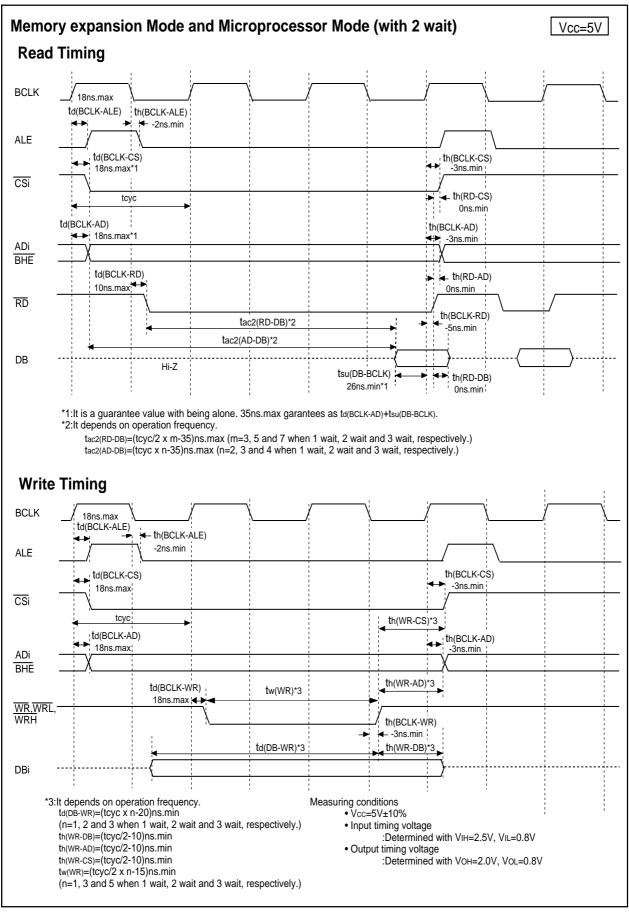


Figure 28.4 Vcc=5V timing diagram (3)

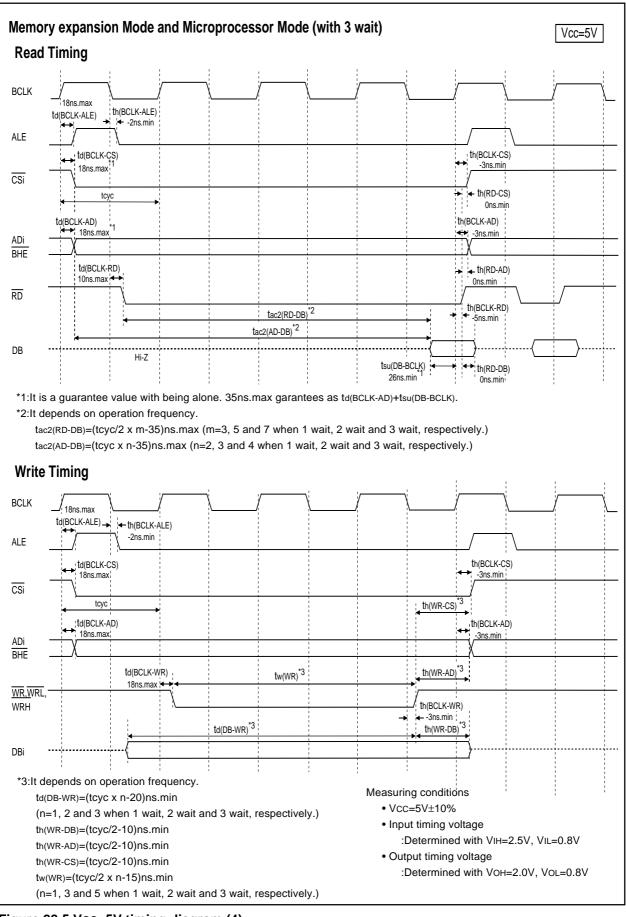


Figure 28.5 Vcc=5V timing diagram (4)

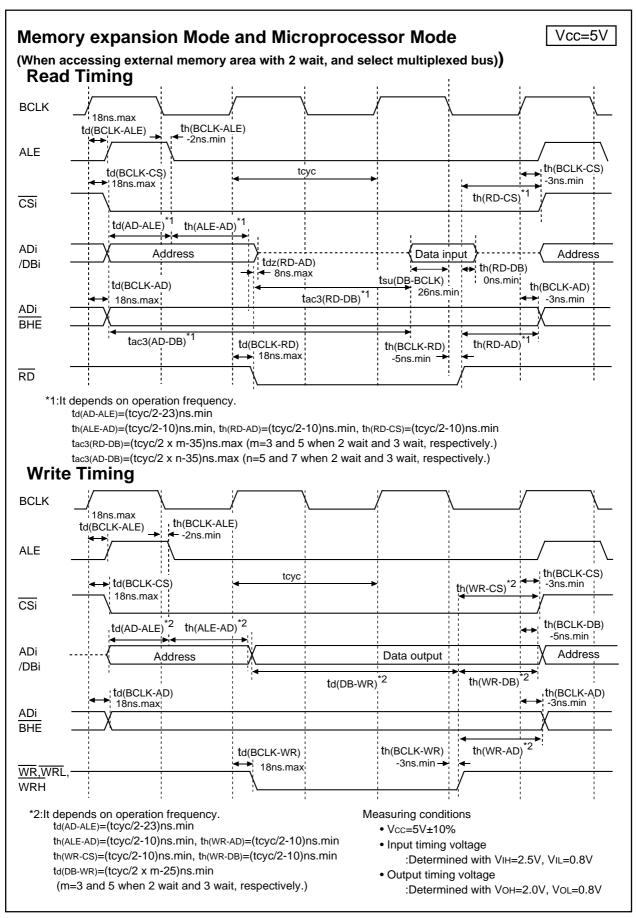


Figure 28.6 Vcc=5V timing diagram (5)

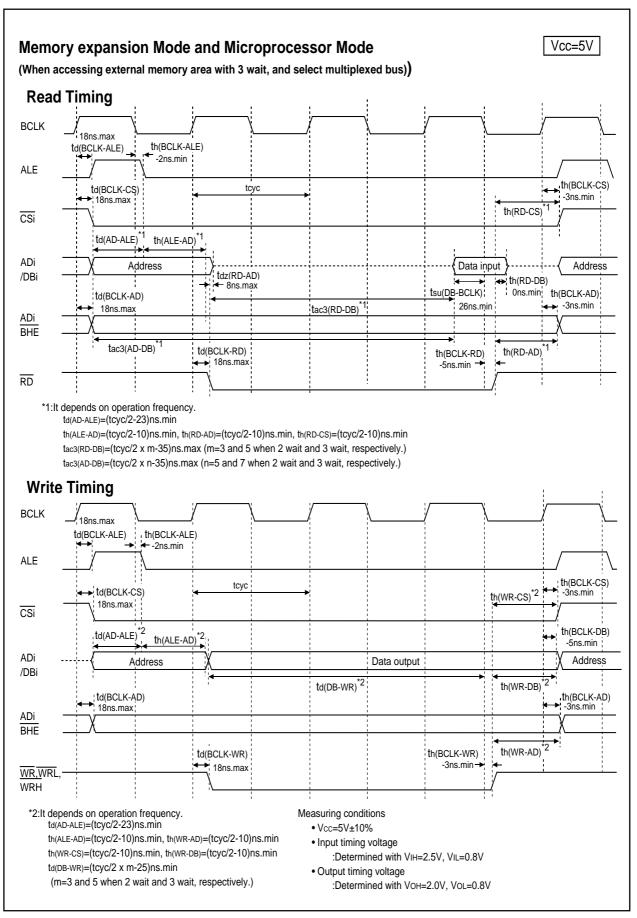
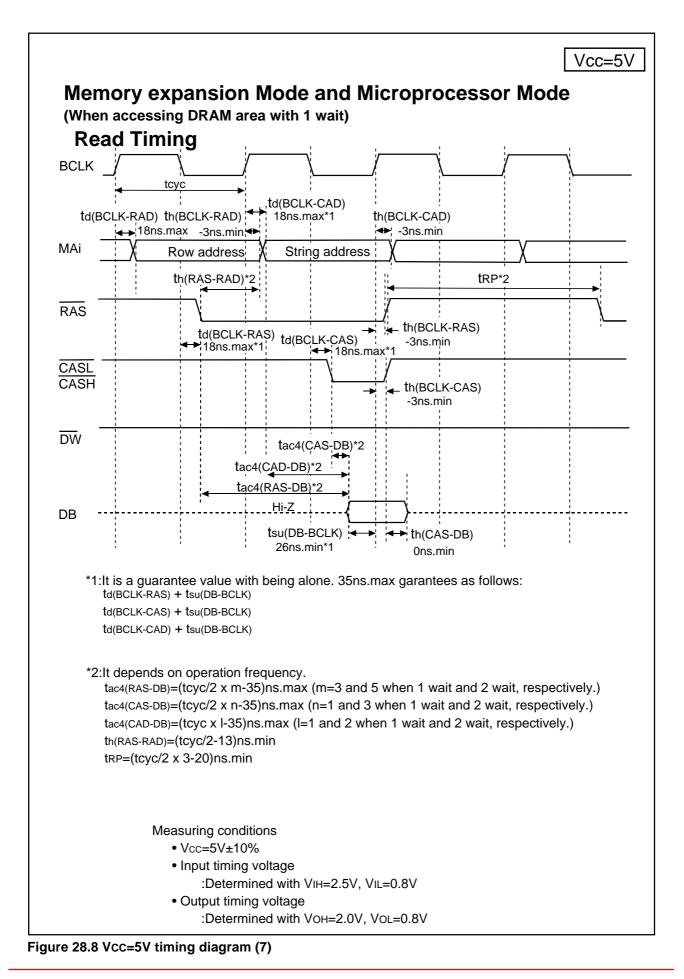



Figure 28.7 Vcc=5V timing diagram (6)

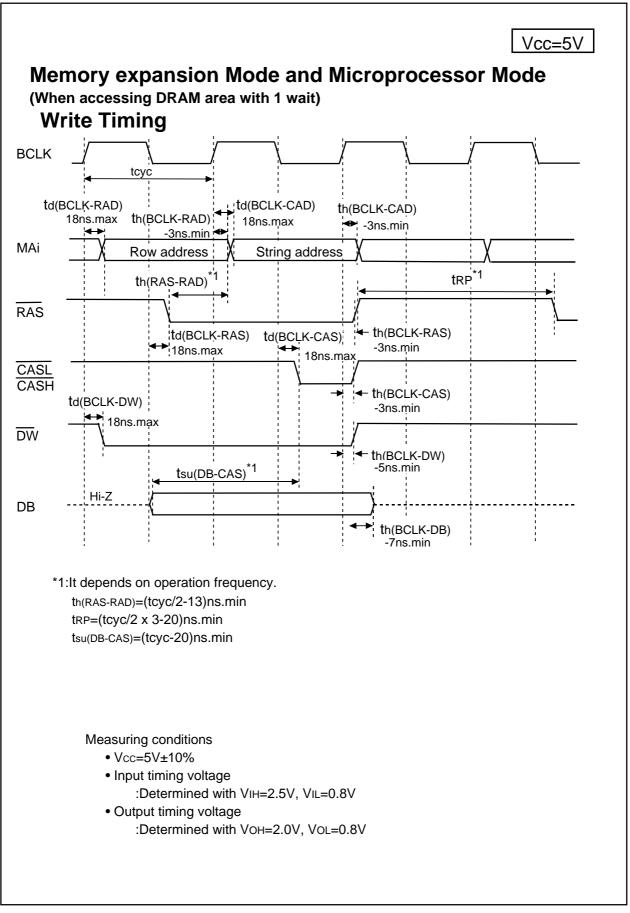


Figure 28.9 Vcc=5V timing diagram (8)

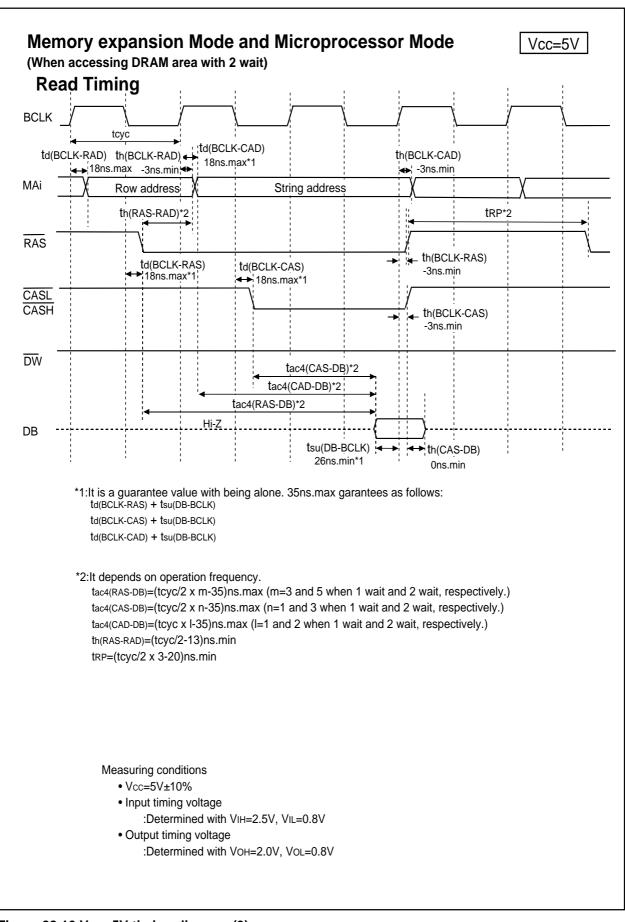
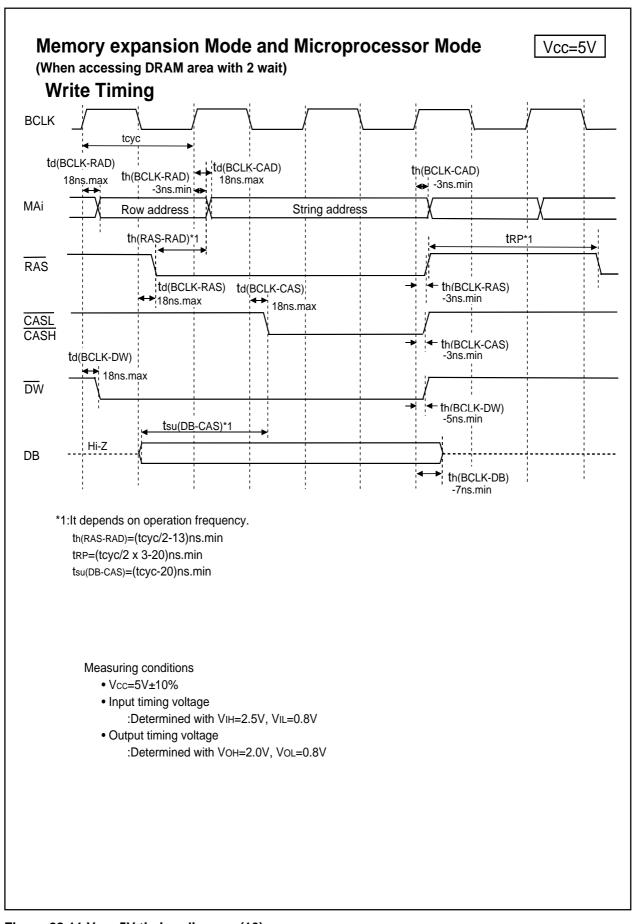



Figure 28.10 Vcc=5V timing diagram (9)

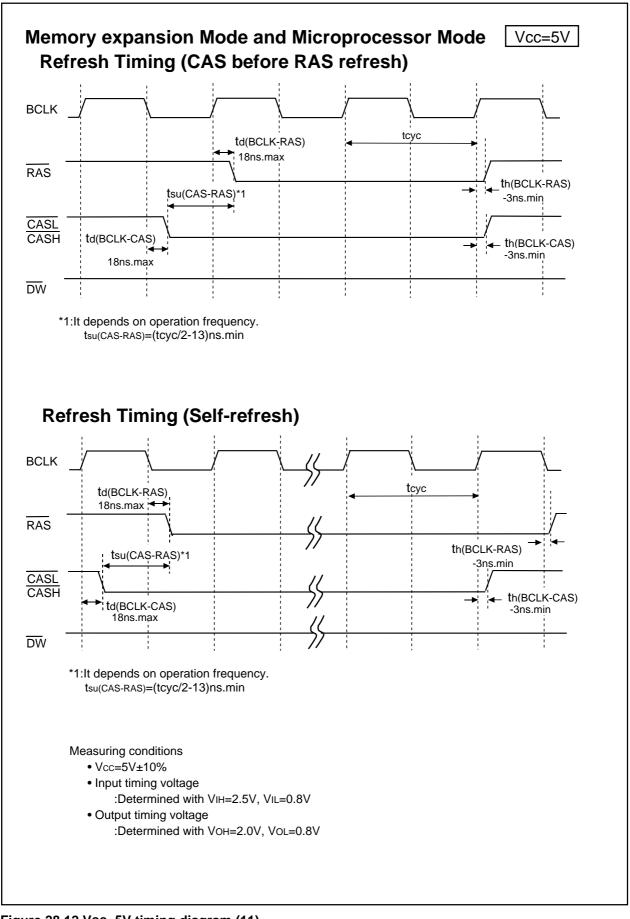


Figure 28.12 Vcc=5V timing diagram (11)

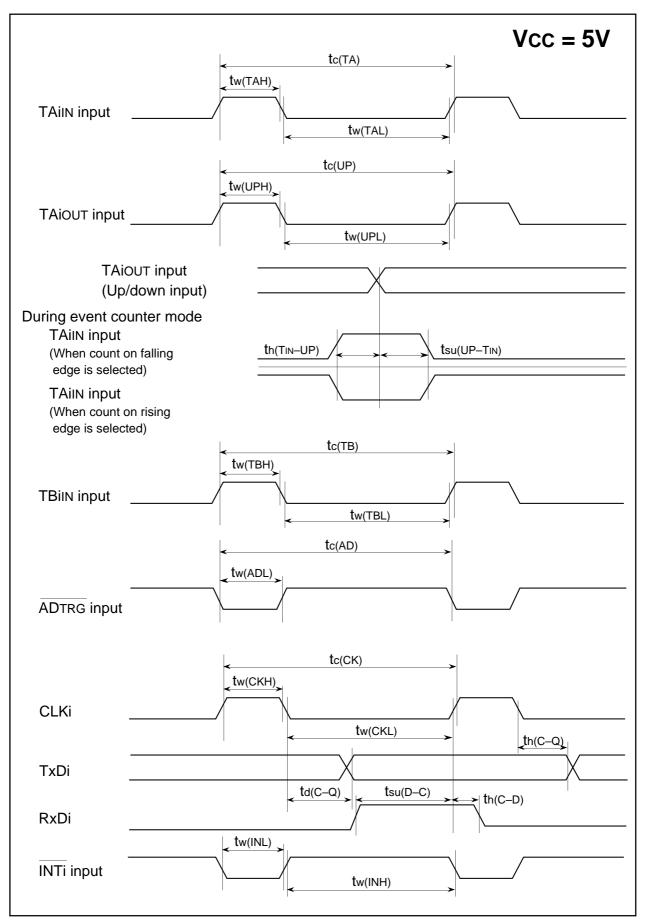
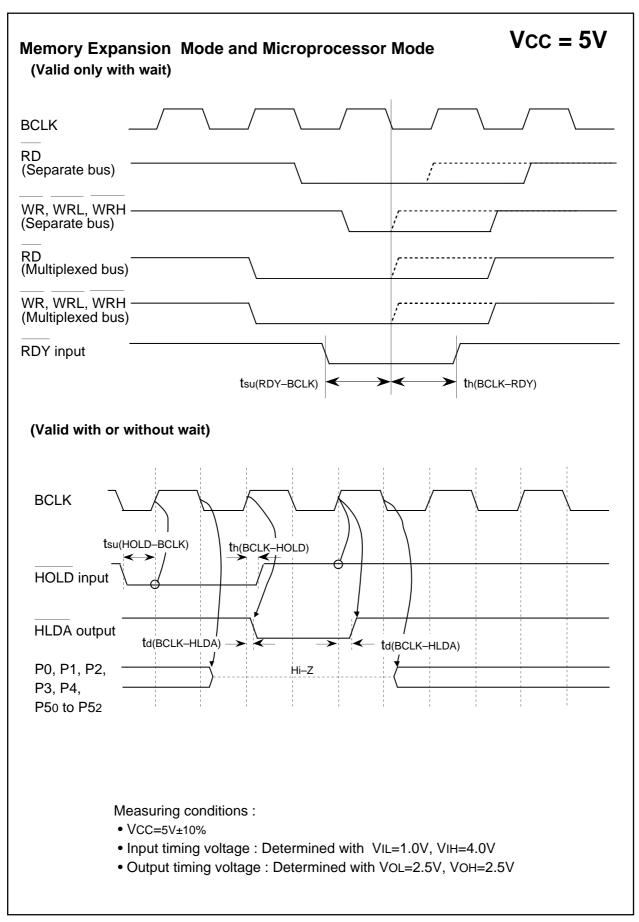




Figure 28.13 Vcc=5V timing diagram (12)

Electrical characteristics (Vcc = 3V)

VCC = 3V

Table 28.23 Electrical characteristics (referenced to VCC = 3V, VSS = 0V at Topr = 25°C, f(XIN) = 10MHz unless otherwise specified)

Symbol		Parameter		Measuring condition	S Min	Standard Typ.	d Max.	Unit
Vон	HIGH output voltage	P00-P07,P10-P17,P20- P30-P37,P40-P47,P50- P60-P67,P72-P77,P80- P86,P87,P90-P97,P10 P110-P114, P120-P12 P140-P146, P150-P15	P57, P84, o-P107, 7,P130-P137,	Іон= - 1mA , Vcc = 3.0V	2.5			v
	HIGH output	Vour	HIGHPOWER	Iон= - 0.1 mA , Vcc = 3.0V	2.5			
Vон	voltage	Xout	LOWPOWER	Іон= - 50 µА , Vcc = 3.0V	2.5			V
VOH	HIGH output	Хсоит	HIGHPOWER	With no load applied , Vcc = 3.0V		3.0		v
	voltage	10001	LOWPOWER	With no load applied , Vcc = 3.0V		1.6		· ·
Vol	LOW output voltage	P00-P07,P10-P17,P20 P30-P37,P40-P47,P50 P60-P67,P70-P77,P80 P86,P87,P90-P97,P10 P110-P114, P120-P12 P140-P146, P150-P15	-P57, -P84, 0-P107 7,P130-P137,	IoL=1mA , Vcc = 3.0V			0.5	v
Vol	LOW output	Хоит	HIGHPOWER	IOL=0.1mA , VCC = 3.0V			0.5	
VOL	voltage	X001	LOWPOWER	IoL=50μA , Vcc = 3.0V			0.5	V
	LOW output	Хсоит	HIGHPOWER	With no load applied , Vcc = 3.0V		0		
	voltage	XCOUT	LOWPOWER	With no load applied , Vcc = 3.0V		0		V
VT+-VT-		IOLD, RDY, TA0IN-TA2 BOIN-TB2IN, INT0-INT5 TS0-CTS4,CLK0-CLK4 IMI, KI0-KI3, RXD0-RXE SCL2-SCL4, SDA2-SDA	, А́Dtrg, ,ТА2оит-ТА4оит, 94,	Vcc = 3.0V	0.2		1.0	v
VT+-VT-	Hysteresis	RESET		Vcc = 3.0V	0.2		1.8	V
Іін	HIGH input current	P00-P07,P10-P17,P20- P30-P37,P40-P47,P50- P60-P67,P70-P77,P80- P90-P97,P100-P107,P P120-P127,P130-P137 P150-P157 (Note 1) XIN, RESET, CNVSs, I	P57, P87, 110-P114, , P140-P146,	VI=3V , Vcc = 3.0V			4.0	μA
I IL	LOW input current	P00-P07,P10-P17,P20- P30-P37,P40-P47,P50- P60-P67,P70-P77,P80- P90-P97,P100-P107,P P120-P127,P130-P137 P150-P157 (Note 1) XIN, RESET, CNVSs, I	P57, P87, 110-P114, , P140-P146,	Vi=0V , Vcc = 3.0V			- 4.0	μA
Rpullup	Pull-up resistance	P00-P07,P10-P17,P20- P30-P37,P40-P47,P50- P60-P67,P72-P77,P80- P86,P87,P90-P97,P100 P110-P114, P120-P122 P140-P146, P150-P157	P27, P57, P84, I-P107 7,P130-P137,	VI=0V , Vcc = 3.0V	66.0	120.0	500.0	kΩ
R _{fXIN}	Feedback res	istance XIN				3.0		MΩ
R _{fXCIN}	Feedback res	istance Xcin				10.0		MΩ
V RAM	RAM retentior	n voltage		When clock is stopped	2.0			V
		In single-chip mode, the output	f(XIN)=10MHz Square wave, no division	Mask ROM 128 KB version ROMless RAM 10 KB version (Note 2)		12.0	20.0	mA
		pins are open and other pins are VSS		Mask ROM 256 KB version ROMless RAM 24 KB version (Note 2)		14.0	23.0	
				Flash memory version		14.0	23.0	
Icc	Power supply current	/	f(XCIN)=32kHz Square wave	Mask ROM 128 KB version ROMless RAM 10 KB version (Note 2) Mask ROM 256 KB version ROMless RAM 24 KB version (Note 2)		45.0 60.0		μA
		!		Flash memory version		3.5		mA
								μΑ
			f(XCIN)=32kHz When a WAIT instruc Oscillation drive capa			3.0		
			When a WAIT instruc	acity is High. tion is executed. acity is Low.		3.0 1.5		
			When a WAIT instruc Oscillation drive capa f(XCIN)=32kHz When a WAIT instruc Oscillation drive capa Topr=25°C, when	ucity is High. tion is executed. icity is Low. Mask ROM 128 KB version ROMless RAM 10 KB version (Note 2)			1.0	
			When a WAIT instruct Oscillation drive capa f(XCIN)=32kHz When a WAIT instruct Oscillation drive capa	ucity is High. tion is executed. icity is Low. Mask ROM 128 KB version			1.0 1.0 1.0	μΑ μΑ

Note 1: Ports P11 to P15 exist in 144-pin version.

Note 2: ROMless version exists in 144-pin version.

Unit ns ns ns ns ns

VCC = 3V

Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = 25°C unless otherwise specified)

Symbol	Parameter	Stan	dard	
Symbol	Falailletei	Min.	Max.	
tc	External clock input cycle time	100		
tw(H)	External clock input HIGH pulse width	40		
tw(L)	External clock input LOW pulse width	40		
tr	External clock rise time		18	
tf	External clock fall time		18	

Table 28.24 External clock input

Table 28.25 Memory expansion and microprocessor modes

Symbol	Parameter	Star	ndard	Unit
Symbol	Faidinetei	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (RD standard, no wait)		(Note)	ns
tac1(AD-DB)	Data input access time (AD standard, CS standard, no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (RD standard, with wait)		(Note)	ns
tac2(AD-DB)	Data input access time (AD standard, CS standard, with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (RD standard, when accessing multiplex bus area)		(Note)	ns
tac3(AD-DB)	Data input access time (AD standard, CS standard, when accessing multiplex bus area)		(Note)	ns
tac4(RAS-DB)	Data input access time (RAS standard, DRAM access)		(Note)	ns
tac4(CAS-DB)	Data input access time (CAS standard, DRAM access)		(Note)	ns
tac4(CAD-DB)	Data input access time (CAD standard, DRAM access)		(Note)	ns
tsu(DB-BCLK)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	60		ns
tsu(HOLD-BCLK)	HOLD input setup time	80		ns
th(RD-DB)	Data input hold time	0		ns
th(CAS-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		100	ns

Note: Calculated according to the BCLK frequency as follows:

Note that inserting wait or using lower operation frequency f(BCLK) is needed when calculated value is negative.

$tac1(RD - DB) = \frac{10^9}{f(BCLK) X 2} - 42$	[ns]
$tac1(AD - DB) = \frac{10^9}{f(BCLK)} - 55$	[ns]
$tac2(RD - DB) = \frac{10^{9}X m}{f(BCLK) X 2} - 42$	[ns] (m=3, 5 and 7 when 1 wait, 2 wait and 3 wait, respectively)
(BOEN)	[ns] (n=2, 3 and 4 when 1 wait, 2 wait and 3 wait, respectively)
$tac3(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 55$	[ns] (m=3 and 5 when 2 wait and 3 wait, respectively)
.(202) / . 2	[ns] (n=5 and 7 when 2 wait and 3 wait, respectively)
$tac4(RAS - DB) = \frac{10^{9} X m}{f(BCLK) X 2} - 55$	[ns] (m=3 and 5 when 1 wait and 2 wait, respectively)
$tac4(CAS - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 55$	[ns] (n=1 and 3 when 1 wait and 2 wait, respectively)
$tac4(CAD - DB) = \frac{10^9 \text{X I}}{f(BCLK)} - 55$	[ns] (I=1 and 2 when 1 wait and 2 wait, respectively)

Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 28.26 Timer A input (counter input in event counter mode)

Symbol	Parameter	Standard Min. Max.	dard	Unit
	Falameter		Unit	
tc(TA)	TAin input cycle time	150		ns
tw(TAH)	TAilN input HIGH pulse width	60		ns
tw(TAL)	TAilN input LOW pulse width	60		ns

Table 28.27 Timer A input (gating input in timer mode)

Symbol	Parameter	Star	ndard	Unit
	Falameter	Min. Max.	Max.	Unit
tc(TA)	TAin input cycle time	600		ns
tw(TAH)	TAilN input HIGH pulse width	300		ns
tw(TAL)	TAin input LOW pulse width	300		ns

Table 28.28 Timer A input (external trigger input in one-shot timer mode)

Symbol	Deventer	Star	dard	ال من ا
	Parameter	Min. Max.	Unit	
tc(TA)	TAil input cycle time	300		ns
tw(TAH)	TAilN input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 28.29 Timer A input (external trigger input in pulse width modulation mode)

Quarter	Demonster	Stand	ndard	11.2
Symbol	Parameter	Min.	Max.	Unit
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 28.30 Timer A input (up/down input in event counter mode)

Symbol	Deremeter	Stand	ndard	l lait
	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 28.31 Timer B input (counter input in event counter mode)

Symbol	Deremeter	Stand	ndard	Unit
	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
t w(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	160		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	160		ns

Table 28.32 Timer B input (pulse period measurement mode)

Symbol	Parameter	Star	ndard	Unit
Symbol		Min. Max.	Onit	
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 28.33 Timer B input (pulse width measurement mode)

Symbol	Parameter	Stan	dard	Unit
	T drameter	Min. Max.	Offic	
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 28.34 A/D trigger input

Symbol	Parameter	Standard		Unit
Cymbol	i uramotor	Min.	Max.	Onit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 28.35 Serial I/O

Symbol	Parameter		Standard	
Symbol	T didifición		Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	50		ns
th(C-D)	RxDi input hold time	90		ns

Table 28.36 External interrupt INTi inputs

Svmbol	Parameter	Standard		Unit
Cymbol	T drameter	Min.	Max.	Offic
tw(INH)	INTi input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = 25°C unless otherwise specified)

Table 28.37 Memory expansion and microprocessor modes (with no wait)
--

	D	Magazinia a condition	Stan	dard	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		0		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time		25	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		0		ns
th(RD-CS)	Chip select output hold time (RD standard)	Figure 00.4	0		ns
th(WR-CS)	Chip select output hold time (WR standard)	Figure 28.1	(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time		- 2		ns
td(BCLK-RD)	RD signal output delay time			10	ns
th(BCLK-RD)	RD signal output hold time	_	- 3		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
tw(WR)	WR signal width		(Note 1)		ns

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 40 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = 25°C unless otherwise specified)

Table 28.38 Memory expansion and microprocessor modes (with wait, accessing external memory)

	5	Magazinia a socialitica	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		0		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)	0		ns	
th(RD-CS)	Chip select output hold time (RD standard)	Figure 28.1	0		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time		-2		ns
td(BCLK-RD)	RD signal output delay time			10	ns
th(BCLK-RD)	RD signal output hold time		- 3		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
tw(WR)	WR signal width		(Note 1)		ns

$$td(DB - WR) = \frac{10^{9} X n}{f(BCLK)} - 40$$
 [ns] (n=1, 2 and 3 when 1 wait, 2 wait and 3 wait, respectively)

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) X 2} - 20$$
 [ns]

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) X 2} - 20$$
 [ns]

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) X 2} - 20$$
 [ns]

$$tw(WR) = \frac{10^{9} X n}{f(BCLK) X 2} - 20$$
 [ns]

$$tw(WR) = \frac{10^{9} X n}{f(BCLK) X 2} - 20$$
 [ns] (n=1, 3 and 5 when 1 wait, 2 wait and 3 wait, respectively)

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = 25°C unless otherwise specified)

Table 28.39 Memory expansion and microprocessor modes (with wait, accessing external memory, multiplex bus area selected)

			Stan	dard	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		0		ns
th(RD-AD)	Address output hold time (RD standard)		(Note 1)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		0		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (WR standard)	Eisuna 00.4	(Note 1)		ns
td(BCLK-RD)	RD signal output delay time	Figure 28.1		25	ns
th(BCLK-RD)	RD signal output hold time		- 3		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			25	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		-2		ns
td(AD-ALE)	ALE signal output delay time (address standard)		(Note 1)		ns
th(ALE-AD)	ALE signal output hold time (address standard)		(Note 1)		ns
tdz(RD-AD)	Address output flowting start time			8	ns
th(BCLK-DB)	DB signal output hold time (BCLK standard)		0		ns

$$th(RD - AD) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$th(RD - CS) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$td(DB - WR) = \frac{10^9 X \text{ m}}{f(BCLK) X 2} - 40 \text{ [ns]} \text{ (m=3 and 5 when 2 wait and 3 wait, respectively)}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

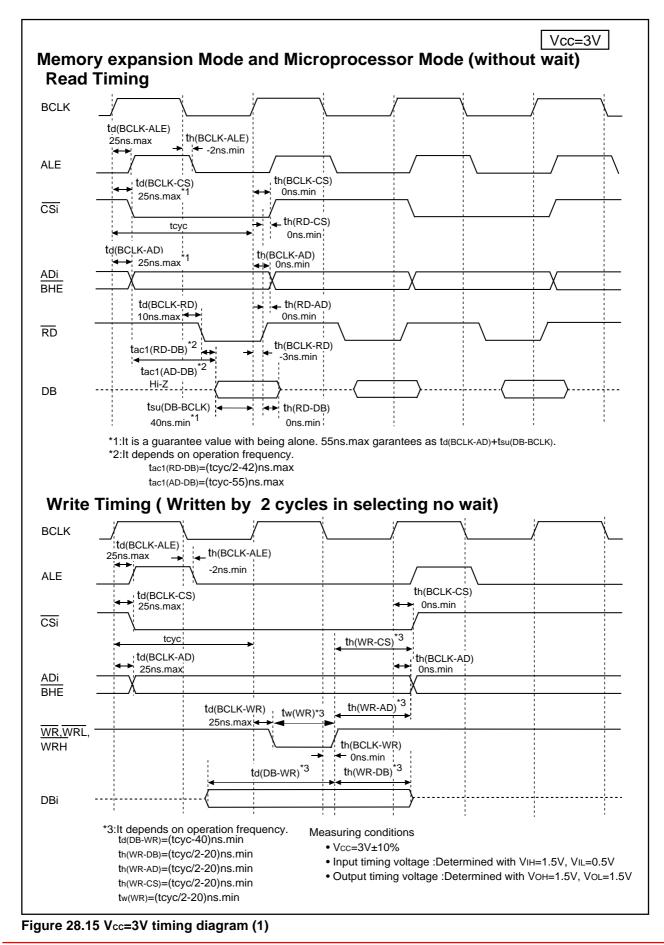
$$td(AD - ALE) = \frac{10^9}{f(BCLK) X 2} - 27 \text{ [ns]}$$

$$th(ALE - AD) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = 25°C unless otherwise specified)

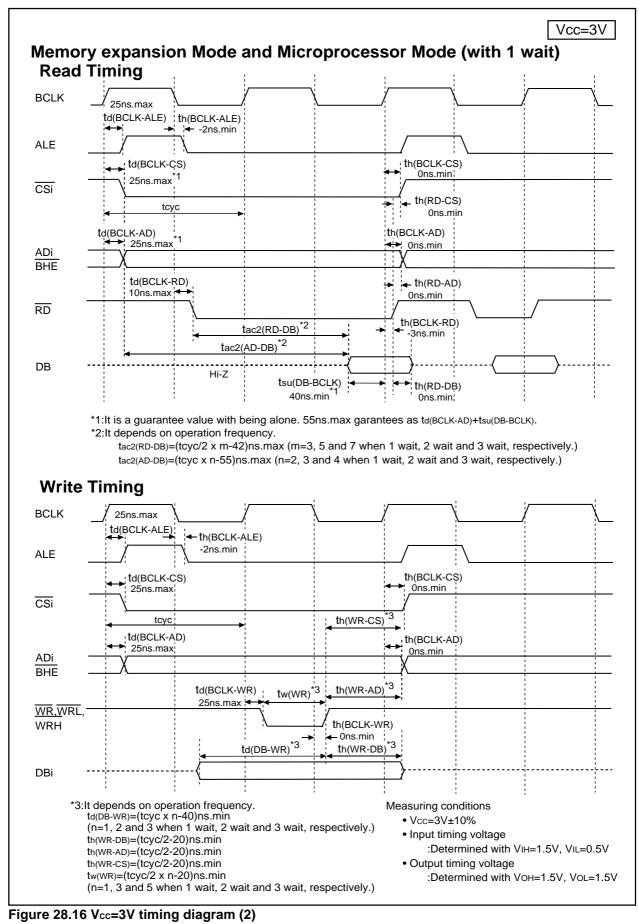
Table 28.40 Memory expansion and microprocessor modes (with wait, accessing external memory, DRAM area selected)

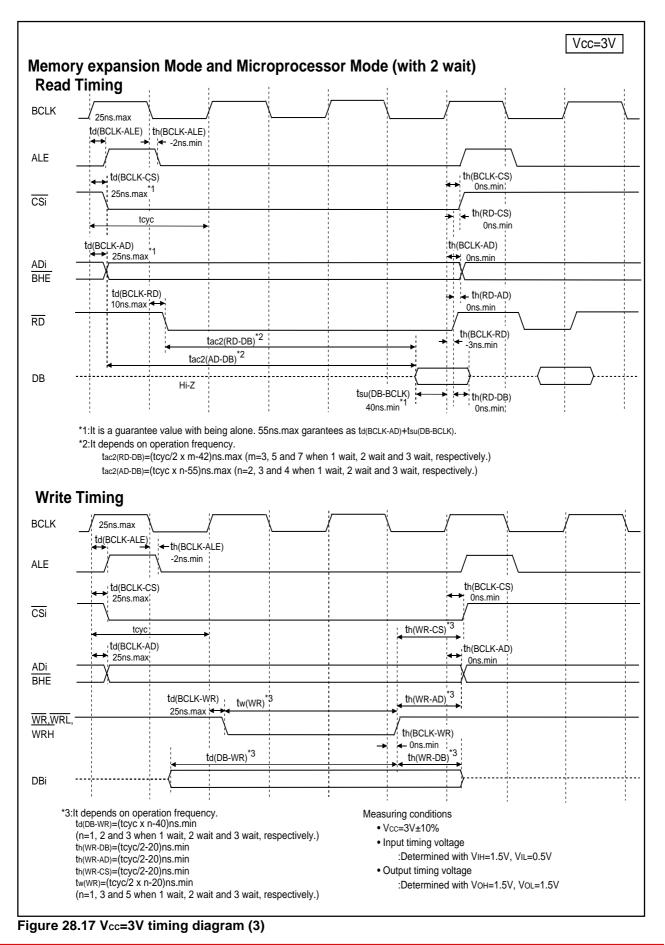
	D	Measuring condition	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-RAD)	Row address output delay time			25	ns
th(BCLK-RAD)	Row address output hold time (BCLK standard)		0		ns
td(BCLK-CAD)	String address output delay time			25	ns
th(BCLK-CAD)	String address output hold time (BCLK standard)		0		ns
th(RAS-RAD)	Row address output hold time after RAS output		(Note 1)		ns
td(BCLK-RAS)	RAS output delay time (BCLK standard)	Figure 28.1		25	ns
th(BCLK-RAS)	RAS output hold time (BCLK standard)		0		ns
tRP	RAS "H" hold time		(Note 1)		ns
td(BCLK-CAS)	CAS output delay time (BCLK standard)			25	ns
th(BCLK-CAS)	CAS output hold time (BCLK standard)		0		ns
td(BCLK-DW)	Data output delay time (BCLK standard)			25	ns
th(BCLK-DW)	Data output hold time (BCLK standard)		- 3		ns
tsu(DB-CAS)	CAS after DB output setup time		(Note 1)		ns
th(BCLK-DB)	DB signal output hold time (BCLK standard)		-7		ns
tsu(CAS-RAS)	CAS before RAS setup time (refresh)		(Note 1)		ns

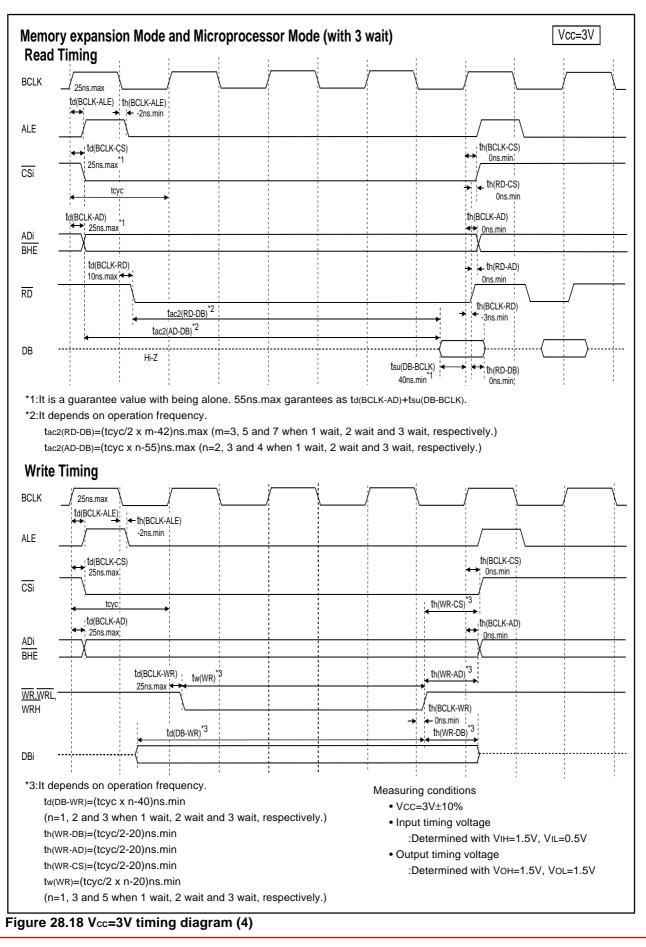

$$th(RAS - RAD) = \frac{10^9}{f(BCLK) X 2} - 25 \text{ [ns]}$$

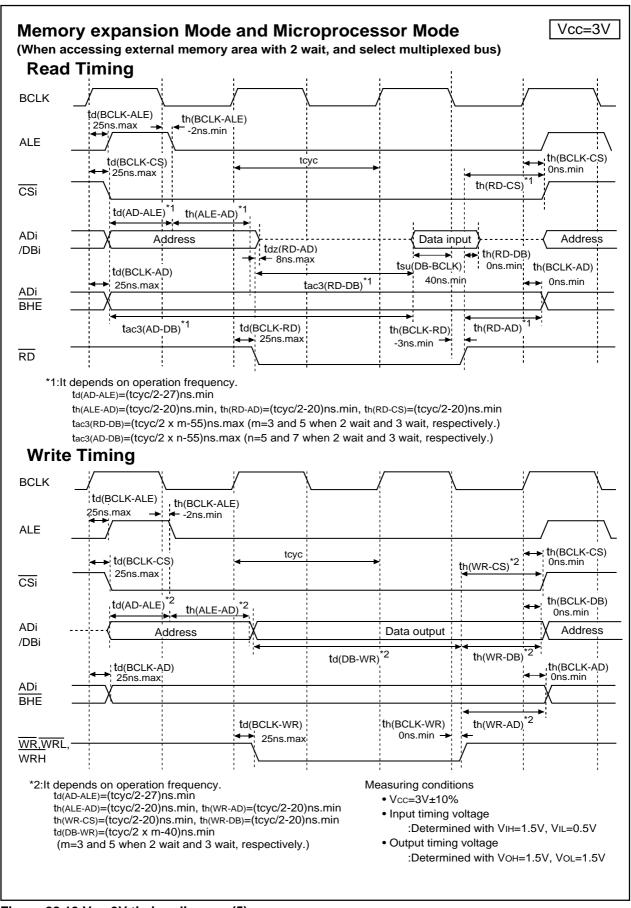
$$tRP = \frac{10^9 X 3}{f(BCLK) X 2} - 40 \text{ [ns]}$$

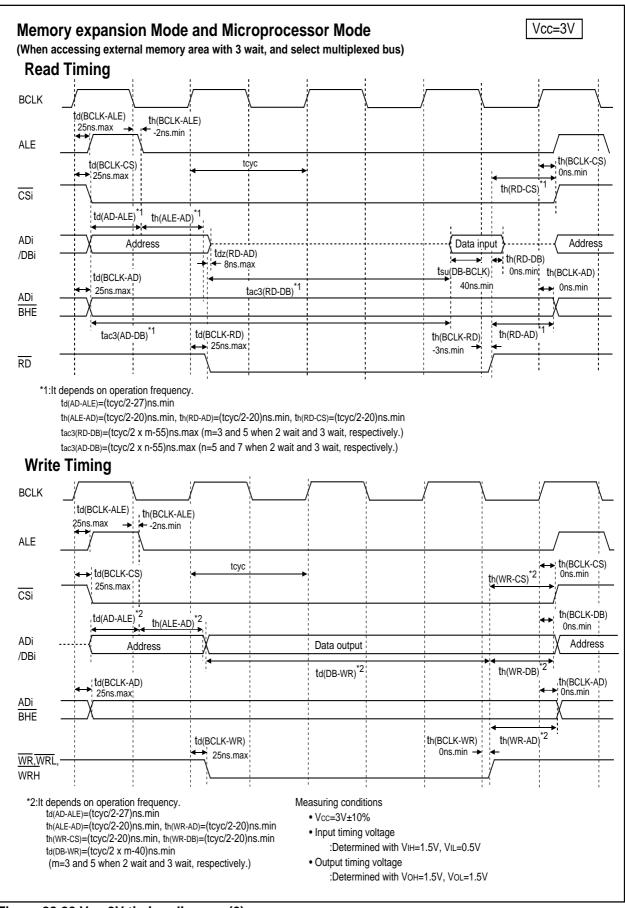
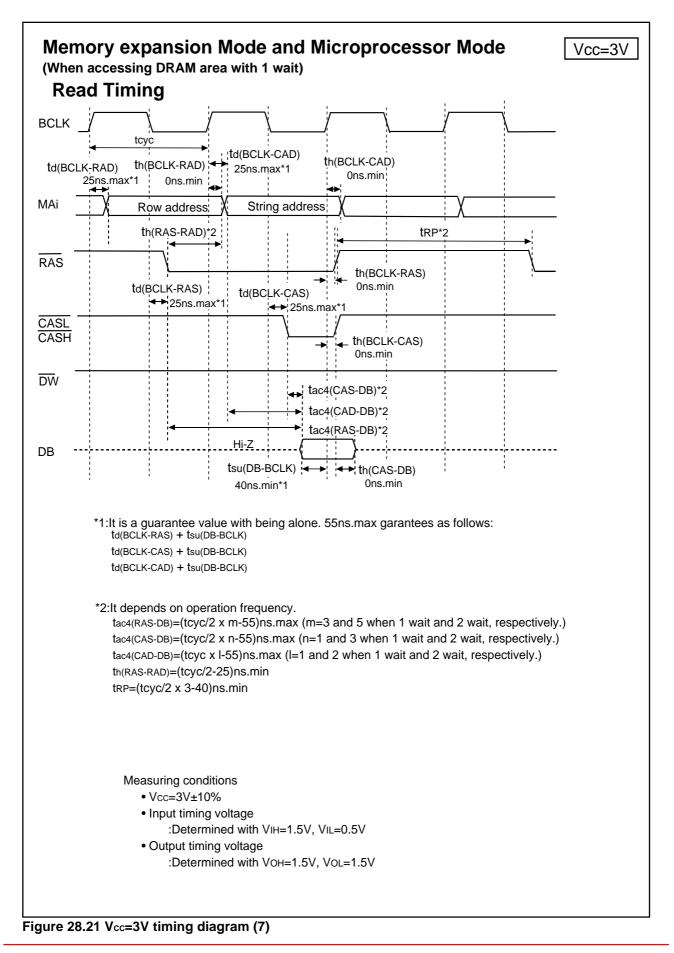
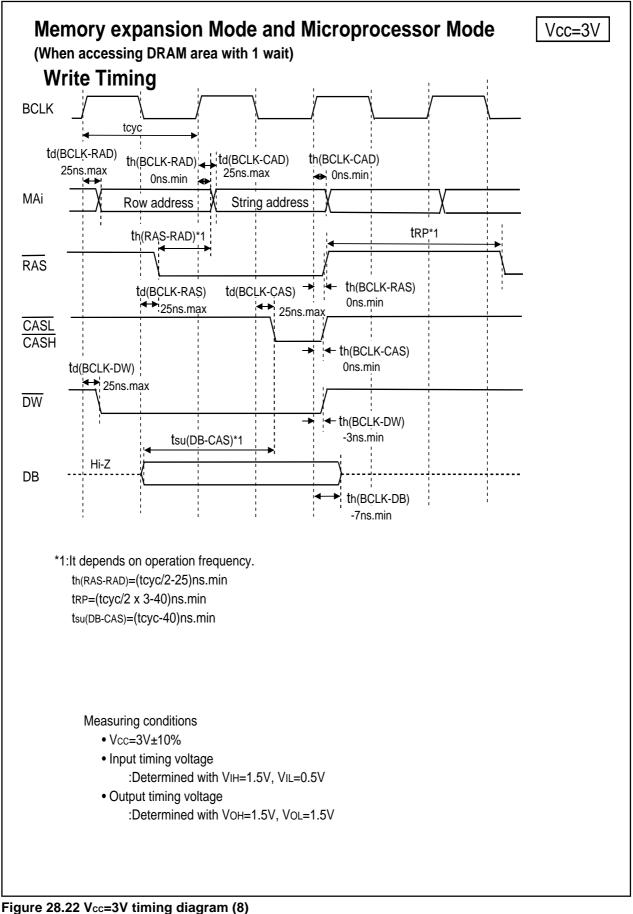
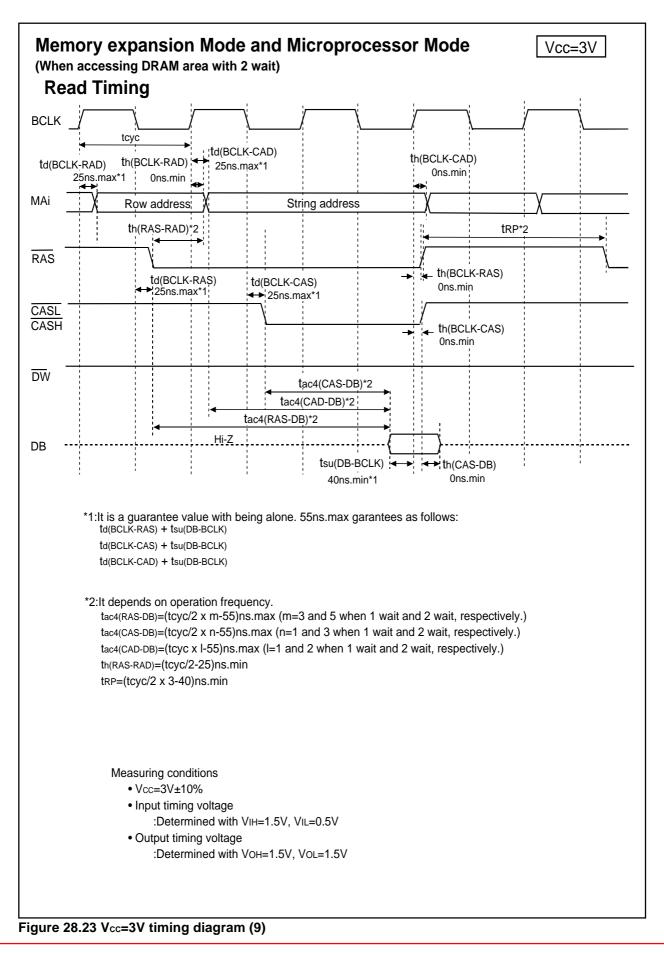
$$tsu(DB - CAS) = \frac{10^9}{f(BCLK)} - 40 \text{ [ns]}$$

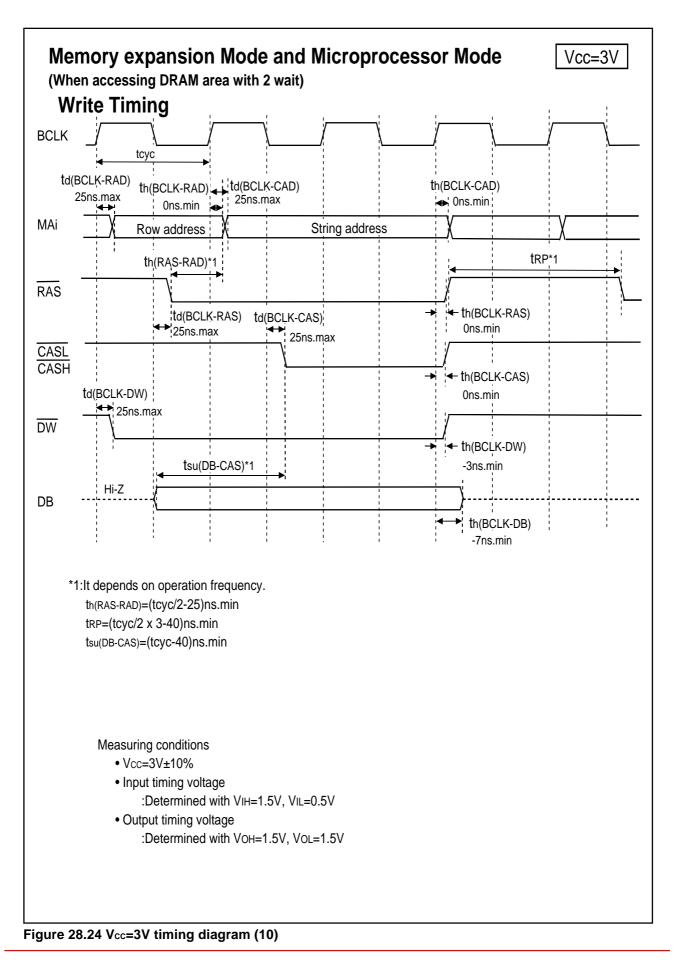

$$tsu(CAS - RAS) = \frac{10^9}{f(BCLK) X 2} - 25 \text{ [ns]}$$

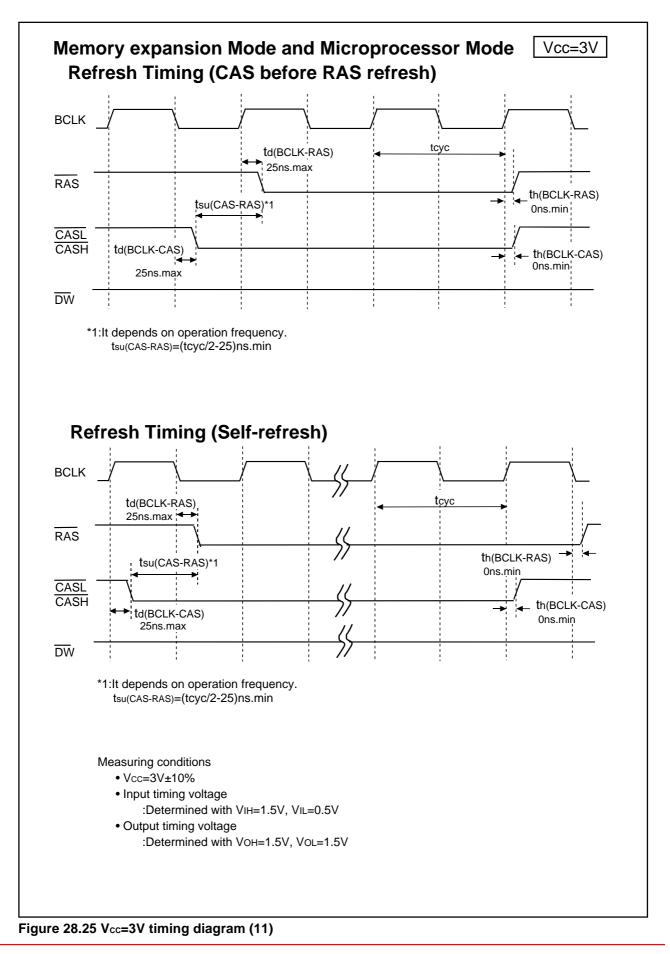

REJ09B0187-0100

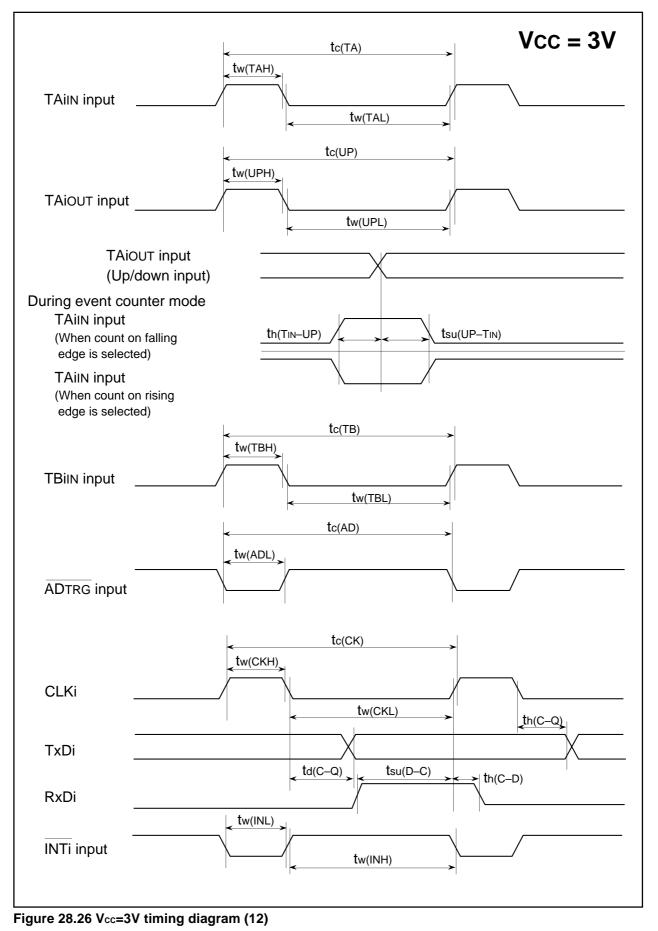


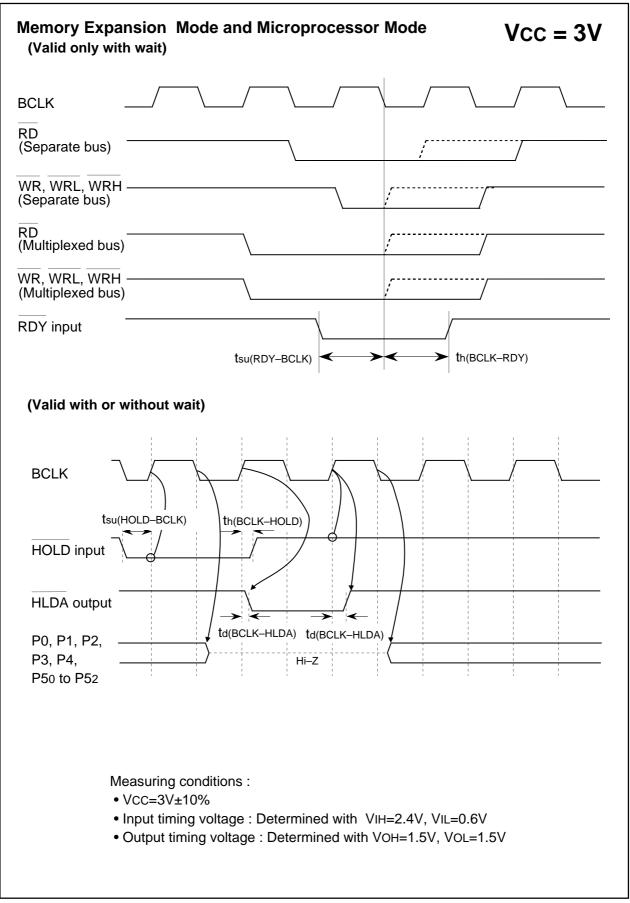


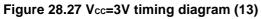






Figure 28.20 Vcc=3V timing diagram (6)









Rev.1.00 Aug. 02, 2005 Page 269 of 329 REJ09B0187-0100

29. Flash Memory Version

Outline Performance

Table 29.1 shows the outline performance of the M16C/80 (flash memory version).

Table 29.1 Outline Performance of the M16C/80 (flash memory version)
--

	ltem	Performance
Power supply voltage		5V version: f(XIN)=20MHz, without wait, 4.2V to 5.5V f(XIN)=10MHz, without wait, 2.7V to 5.5V
Program/erase voltage		5V version: 4.2V to 5.5 V f(BCLK)=12.5MHz, with one wait f(BCLK)=6.25MHz, without wait
Flash memory operation mode		Three modes (parallel I/O, standard serial I/O, CPU rewrite)
Erase block User ROM area		See Figure 29.3
division	Boot ROM area	One division (8 Kbytes) (Note 1)
Program method		In units of pages (in units of 256 bytes)
Erase method		Collective erase/block erase
Program/erase control method		Program/erase control by software command
Protect method		Protected for each block by lock bit
Number of commands		8 commands
Program/era	se count	100 times
Data holding		10 years
ROM code p	rotect	Parallel I/O and standard serial modes are supported.

Note: The boot ROM area contains a standard serial I/O mode control program which is stored in it when shipped from the factory. This area can be erased and programmed in only parallel I/O mode.

The following shows Renesas plans to develop a line of M16C/80 products (flash memory version).

- (1) ROM capacity
- (2) Package 100P6S-A ... Plastic molded QFP
 - 100P6Q-A ... Plastic molded QFP
 - 144P6Q-A ... Plastic molded QFP

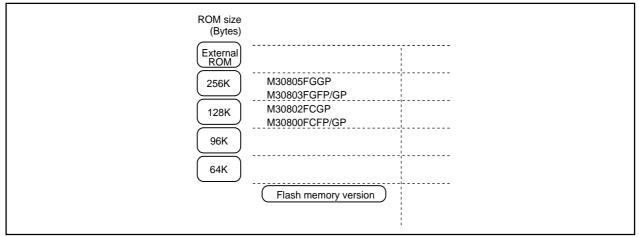


Figure 29.1 ROM Expansion

The following lists the M16C/80 products to be supported in the future.

Table 29.2 Product List

Type No	ROM capacity	RAM capacity	Package type	Remarks
M30800FCFP			100P6S-A	
M30800FCGP	128 Kbytes	10 Kbytes	100P6Q-A	
M30803FGFP			100P6S-A	
M30803FGGP	256 Kbytes	20 Kbytes	100P6Q-A	
M30802FCGP	128 Kbytes	10 Kbytes	144P6Q-A	
M30805FGGP	256 Kbytes	20 Kbytes		

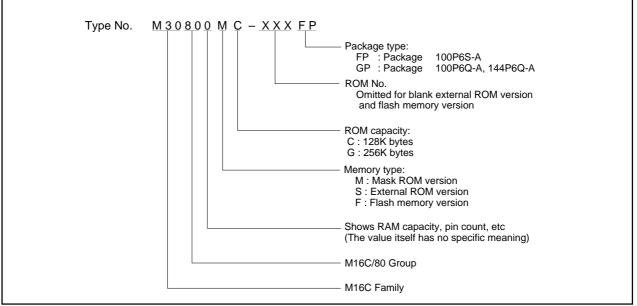


Figure 29.2 Type No., memory size, and package

Flash Memory

The M16C/80 (flash memory version) contains the flash memory that can be rewritten with a single voltage of 5 V. For this flash memory, three flash memory modes are available in which to read, program, and erase: parallel I/O and standard serial I/O modes in which the flash memory can be manipulated using a programmer and a CPU rewrite mode in which the flash memory can be manipulated by the Central Processing Unit (CPU). Each mode is detailed in the pages to follow.

The flash memory is divided into several blocks as shown in Figure 29.3, so that memory can be erased one block at a time. Each block has a lock bit to enable or disable execution of an erase or program operation, allowing for data in each block to be protected.

In addition to the ordinary user ROM area to store a microcomputer operation control program, the flash memory has a boot ROM area that is used to store a program to control rewriting in CPU rewrite and standard serial I/O modes. This boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. However, the user can write a rewrite control program in this area that suits the user's application system. This boot ROM area can be rewritten in only parallel I/O mode.

Figure 29.3 Block diagram of flash memory version

30. CPU Rewrite Mode

In CPU rewrite mode, the on-chip flash memory can be operated on (read, program, or erase) under control of the Central Processing Unit (CPU).

In CPU rewrite mode, only the user ROM area shown in Figure 29.3 can be rewritten; the boot ROM area cannot be rewritten. Make sure the program and block erase commands are issued for only the user ROM area and each block area.

The control program for CPU rewrite mode can be stored in either user ROM or boot ROM area. In the CPU rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must be transferred to any area other than the internal flash memory before it can be executed.

Microcomputer Mode and Boot Mode

The control program for CPU rewrite mode must be written into the user ROM or boot ROM area in parallel I/O mode beforehand. (If the control program is written into the boot ROM area, the standard serial I/O mode becomes unusable.)

See Figure 29.3 for details about the boot ROM area.

Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVss pin low. In this case, the CPU starts operating using the control program in the user ROM area.

When the microcomputer is reset by pulling the P55 pin low, the CNVss pin high, and the P50 pin high, the CPU starts operating using the control program in the boot ROM area. This mode is called the "boot" mode. The control program in the boot ROM area can also be used to rewrite the user ROM area.

Block Address

Block addresses refer to the maximum even address of each block. These addresses are used in the block erase command, lock bit program command, and read lock status command.

Outline Performance (CPU Rewrite Mode)

In the CPU rewrite mode, the CPU erases, programs and reads the internal flash memory as instructed by software commands. Operations must be executed from a memory other than the internal flash memory, such as the internal RAM.

When the CPU rewrite mode select bit (bit 1 at address 037716) is set to "1", transition to CPU rewrite mode occurs and software commands can be accepted.

In the CPU rewrite mode, write to and read from software commands and data into even-numbered address ("0" for byte address A0) in 16-bit units. Always write 8-bit software commands into even-numbered address. Commands are ignored with odd-numbered addresses.

Use software commands to control program and erase operations. Whether a program or erase operation has terminated normally or in error can be verified by reading the status register.

Read data from an even address in the user ROM area when reading the status register.

Figure 30.1 shows the flash memory control register 0 and the flash memory control register 1.

Bit 0 of the flash memory control register 0 is the RY/BY status flag used exclusively to read the operating status of the flash memory. During programming and erase operations, it is "0". Otherwise, it is "1".

Bit 1 of the flash memory control register 0 is the CPU rewrite mode select bit. The CPU rewrite mode is entered by setting this bit to "1", so that software commands become acceptable. In CPU rewrite mode, the CPU becomes unable to access the internal flash memory directly. Therefore, write bit 1 in an area other than the internal flash memory. To set this bit to "1", it is necessary to write "0" and then write "1" in succession when NMI pin is "H" level. The bit can be set to "0" by only writing a "0".

Bit 2 of the flash memory control register 0 is a lock bit disable bit. By setting this bit to "1", it is possible to disable erase and write protect (block lock) effectuated by the lock bit data. The lock bit disable select bit only disables the lock bit function; it does not change the lock data bit value. However, if an erase operation is performed when this bit ="1", the lock bit data that is "0" (locked) is set to "1" (unlocked) after erasure. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. This bit can be manipulated only when the CPU rewrite mode select bit = "1".

Bit 3 of the flash memory control register 0 is the flash memory reset bit used to reset the control circuit of the internal flash memory. This bit is used when exiting CPU rewrite mode and when flash memory access has failed. When the CPU rewrite mode select bit is "1", writing "1" for this bit resets the control circuit. To release the reset, it is necessary to set this bit to "0".

Bit 5 of the flash memory control register 0 is a user ROM area select bit which is effective in only boot mode. If this bit is set to "1" in boot mode, the area to be accessed is switched from the boot ROM area to the user ROM area. When the CPU rewrite mode needs to be used in boot mode, set this bit to "1". Note that if the microcomputer is booted from the user ROM area, it is always the user ROM area that can be accessed and this bit has no effect. When in boot mode, the function of this bit is effective regardless of whether the CPU rewrite mode is on or off. Use the control program except in the internal flash memory to rewrite this bit.

Bit 3 of the flash memory control register 1 turns power supply to the internal flash memory on/off. When this bit is set to "1", power is not supplied to the internal flash memory, thus power consumption can be reduced. However, in this state, the internal flash memory cannot be accessed. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. Use this bit mainly in the low speed mode (when XCIN is the block count source of BCLK).

When the CPU is shifted to the stop or wait modes, power to the internal flash memory is automatically shut off. It is reconnected automatically when CPU operation is restored. Therefore, it is not particularly necessary to set flash memory control register 1.

ſ

Figure 30.2 shows a flowchart for setting/releasing the CPU rewrite mode. Figure 30.3 shows a flowchart for shifting to the low speed mode. Always perform operation as indicated in these flowcharts.

Flash memory control register 0						
b7 b6 b5 b4 b3 b2 b1 b0	Sym FM		When reset XX0000012			
	Bit symbol	Bit name	Function	R	W	
	FMR00	RY/BY status flag	0: Busy (being written or erased) 1: Ready	0	×	
L	FMR01	CPU rewrite mode select bit (Note 1)	0: Normal mode (Software commands invalid) 1: CPU rewrite mode (Software commands acceptable)	-	0	
	FMR02	Lock bit disable bit (Note 2)	0: Block lock by lock bit data is enabled1: Block lock by lock bit data is disabled	0	0	
	FMR03	Flash memory reset bit (Note 3)	0: Normal operation 1: Reset	0	0	
	Reserved	bit	Must always be set to "0"	0	0	
	FMR05	User ROM area select bit (Note 4) (Effective in only boot mode)	0: Boot ROM area is accessed 1: User ROM area is accessed	0	0	
L.L	Nothing is When writ	s assigned. te, set "0". When read, va	lues are indeterminate.	_	_	
 succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Use the control program except in the internal flash memory for write to this bit. Also write to this bit when NMI pin is "H" level. Note 2: For this bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession when the CPU rewrite mode select bit = "1". When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Note 3: Effective only when the CPU rewrite mode select bit = 1. Set this bit to 0 subsequently after setting it to 1 (reset). Note 4: Use the control program except in the internal flash memory for write to this bit. 						
Flash memory contro			ridor memory for white to this bit.			
b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0 0	Syml FMF	bol Address	When reset XXXX0XXX2			
	Bit symbol	Bit name	Function	R	W	
·	Reserved	bit	Must always be set to "0"	_	0	
	FMR13	Flash memory power supply-OFF bit (Note)	0: Flash memory power supply is connected1: Flash memory power supply-off	0	0	
	Reserved bit		Must always be set to "0"	_	0	
success ensure control During	Reserved bit Must always be set to "0" Note : For this bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Use the control program except in the internal flash memory for write to this bit. During parallel I/O mode, programming, erase or read of flash memory is not controlle this bit, only by external pins.					

Figure 30.1 Flash memory control registers

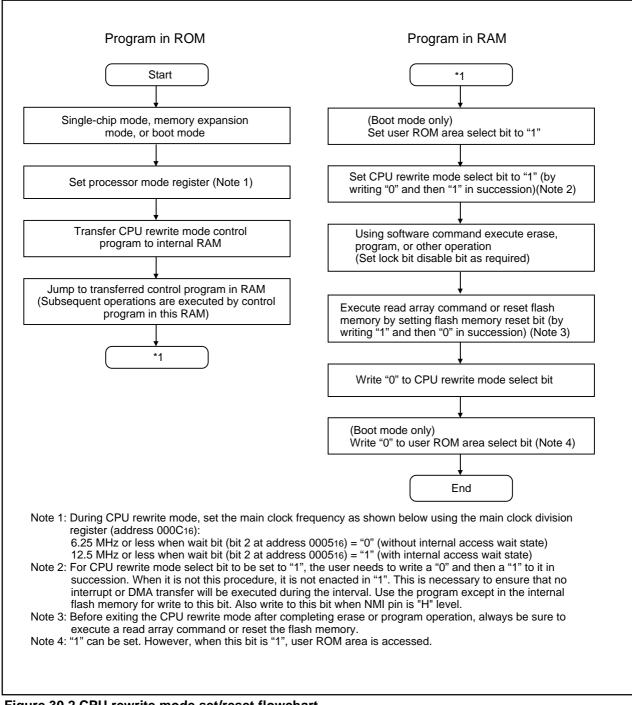


Figure 30.2 CPU rewrite mode set/reset flowchart

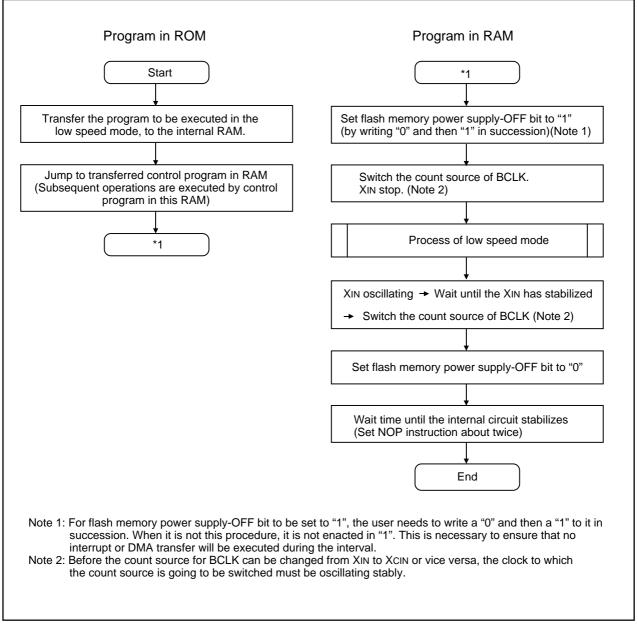


Figure 30.3 Shifting to the low speed mode flowchart

Precautions on CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

(1) Operation speed

During CPU rewrite mode, set the BCLK as shown below using the main clock division register (address 000C16):

6.25 MHz or less when wait bit (bit 2 at address 000516) = 0 (without internal access wait state)

12.5 MHz or less when wait bit (bit 2 at address 000516) = 1 (with internal access wait state)

(2) Instructions inhibited against use

The instructions listed below cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory:

UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

(3) Interrupts inhibited against use

The address match interrupt cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory. If interrupts have their vector in the variable vector table, they can be used by transferring the vector into the RAM area. The $\overline{\text{NMI}}$ and watchdog timer interrupts each can be used to change the CPU rewrite mode select bit forcibly to normal mode (FMR01="0") upon occurrence of the interrupt. Since the rewrite operation is halted when the $\overline{\text{NMI}}$ and watchdog timer interrupts occur, set the CPU rewite mode select bit to "1" and the erase/program operation needs to be performed over again.

(4) Reset

Reset input is always accepted.

(5) Access disable

Write CPU rewrite mode select bit, flash memory power supply-OFF bit and user ROM area select bit in an area other than the internal flash memory.

(6) How to access

For CPU rewrite mode select bit, lock bit disable bit, and flash memory power supply-OFF bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval.

Write to the CPU rewrite mode select bit when NMI pin is "H" level.

(7)Writing in the user ROM area

If power is lost while rewriting blocks that contain the flash rewrite program with the CPU rewrite mode, those blocks may not be correctly rewritten and it is possible that the flash memory can no longer be rewritten after that. Therefore, it is recommended to use the standard serial I/O mode or parallel I/O mode to rewrite these blocks.

(8)Using the lock bit

To use the CPU rewrite mode, use a boot program that can set and cancel the lock command.

Software Commands

Table 30.1 lists the software commands available with the M16C/62A (flash memory version). After setting the CPU rewrite mode select bit to 1, write a software command to specify an erase or program operation. Note that when entering a software command, the upper byte (D8 to D15) is ignored. The content of each software command is explained below.

First bus cycle		Se	econd bus cy	/cle	Third bus cycle				
Command	Mode	Address	Data (Do to D7)	Mode	Address	Data (Do to D7)	Mode	Address	Data (Do to D7)
Read array	Write	X (Note 6)	FF16						
Read status register	Write	х	7016	Read	X (Note 6)	SRD (Note 2)			
Clear status register	Write	Х	5016						
Page program (Note 3)	Write	х	41 16	Write	WA0(Note 3)	WD0 (Note 3)	Write	WA1	WD1
Block erase	Write	Х	2016	Write	BA (Note 4)	D016			
Erase all unlock block	Write	Х	A716	Write	Х	D016			
Lock bit program	Write	Х	7716	Write	BA	D016			
Read lock bit status	Write	Х	7116	Read	BA	D ₆ (Note 5)			

Table 30.1 List of software commands	(CPU rewrite mode)
--------------------------------------	--------------------

Note 1: When a software command is input, the high-order byte of data (D8 to D15) is ignored.

Note 2: SRD = Status Register Data

Note 3: WA = Write Address, WD = Write Data

WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is 256 bytes.

Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)

Note 5: D6 corresponds to the block lock status. Block not locked when D6 = 1, block locked when D6 = 0.

Note 6: X denotes a given address in the user ROM area (that is an even address).

Read Array Command (FF16)

The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an even address to be read is input in one of the bus cycles that follow, the content of the specified address is read out at the data bus (D0–D15), 16 bits at a time.

The read array mode is retained intact until another command is written.

Read Status Register Command (7016)

When the command code "7016" is written in the first bus cycle, the content of the status register is read out at the data bus (D0–D7) by a read in the second bus cycle. (Set an address to even address in the user ROM area).

The status register is explained in the next section.

Clear Status Register Command (5016)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code "5016" in the first bus cycle.

Page Program Command (4116)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts when the command code "4116" is written in the first bus cycle. In the second bus cycle through the 129th bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to be incremented by 2 from "0016" to "FE16." When the system finishes loading the data, it starts an auto write operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto write operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to 1 upon completion of the auto write operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit.

The RY/\overline{BY} status flag of the flash memory control register 0 is 0 during auto write operation and 1 when the auto write operation is completed as is the status register bit 7.

After the auto write operation is completed, the status register can be read out to know the result of the auto write operation. For details, refer to the section where the status register is detailed.

Figure 30.4 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

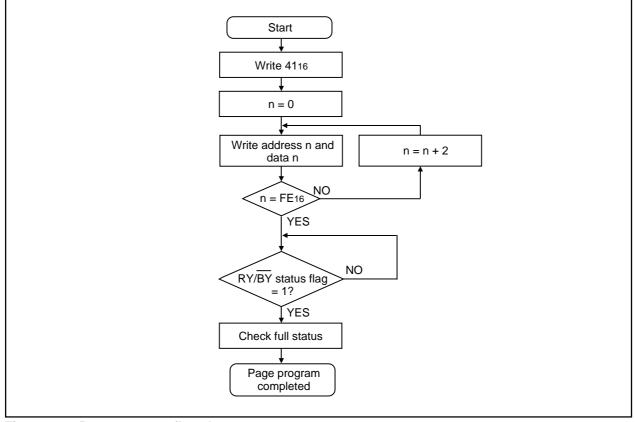
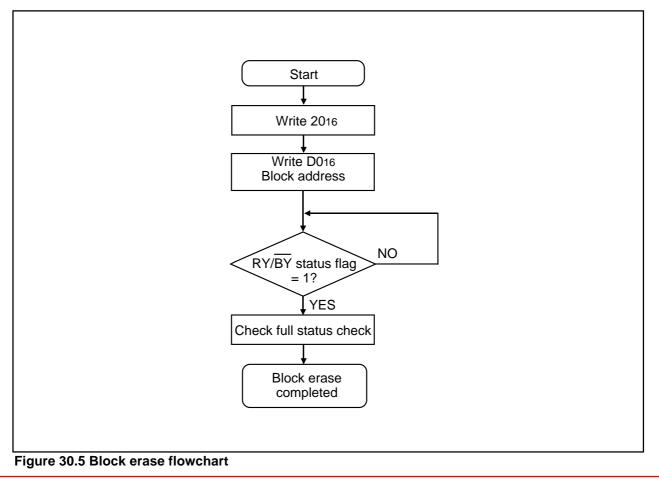


Figure 30.4 Page program flowchart

Block Erase Command (2016/D016)

By writing the command code "2016" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system initiates an auto erase (erase and erase verify) operation.


Whether the auto erase operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto erase operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of the auto erase operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the auto erase operation. For details, refer to the section where the status register is detailed.

Figure 30.5 shows an example of a block erase flowchart.

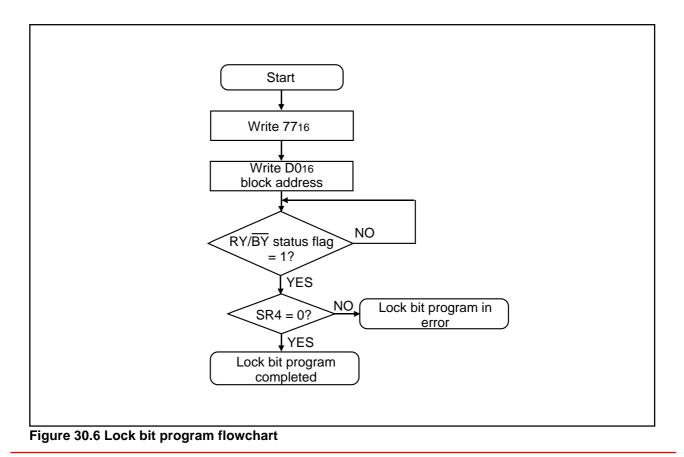
Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to the section where the data protect function is detailed.

Erase All Unlock Blocks Command (A716/D016)

By writing the command code "A716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows, the system starts erasing blocks successively.

Whether the erase all unlock blocks command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for block erase. Also, the status register can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register 0 = 1, all blocks are erased no matter how the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective and only nonlocked blocks (where lock bit data = 1) are erased.


Lock Bit Program Command (7716/D016)

By writing the command code "7716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for the specified block to 0 (locked).

Figure 30.6 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can be read out by a read lock bit status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data protect function is detailed.

RENESAS

Read Lock Bit Status Command (7116)

By writing the command code "7116" in the first bus cycle and then the block address of a flash memory block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified block on to the data (D6).

Figure 30.7 shows an example of a read lock bit program flowchart.

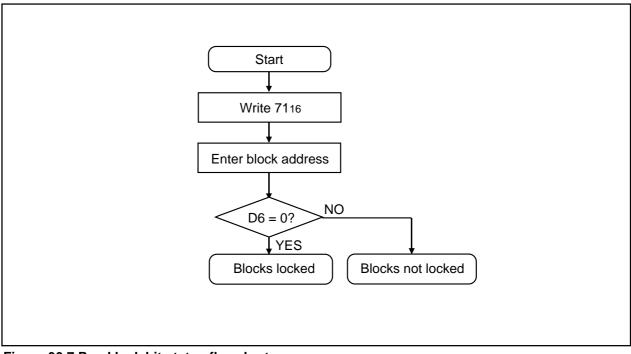


Figure 30.7 Read lock bit status flowchart

Data Protect Function (Block Lock)

Each block in Figure 29.3 has a nonvolatile lock bit to specify that the block be protected (locked) against erase/write. The lock bit program command is used to set the lock bit to 0 (locked). The lock bit of each block can be read out using the read lock bit status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash memory control register 0's lock bit disable bit is set.

- (1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write. On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/write.
- (2) When the lock bit disable bit = 1, all blocks are nonlocked regardless of the lock bit data, so they are enabled for erase/write. In this case, the lock bit data that is 0 (locked) is set to 1 (nonlocked) after erasure, so that the lock bit-actuated lock is removed.

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program operation has terminated normally or in an error. The content of this register can be read out by only writing the read status register command (7016). Table 30.2 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to "8016."

Each bit in this register is explained below.

Write state machine (WSM) status (SR7)

After power-on, the write state machine (WSM) status is set to 1.

The write state machine (WSM) status indicates the operating status of the device, as for output on the RY/\overline{BY} pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon completion of these operations.

Erase status (SR5)

The erase status informs the operating status of auto erase operation to the CPU. When an erase error occurs, it is set to 1.

The erase status is reset to 0 when cleared.

Program status (SR4)

The program status informs the operating status of auto write operation to the CPU. When a write error occurs, it is set to 1.

The program status is reset to 0 when cleared.

When an erase command is in error (which occurs if the command entered after the block erase command (2016) is not the confirmation command (D016), both the program status and erase status (SR5) are set to 1.

When the program status or erase status = 1, the following commands entered by command write are not accepted.

Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):

- (1) When the valid command is not entered correctly
- (2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/D016), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered, read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block status after program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output.

Each bit of		Definition		
SRD	Status name	"1"	"0"	
SR7 (bit7)	Write state machine (WSM) status	Ready	Busy	
SR6 (bit6)	Reserved	-	-	
SR5 (bit5)	Erase status	Terminated in error	Terminated normally	
SR4 (bit4)	Program status	Terminated in error	Terminated normally	
SR3 (bit3)	Block status after program	Terminated in error	Terminated normally	
SR2 (bit2)	Reserved	-	-	
SR1 (bit1)	Reserved	-	-	
SR0 (bit0)	Reserved	-	-	

Table 30.2 Definition of each bit in status register

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations. Figure 30.8 shows a full status check flowchart and the action to be taken when each error occurs.

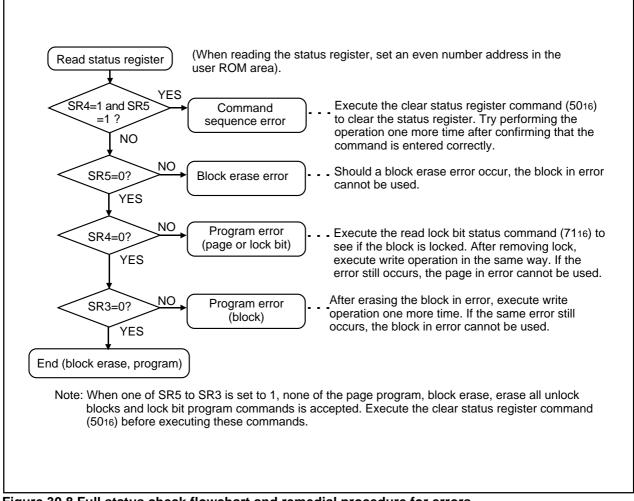
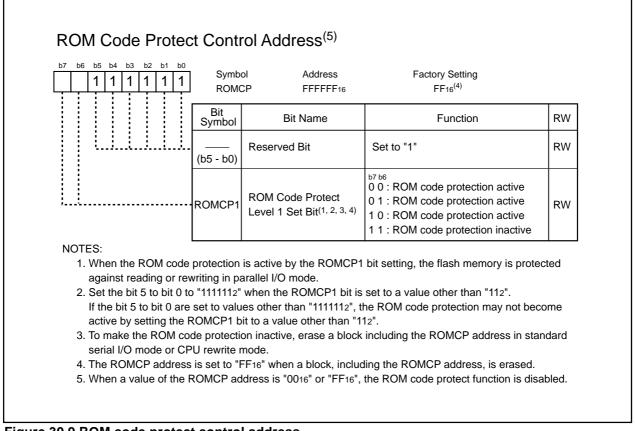


Figure 30.8 Full status check flowchart and remedial procedure for errors


Functions To Prevent the Flash Memory from Rewriting

To prevent the contents of the flash memory version from being read out or rewritten easily, the device incorporates a ROM code protect function for use in parallel I/O mode and an ID code verify function for use in standard serial I/O mode.

ROM code protect function

The ROM code protect function reading out or modifying the contents of the flash memory version by using the ROM code protect control address (0FFFFF16) during parallel I/O mode. Figure 30.9 shows the ROM code protect control address (0FFFFF16). (This address exists in the user ROM area.) If one of the pair of ROM code protect bits is set to 0, ROM code protect is turned on, so that the contents of the flash memory version are protected against readout and modification.

If both of the two ROM code protect reset bits are set to "00," ROM code protect is turned off, so that the contents of the flash memory version can be read out or modified. Once ROM code protect is turned on, the contents of the ROM code protect reset bits cannot be modified in parallel I/O mode. Use the serial I/O or some other mode to rewrite the contents of the ROM code protect reset bits.

ID Code Verify Function

Use this function in standard serial I/O mode. When the contents of the flash memory are not blank, the ID code sent from the peripheral unit is compared with the ID code written in the flash memory to see if they match. If the ID codes do not match, the commands sent from the peripheral unit are not accepted. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 0FFFDF16, 0FFFFE316, 0FFFFE316, 0FFFFF316, 0FFFFF716, and 0FFFFFB16. Write a program which has had the ID code preset at these addresses to the flash memory.

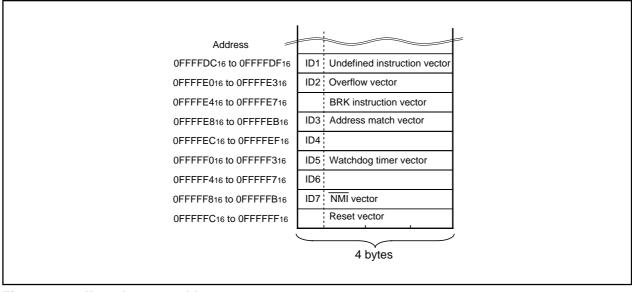


Figure 30.10 ID code store addresses

31. Parallel I/O Mode

Use an exclusive programer supporting M16C/80 (flash memory version). Refer to the instruction manual of each programer maker for the details of use.

User ROM and Boot ROM Areas

In parallel I/O mode, the user ROM and boot ROM areas shown in Figure 29.3 can be rewritten. Both areas of flash memory can be operated on in the same way.

Program and block erase operations can be performed in the user ROM area. The user ROM area and its blocks are shown in Figure 29.3.

The boot ROM area is 8 Kbytes in size. In parallel I/O mode, it is located at addresses 0FFE00016 through 0FFFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any location outside this address range is prohibited.)

In the boot ROM area, an erase block operation is applied to only one 8 Kbyte block. The boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory.

Therefore, using the device in standard serial input/output mode, you do not need to write to the boot ROM area.

Pin	Name	I/O	Description
Vcc,Vss	Power input		Apply 4.2V to 5.5V to Vcc pin and 0 V to Vss pin.
CNVss	CNVss	I	Connect to Vcc pin.
RESET	Reset input	I	Reset input pin. While reset is "L" level, a 20 cycle or longer clock must be input to XIN pin.
Xin	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and XOUT pins. To input an externally generated clock, input it
Хоит	Clock output	0	to XIN pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to Vcc or Vss.
AVcc, AVss	Analog power supply input	I	Connect AVSS to Vss and AVcc to Vcc, respectively.
Vref	Reference voltage input	I	Enter the reference voltage for A/D converter from this pin.
P00 to P07	Input port P0	I	Input "H" or "L" level signal or open.
P10 to P17	Input port P1	I	Input "H" or "L" level signal or open.
P20 to P27	Input port P2	I	Input "H" or "L" level signal or open.
P30 to P37	Input port P3	I	Input "H" or "L" level signal or open.
P40 to P47	Input port P4	I	Input "H" or "L" level signal or open.
P51 to P54, P56, P57	Input port P5	I	Input "H" or "L" level signal or open.
P50	CE input	I	Input "H" level signal.
P55	EPM input	I	Input "L" level signal.
P60 to P63	Input port P6	I	Input "H" or "L" level signal or open.
P64	BUSY output	0	Standard serial mode 1: BUSY signal output pin Standard serial mode 2: Monitors the program operation check
P65	SCLK input	I	Standard serial mode 1: Serial clock input pin Standard serial mode 2: Input "L" level signal.
P66	RxD input	I	Serial data input pin
P67	TxD output	0	Serial data output pin
P70 to P77	Input port P7	I	Input "H" or "L" level signal or open.
P80 to P84, P86, P87	Input port P8	I	Input "H" or "L" level signal or open.
P85	NMI input	I	Connect this pin to Vcc.
P90 to P97	Input port P9	I	Input "H" or "L" level signal or open.
P100 to P107	Input port P10	I	Input "H" or "L" level signal or open.
P110 to P114	Input port P11	I	Input "H" or "L" level signal or open. (Note)
P120 to P127	Input port P12	I	Input "H" or "L" level signal or open. (Note)
P130 to P137	Input port P13	I	Input "H" or "L" level signal or open. (Note)
P140 to P146	Input port P14	I	Input "H" or "L" level signal or open. (Note)
P150 to P157	Input port P15	1	Input "H" or "L" level signal or open. (Note)

Pin functions (Flash memory standard serial I/O mode)

Note: Port P11 to P15 exist in 144-pin version.

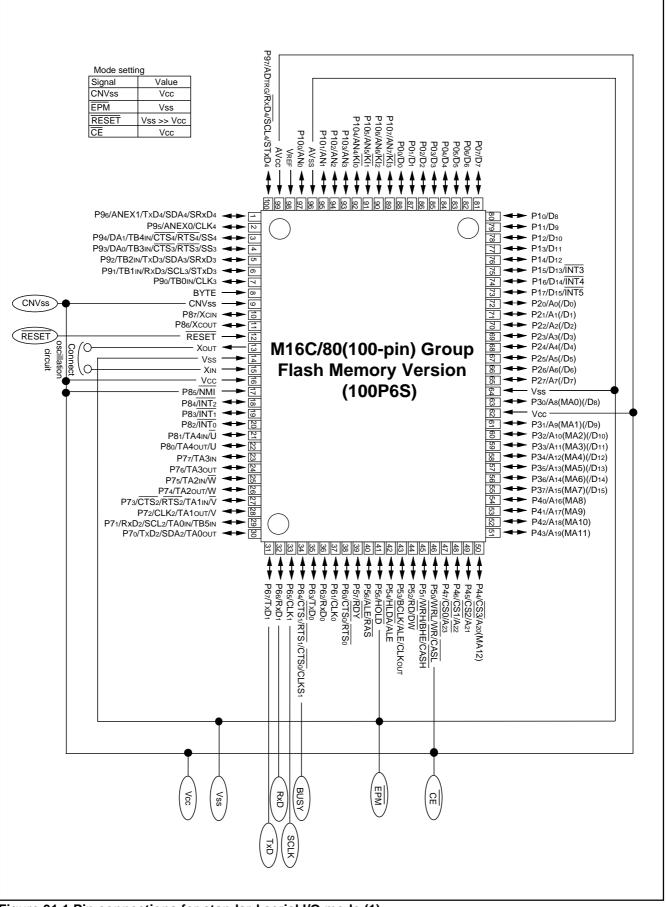


Figure 31.1 Pin connections for standard serial I/O mode (1)

RENESAS

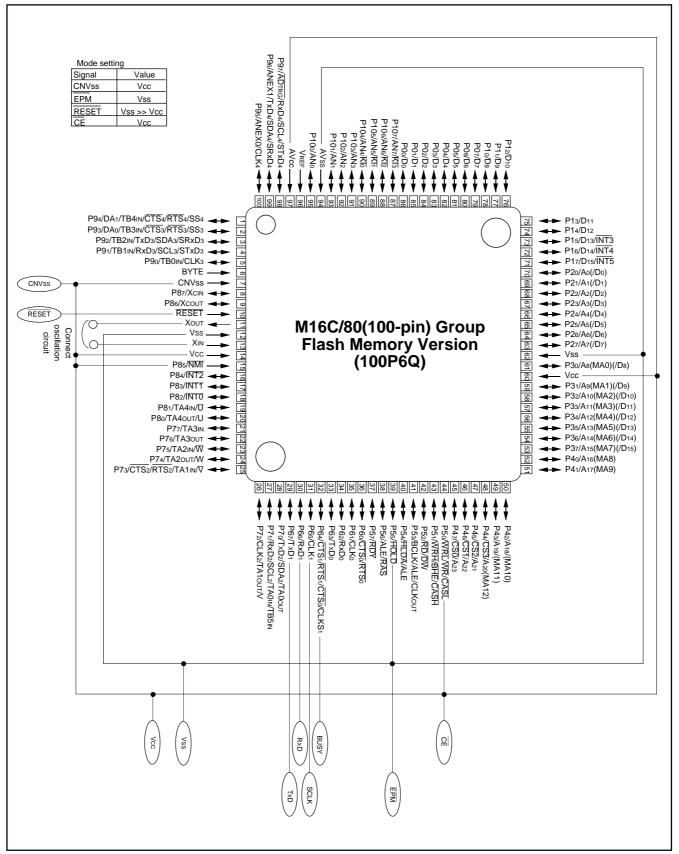


Figure 31.2 Pin connections for standard serial I/O mode (2)

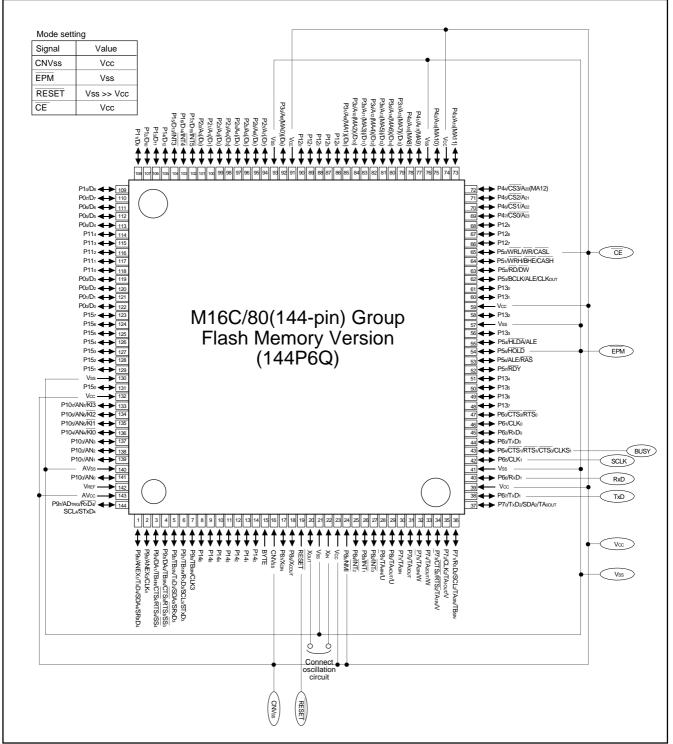


Figure 31.3 Pin connections for standard serial I/O mode (3)

32. Standard serial I/O mode

The standard serial I/O mode inputs and outputs the software commands, addresses and data needed to operate (read, program, erase, etc.) the internal flash memory. This I/O is serial. There are actually two standard serial I/O modes: mode 1, which is clock synchronized, and mode 2, which is asynchronized. Both modes require a purpose-specific peripheral unit.

The standard serial I/O mode is different from the parallel I/O mode in that the CPU controls flash memory rewrite (uses the CPU's rewrite mode), rewrite data input and so forth. It is started when the reset is released, which is done when the P50 (\overline{CE}) pin is "H" level, the P55 (\overline{EPM}) pin "L" level and the CNVss pin "H" level. (In the ordinary command mode, set CNVss pin to "L" level.)

This control program is written in the boot ROM area when the product is shipped from the factory. Accordingly, make note of the fact that the standard serial I/O mode cannot be used if the boot ROM area is rewritten in the parallel I/O mode. Figures 31.1 and 31.3 show the pin connections for the standard serial I/ O mode. Serial data I/O uses UART1 and transfers the data serially in 8-bit units. Standard serial I/O switches between mode 1 (clock synchronized) and mode 2 (clock asynchronized) according to the level of CLK1 pin when the reset is released.

To use standard serial I/O mode 1 (clock synchronized), set the CLK1 pin to "H" level and release the reset. The operation uses the four UART1 pins CLK1, RxD1, TxD1 and RTS1 (BUSY). The CLK1 pin is the transfer clock input pin through which an external transfer clock is input. The TxD1 pin is for CMOS output. The RTS1 (BUSY) pin outputs an "L" level when ready for reception and an "H" level when reception starts.

To use standard serial I/O mode 2 (clock asynchronized), set the CLK1 pin to "L" level and release the reset. The operation uses the two UART1 pins RxD1 and TxD1.

In the standard serial I/O mode, only the user ROM area indicated in Figure 32.17can be rewritten. The boot ROM cannot.

In the standard serial I/O mode, a 7-byte ID code is used. When there is data in the flash memory, commands sent from the peripheral unit (programmer) are not accepted unless the ID code matches.

32.1 Overview of standard serial I/O mode 1 (clock synchronized)

In standard serial I/O mode 1, software commands, addresses and data are input and output between the MCU and peripheral units (serial programer, etc.) using 4-wire clock-synchronized serial I/O (UART1). Standard serial I/O mode 1 is engaged by releasing the reset with the P65 (CLK1) pin "H" level.

In reception, software commands, addresses and program data are synchronized with the rise of the transfer clock that is input to the CLK1 pin, and are then input to the MCU via the RxD1 pin. In transmission, the read data and status are synchronized with the fall of the transfer clock, and output from the TxD1 pin. The TxD1 pin is for CMOS output. Transfer is in 8-bit units with LSB first.

When busy, such as during transmission, reception, erasing or program execution, the RTS1 (BUSY) pin is "H" level. Accordingly, always start the next transfer after the RST1 (BUSY) pin is "L" level.

Also, data and status registers in memory can be read after inputting software commands. Status, such as the operating state of the flash memory or whether a program or erase operation ended successfully or not, can be checked by reading the status register. Here following are explained software commands, status registers, etc.

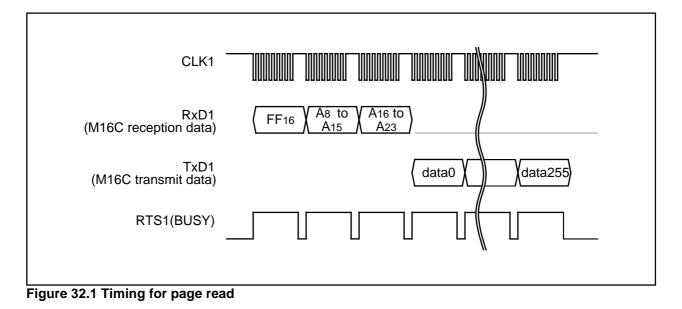
Software Commands

Table 31.1 lists software commands. In the standard serial I/O mode 1, erase operations, programs and reading are controlled by transferring software commands via the RxD1 pin. Software commands are explained here below.

	Control command	1st byte transfer	2nd byte	3rd byte	4th byte	5th byte	6th byte		When ID is not verified
1	Page read	FF ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
2	Page program	41 ₁₆	Address (middle)	Address (high)	Data input	Data input	Data input	Data input to 259th byte	Not acceptable
3	Block erase	2016	Address (middle)	Address (high)	D0 ₁₆				Not acceptable
4	Erase all unlocked blocks	A7 ₁₆	D0 ₁₆						Not acceptable
5	Read status register	7016	SRD output	SRD1 output					Acceptable
6	Clear status register	5016							Not acceptable
7	Read lock bit status	71 ₁₆	Address (middle)	Address (high)	Lock bit data output				Not acceptable
8	Lock bit program	77 ₁₆	Address (middle)	Address (high)	D016				Not acceptable
9	Lock bit enable	7A ₁₆							Not acceptable
10	Lock bit disable	7516							Not acceptable
11	Code processing function	F516	Address (low)	Address (middle)	Address (high)	ID size	ID1	To ID7	Acceptable
12	Download function	FA ₁₆	Size (low)	Size (high)	Check- sum	Data input	To required number of times		Not acceptable
13	Version data output function	FB ₁₆	Version data output	Version data output	Version data output	Version data output	Version data output	Version data output to 9th byte	Acceptable
14	Boot ROM area output function	FC ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
15	Read check data	FD ₁₆	Check data (low)	Check data (high)					Not acceptable

Table 32.1 Software commands (Standard serial I/O mode 1)

Note 1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is transferred from the peripheral unit to the flash memory microcomputer.


Note 2: SRD refers to status register data. SRD1 refers to status register data1 .

Note 3: All commands can be accepted when the flash memory is totally blank.

Page Read Command

This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following.

- (1) Transfer the "FF16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the rise of the clock.

Read Status Register Command

This command reads status information. When the "7016" command code is sent with the 1st byte, the contents of the status register (SRD) specified with the 2nd byte and the contents of status register 1 (SRD1) specified with the 3rd byte are read.

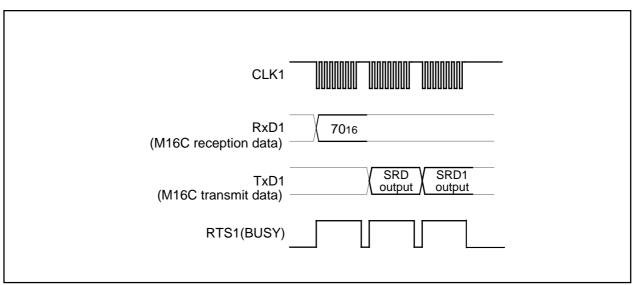


Figure 32.2 Timing for reading the status register

Clear Status Register Command

This command clears the bits (SR3–SR5) which are set when the status register operation ends in error. When the "5016" command code is sent with the 1st byte, the aforementioned bits are cleared. When the clear status register operation ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level.

CLK1	
RxD1 (M16C reception data)	5016
TxD1 (M16C transmit data)	
RTS1(BUSY)	

Figure 32.3 Timing for clearing the status register

Page Program Command

This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following.

- (1) Transfer the "4116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, as write data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written.

When reception setup for the next 256 bytes ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the page program can be known by reading the status register. For more information, see the section on the status register.

Each block can be write-protected with the lock bit. For more information, see the section on the data protection function. Additional writing is not allowed with already programmed pages.

CLK1	
RxD1 (M16C reception data)	$ \begin{array}{c c} 4116 & A8 & to \\ A15 & A23 & data0 \\ \end{array} \begin{array}{c} 4116 & data255 \\ \end{array} $
TxD1 (M16C transmit data)	
RTS1(BUSY)	

Figure 32.4 Timing for the page program

Block Erase Command

This command erases the data in the specified block. Execute the block erase command as explained here following.

- (1) Transfer the "2016" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, the erase operation will start for the specified block in the flash memory. Write the highest address of the specified block for addresses A16 to A23.

When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. After block erase ends, the result of the block erase operation can be known by reading the status register. For more information, see the section on the status register.

Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

CLK1	
RxD1 (M16C reception data)	$\left(\begin{array}{c} 2016 \end{array}\right) \left(\begin{array}{c} A8 & to \\ A15 \end{array}\right) \left(\begin{array}{c} A16 & to \\ A23 \end{array}\right) \left(\begin{array}{c} D016 \end{array}\right)$
TxD1 (M16C transmit data)	
RTS1(BUSY)	

Figure 32.5 Timing for block erasing

Erase All Unlocked Blocks Command

This command erases the content of all blocks. Execute the erase all unlocked blocks command as explained here following.

(1) Transfer the "A716" command code with the 1st byte.

(2) Transfer the verify command code "D016" with the 2nd byte. With the verify command code, the erase operation will start and continue for all blocks in the flash memory.

When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the erase operation can be known by reading the status register. Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

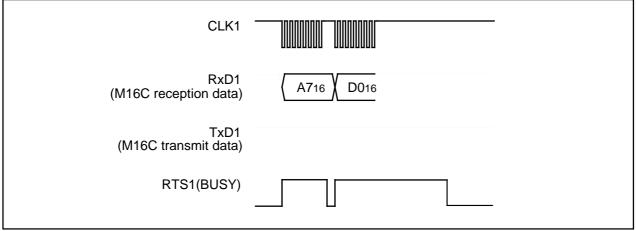


Figure 32.6 Timing for erasing all unlocked blocks

Lock Bit Program Command

This command writes "0" (lock) for the lock bit of the specified block. Execute the lock bit program command as explained here following.

- (1) Transfer the "7716" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, "0" is written for the lock bit of the specified block. Write the highest address of the specified block for addresses A8 to A23.

When writing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. Lock bit status can be read with the read lock bit status command. For information on the lock bit function, reset procedure and so on, see the section on the data protection function.

CLK1	
RxD1 (M16C reception data)	$\left(\begin{array}{c} 77_{16} \\ A15 \end{array}\right) \left(\begin{array}{c} A8 \\ A15 \end{array}\right) \left(\begin{array}{c} A16 \\ A23 \end{array}\right) \left(\begin{array}{c} D016 \\ D016 \end{array}\right)$
TxD1 (M16C transmit data)	
RTS1(BUSY)	

Figure 32.7 Timing for the lock bit program

Read Lock Bit Status Command

This command reads the lock bit status of the specified block. Execute the read lock bit status command as explained here following.

- (1) Transfer the "7116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) The lock bit data of the specified block is output with the 4th byte. The 6th bit (D6) of output data is the lock bit data. Write the highest address of the specified block for addresses A8 to A23.

CLK1	
RxD1 (M16C reception data)	$\left(\begin{array}{c} 7116 \\ A15 \\ A15 \\ A23 \end{array}\right) A16 to A23$
TxD1 (M16C transmit data)	DQ6
RTS1(BUSY)	

Figure 32.8 Timing for reading lock bit status

Lock Bit Enable Command

This command enables the lock bit in blocks whose bit was disabled with the lock bit disable command. The command code "7A16" is sent with the 1st byte of the serial transmission. This command only enables the lock bit function; it does not set the lock bit itself.

CLK1	
RxD1 (M16C reception data)	7A16
TxD1 (M16C transmit data)	
RTS1(BUSY)	

Figure 32.9 Timing for enabling the lock bit

Lock Bit Disable Command

This command disables the lock bit. The command code "7516" is sent with the 1st byte of the serial transmission. This command only disables the lock bit function; it does not set the lock bit itself. However, if an erase command is executed after executing the lock bit disable command, "0" (locked) lock bit data is set to "1" (unlocked) after the erase operation ends. In any case, after the reset is cancelled, the lock bit is enabled.

CLK1	
RxD1 (M16C reception data)	7516
TxD1 (M16C transmit data)	
RTS1(BUSY)	

Figure 32.10 Timing for disabling the lock bit

Download Command

This command downloads a program to the RAM for execution. Execute the download command as explained here following.

- (1) Transfer the "FA16" command code with the 1st byte.
- (2) Transfer the program size with the 2nd and 3rd bytes.
- (3) Transfer the check sum with the 4th byte. The check sum is added to all data sent with the 5th byte onward.
- (4) The program to execute is sent with the 5th byte onward.

When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.

CLK1	
RxD1 (M16C reception data)	FA16 Check Program data Data size (low)
TxD1 (M16C transmit data)	Data size (high)
RTS1(BUSY)	
Figure 32.11 Timing for downloa	ad

Version Information Output Command

This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following.

- (1) Transfer the "FB16" command code with the 1st byte.
- (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.

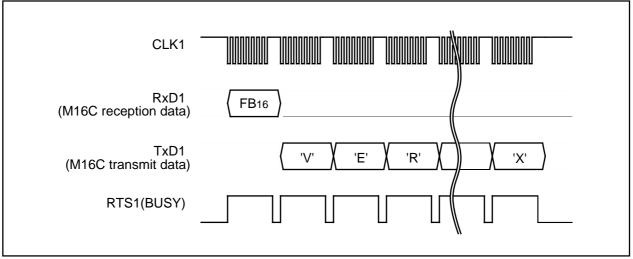


Figure 32.12 Timing for version information output

Boot ROM Area Output Command

This command outputs the control program stored in the boot ROM area in one page blocks (256 bytes). Execute the boot ROM area output command as explained here following.

- (1) Transfer the "FC16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.

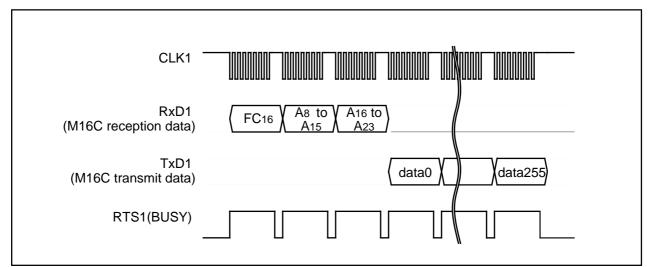


Figure 32.13 Timing for boot ROM area output

ID Check

This command checks the ID code. Execute the boot ID check command as explained here following.

- (1) Transfer the "F516" command code with the 1st byte.
- (2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 of the 1st byte of the ID code with the 2nd, 3rd and 4th bytes respectively.
- (3) Transfer the number of data sets of the ID code with the 5th byte.
- (4) The ID code is sent with the 6th byte onward, starting with the 1st byte of the code.

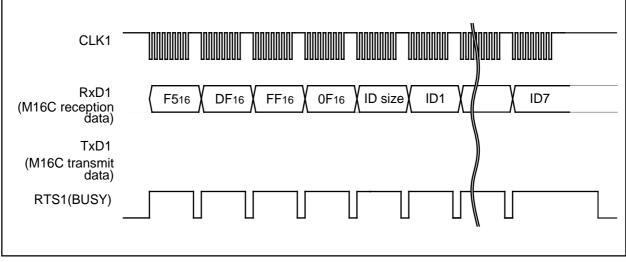


Figure 32.14 Timing for the ID check

ID Code

When the flash memory is not blank, the ID code sent from the peripheral units and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the peripheral units is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses 0FFFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFFB16. Write a program into the flash memory, which already has the ID code set for these addresses.

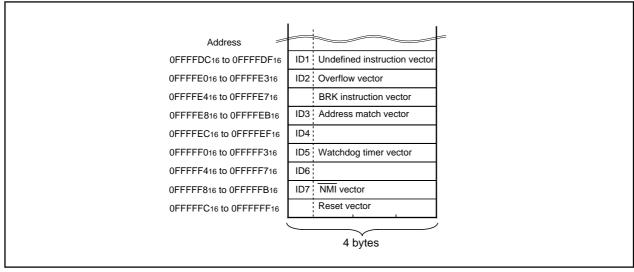


Figure 32.15 ID code storage addresses

Read Check Data

This command reads the check data that confirms that the write data, which was sent with the page program command, was successfully received.

- (1) Transfer the "FD16" command code with the 1st byte.
- (2) The check data (low) is received with the 2nd byte and the check data (high) with the 3rd.

To use this read check data command, first execute the command and then initialize the check data. Next, execute the page program command the required number of times. After that, when the read check command is executed again, the check data for all of the read data that was sent with the page program command during this time is read. The check data is the result of CRC operation of write data.

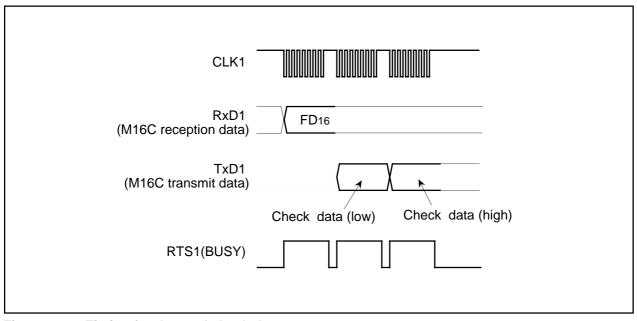


Figure 32.16 Timing for the read check data

Data Protection (Block Lock)

Each of the blocks in Figure 32.17 have a nonvolatile lock bit that specifies protection (block lock) against erasing/writing. A block is locked (writing "0" for the lock bit) with the lock bit program command. Also, the lock bit of any block can be read with the read lock bit status command.

Block lock disable/enable is determined by the status of the lock bit itself and execution status of the lock bit disable and lock enable bit commands.

- (1) After the reset has been cancelled and the lock bit enable command executed, the specified block can be locked/unlocked using the lock bit (lock bit data). Blocks with a "0" lock bit data are locked and cannot be erased or written in. On the other hand, blocks with a "1" lock bit data are unlocked and can be erased or written in.
- (2) After the lock bit enable command has been executed, all blocks are unlocked regardless of lock bit data status and can be erased or written in. In this case, lock bit data that was "0" before the block was erased is set to "1" (unlocked) after erasing, therefore the block is actually unlocked with the lock bit.

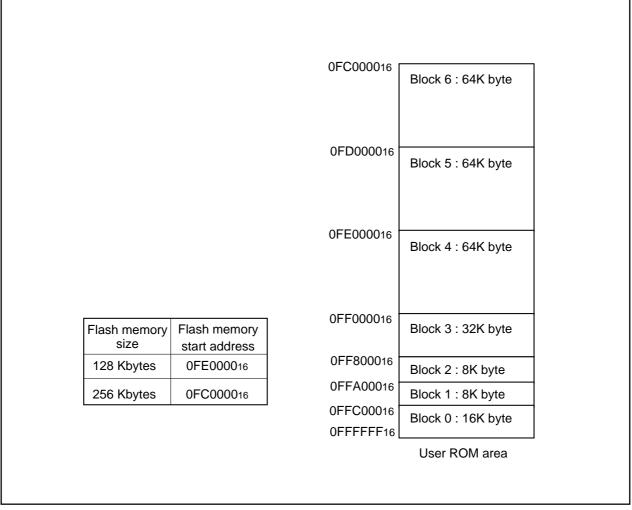


Figure 32.17 Blocks in the user area

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase operation or a program ended successfully or in error. It can be read by writing the read status register command (7016). Also, the status register is cleared by writing the clear status register command (5016). Table 32.2 gives the definition of each status register bit. After clearing the reset, the status register outputs "8016".

Table 32.2 Status register (SRD)

		Definition			
SRD0 bits	Status name	"1"	"0"		
SR7 (bit7)	Write state machine (WSM) status	Ready	Busy		
SR6 (bit6)	Reserved	-	-		
SR5 (bit5)	Erase status	Terminated in error	Terminated normally		
SR4 (bit4)	Program status	Terminated in error	Terminated normally		
SR3 (bit3)	Block status after program	Terminated in error	Terminated normally		
SR2 (bit2)	Reserved	-	-		
SR1 (bit1)	Reserved	-	-		
SR0 (bit0)	Reserved	-	-		

Write State Machine (WSM) Status (SR7)

The write state machine (WSM) status indicates the operating status of the flash memory. When power is turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation, but it is set back to "1" when the operation ends.

Erase Status (SR5)

The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)

The program status reports the operating status of the auto write operation. If a write error occurs, it is set to "1". When the program status is cleared, it is set to "0".

Program Status After Program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the page program, block erase, erase all unlocked blocks and lock bit program commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register.

RENESAS

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from check sum comparisons. It can be read after the SRD by writing the read status register command (7016). Also, status register 1 is cleared by writing the clear status register command (5016).

Table 31.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and the flag status is maintained even after the reset.

SRD1 bits		Definition			
SRUTDIIS	Status name	"1"	"0"		
SR15 (bit7)	Boot update completed bit	Update completed	Not update		
SR14 (bit6)	Reserved	-	-		
SR13 (bit5)	Reserved	-	-		
SR12 (bit4)	Checksum match bit	Match	Mismatch		
SR11 (bit3)	ID check completed bits		/erified		
SR10 (bit2)			ication mismatch		
			erved		
		11 Verified			
SR9 (bit1)	Data receive time out	Time out	Normal operation		
SR8 (bit0)	Reserved	-	-		

Table 32.3 Status register 1 (SRD1)

Boot Update Completed Bit (SR15)

This flag indicates whether the control program was downloaded to the RAM or not, using the download function.

Check Sum Consistency Bit (SR12)

This flag indicates whether the check sum matches or not when a program, is downloaded for execution using the download function.

ID Check Completed Bits (SR11 and SR10)

These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)

This flag indicates when a time out error is generated during data reception. If this flag is attached during data reception, the received data is discarded and the microcomputer returns to the command wait state.

Full Status Check

Results from executed erase and program operations can be known by running a full status check. Figure 32.18 shows a flowchart of the full status check and explains how to remedy errors which occur.

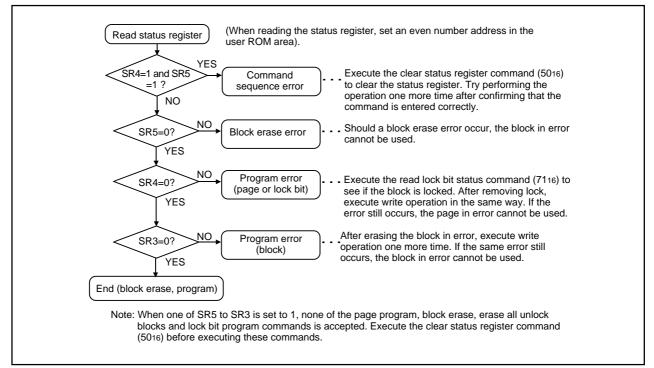


Figure 32.18 Full status check flowchart and remedial procedure for errors

Example Circuit Application for The Standard Serial I/O Mode 1

The below figure shows a circuit application for the standard serial I/O mode 1. Control pins will vary according to peripheral unit (programmer), therefore see the peripheral unit (programmer) manual for more information.

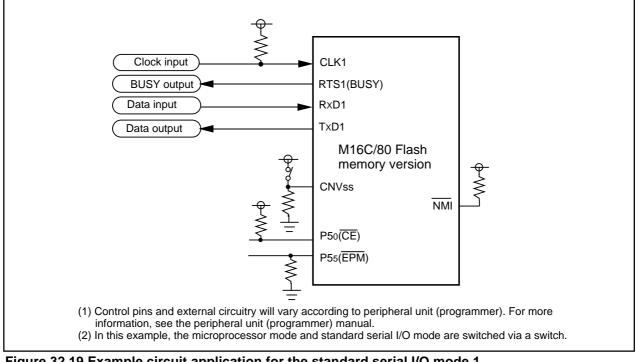
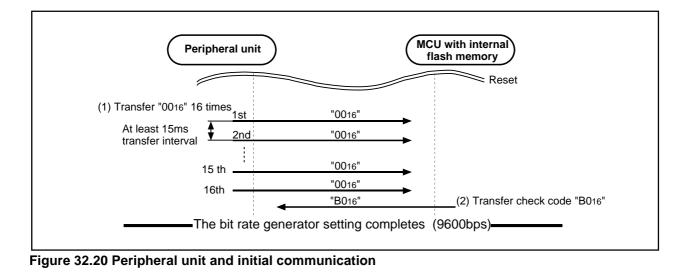


Figure 32.19 Example circuit application for the standard serial I/O mode 1

32.2 Overview of standard serial I/O mode 2 (clock asynchronized)

In standard serial I/O mode 2, software commands, addresses and data are input and output between the MCU and peripheral units (serial programer, etc.) using 2-wire clock-asynchronized serial I/O (UART1). Standard serial I/O mode 2 is engaged by releasing the reset with the P65 (CLK1) pin "L" level.

The TxD1 pin is for CMOS output. Data transfer is in 8-bit units with LSB first, 1 stop bit and parity OFF. After the reset is released, connections can be established at 9,600 bps when initial communications (Figure 32.20) are made with a peripheral unit. However, this requires a main clock with a minimum 2 MHz input oscillation frequency. Baud rate can also be changed from 9,600 bps to 19,200, 38,400, 57,600 or 115,200 bps by executing software commands. However, communication errors may occur because of the oscillation frequency of the main clock. If errors occur, change the main clock's oscillation frequency and the baud rate.


After executing commands from a peripheral unit that requires time to erase and write data, as with erase and program commands, allow a sufficient time interval or execute the read status command and check how processing ended, before executing the next command.

Data and status registers in memory can be read after transmitting software commands. Status, such as the operating state of the flash memory or whether a program or erase operation ended successfully or not, can be checked by reading the status register. Here following are explained initial communications with peripheral units, how frequency is identified and software commands.

Initial communications with peripheral units

After the reset is released, the bit rate generator is adjusted to 9,600 bps to match the oscillation frequency of the main clock, by sending the code as prescribed by the protocol for initial communications with peripheral units (Figure 32.20).

- (1) Transmit "0016" from a peripheral unit 16 times. (The MCU with internal flash memory sets the bit rate generator so that "0016" can be successfully received.)
- (2) The MCU with internal flash memory outputs the "B016" check code and initial communications end successfully *¹. Initial communications must be transmitted at a speed of 9,600 bps and a transfer interval of a minimum 15 ms. Also, the baud rate at the end of initial communications is 9,600 bps.
- *1. If the peripheral unit cannot receive "B016" successfully, change the oscillation frequency of the main clock.

How frequency is identified

When "0016" data is received 16 times from a peripheral unit at a baud rate of 9,600 bps, the value of the bit rate generator is set to match the operating frequency (2 - 20 MHz). The highest speed is taken from the first 8 transmissions and the lowest from the last 8. These values are then used to calculate the bit rate generator value for a baud rate of 9,600 bps.

Baud rate cannot be attained with some operating frequencies. Table 32.4 gives the operation frequency and the baud rate that can be attained for.

Operation frequency (MHz)	Baud rate 9,600bps	Baud rate 19,200bps	Baud rate 38,400bps	Baud rate 57,600bps	Baud rate 115,200bps
20MHz	\checkmark		\checkmark		
16MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
12MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
11MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
10MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
8MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
7.3728MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
6MHz	\checkmark	\checkmark	\checkmark	-	_
5MHz	\checkmark	\checkmark	\checkmark	-	_
4.5MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
4.194304MHz	\checkmark	\checkmark	\checkmark	-	_
4MHz	\checkmark	\checkmark	_	_	-
3.58MHz	\checkmark	\checkmark	\checkmark	\checkmark	_
3MHz	\checkmark	\checkmark		_	_
2MHz	\checkmark	_	_	_	_

Table 32.4 Operation frequency and the baud rate

 $\sqrt{1}$: Communications possible

-: Communications not possible

5

6

7

8

9

Read status register

Clear status register

Read lock bit status

Lock bit program

Lock bit enable

When ID is not verified

Not

acceptable

Not

acceptable

Not acceptable Not

acceptable

Acceptable

Not

acceptable

Not

acceptable

Not

acceptable Not

Software Commands

Table 32.5 lists software commands. In the standard serial I/O mode 2, erase operations, programs and reading are controlled by transferring software commands via the RxD1 pin. Standard serial I/O mode 2 adds five transmission speed commands - 9,600, 19,200, 38,400, 57,600 and 115,200 bps - to the software commands of standard serial I/O mode 1. Software commands are explained here below.

SRD1

output

Address

(high)

Address

(high)

Lock bit

data

output D016

	Control command	1st byte transfer	2nd byte	3rd byte	4th byte	5th byte	6th byte		
1	Page read	FF ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	
2	Page program	41 ₁₆	Address (middle)	Address (high)	Data input	Data input	Data input	Data input to 259th byte	
3	Block erase	20 ₁₆	Address (middle)	Address (high)	D016				
4	Erase all unlocked blocks	A7 ₁₆	D0 ₁₆						

SRD

output

Address

(middle)

Address

(middle)

Table 32.5 Software	commands ((Standard	serial I/O	mode 2)
Table JZ.J Soltware	commanus (Stanuaru	Senai i/O	

7016

5016

7116

7716

9	Look hit opoblo								1101
9	Lock bit enable	7A ₁₆							acceptable
10	Lock bit disable	7516							Not
		1016	Address	Address					acceptable
11	Code processing function	F516	Address (low)	Address (middle)	Address (high)	ID size	ID1	To ID7	Acceptable
12	Download function	FA ₁₆	Size (low)	Size (high)	Check- sum	Data input	To required number		Not acceptable
							of times		
13	Version data output function	FB ₁₆	Version data	Version data	Version data	Version data	Version data	Version data	Acceptable
			output	output	output	output	output	output to 9th byte	
14	Boot ROM area output	F 0	Address	Address	Data	Data	Data	Data	Not
14	function	FC ₁₆	(middle)	(high)	output	output	output	output to 259th byte	acceptable
15	Read check data	FD ₁₆	Check data (low)	Check data (high)					Not acceptable
16	Baud rate 9600	B016	B0 ₁₆						Acceptable
17	Baud rate 19200	B1 ₁₆	B1 ₁₆						Acceptable
18	Baud rate 38400	B216	B2 ₁₆						Acceptable
19	Baud rate 57600	B3 ₁₆	B3 ₁₆						Acceptable
20	Baud rate 115200	B4 ₁₆	B4 ₁₆						Acceptable

Note 1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is trans-

ferred from the peripheral unit to the flash memory microcomputer.

Note 2: SRD refers to status register data. SRD1 refers to status register data 1.

Note 3: All commands can be accepted when the flash memory is totally blank.

Page Read Command

This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following.

- (1) Transfer the "FF16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the rise of the clock.

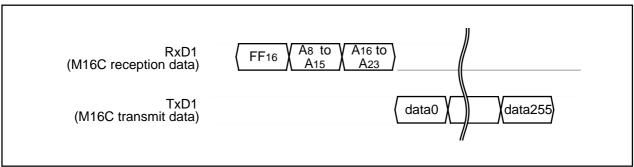


Figure 32.21 Timing for page read

Read Status Register Command

This command reads status information. When the "7016" command code is sent with the 1st byte, the contents of the status register (SRD) specified with the 2nd byte and the contents of status register 1 (SRD1) specified with the 3rd byte are read.

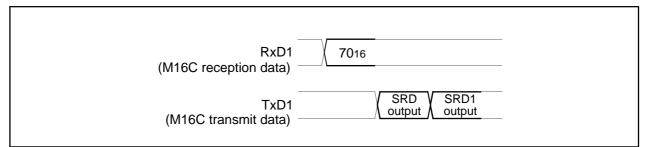


Figure 32.22 Timing for reading the status register

Clear Status Register Command

This command clears the bits (SR3–SR5) which are set when the status register operation ends in error. When the "5016" command code is sent with the 1st byte, the aforementioned bits are cleared.

RxD1 (M16C reception data)	5016
TxD1 (M16C transmit data)	

Figure 32.23 Timing for clearing the status register

Page Program Command

This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following.

- (1) Transfer the "4116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, as write data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written.

The result of the page program can be known by reading the status register. For more information, see the section on the status register.

Each block can be write-protected with the lock bit. For more information, see the section on the data protection function. Additional writing is not allowed with already programmed pages.

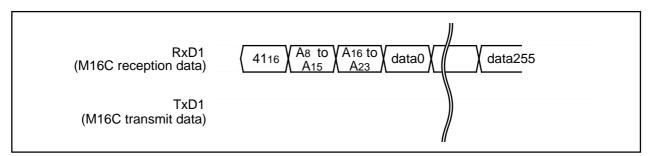
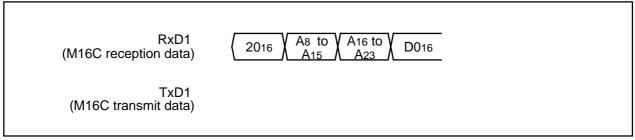


Figure 32.24 Timing for the page program


Block Erase Command

This command erases the data in the specified block. Execute the block erase command as explained here following.

- (1) Transfer the "2016" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, the erase operation will start for the specified block in the flash memory. Write the highest address of the specified block for addresses A16 to A23.

After block erase ends, the result of the block erase operation can be known by reading the status register. For more information, see the section on the status register.

Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

Figure 32.25 Timing for block erasing

Erase All Unlocked Blocks Command

This command erases the content of all blocks. Execute the erase all unlocked blocks command as explained here following.

- (1) Transfer the "A716" command code with the 1st byte.
- (2) Transfer the verify command code "D016" with the 2nd byte. With the verify command code, the erase operation will start and continue for all blocks in the flash memory.

The result of the erase operation can be known by reading the status register. Each block can be eraseprotected with the lock bit. For more information, see the section on the data protection function.

RxD1 (M16C reception data)	A716 D016
TxD1 (M16C transmit data)	

Figure 32.26 Timing for erasing all unlocked blocks

Lock Bit Program Command

This command writes "0" (lock) for the lock bit of the specified block. Execute the lock bit program command as explained here following.

- (1) Transfer the "7716" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, "0" is written for the lock bit of the specified block. Write the highest address of the specified block for addresses A8 to A23.

Lock bit status can be read with the read lock bit status command. For information on the lock bit function, reset procedure and so on, see the section on the data protection function.

RxD1 (M16C reception data)	$\left(\begin{array}{c} 7716 \\ A15 \\ A15 \\ A23 \\ A23 \\ C016 \\ C016$	
TxD1 (M16C transmit data)		

Figure 32.27 Timing for the lock bit program

Read Lock Bit Status Command

This command reads the lock bit status of the specified block. Execute the read lock bit status command as explained here following.

- (1) Transfer the "7116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) The lock bit data of the specified block is output with the 4th byte. Write the highest address of the specified block for addresses A8 to A23.

RxD1 (M16C reception data)	$\left(\begin{array}{c} 71_{16} \\ A_{15} \\ A_{15} \\ A_{23} \end{array}\right) A_{16} A_{23} A_{$
TxD1 (M16C transmit data)	DQ6

Figure 32.28 Timing for reading lock bit status

Lock Bit Enable Command

This command enables the lock bit in blocks whose bit was disabled with the lock bit disable command. The command code "7A16" is sent with the 1st byte of the serial transmission. This command only enables the lock bit function; it does not set the lock bit itself.

RxD1 (M16C reception data)	7A16
TxD1 (M16C transmit data)	

Figure 32.29 Timing for enabling the lock bit

Lock Bit Disable Command

This command disables the lock bit. The command code "7516" is sent with the 1st byte of the serial transmission. This command only disables the lock bit function; it does not set the lock bit itself. However, if an erase command is executed after executing the lock bit disable command, "0" (locked) lock bit data is set to "1" (unlocked) after the erase operation ends. In any case, after the reset is cancelled, the lock bit is enabled.

RxD1 (M16C reception data)	7516
TxD1 (M16C transmit data)	

Figure 32.30 Timing for disabling the lock bit

Download Command

This command downloads a program to the RAM for execution. Execute the download command as explained here following.

- (1) Transfer the "FA16" command code with the 1st byte.
- (2) Transfer the program size with the 2nd and 3rd bytes.
- (3) Transfer the check sum with the 4th byte. The check sum is added to all data sent with the 5th byte onward.
- (4) The program to execute is sent with the 5th byte onward.

When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.

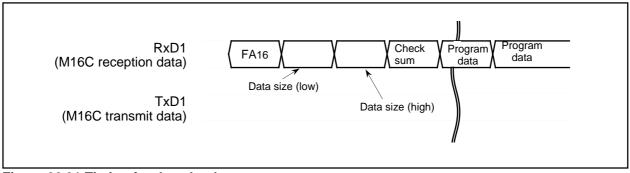


Figure 32.31 Timing for download

Version Information Output Command

This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following.

- (1) Transfer the "FB16" command code with the 1st byte.
- (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.

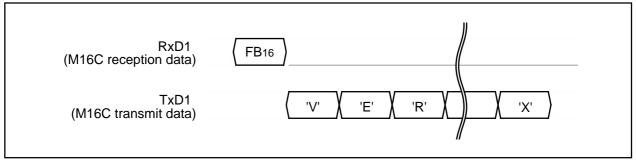


Figure 32.34 Timing for version information output

Boot ROM Area Output Command

This command outputs the control program stored in the boot ROM area in one page blocks (256 bytes). Execute the boot ROM area output command as explained here following.

- (1) Transfer the "FC16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.

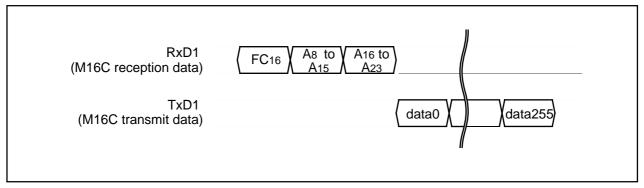


Figure 32.33 Timing for boot ROM area output

ID Check

This command checks the ID code. Execute the boot ID check command as explained here following.

- (1) Transfer the "F516" command code with the 1st byte.
- (2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 of the 1st byte of the ID code with the 2nd, 3rd and 4th bytes respectively.
- (3) Transfer the number of data sets of the ID code with the 5th byte.
- (4) The ID code is sent with the 6th byte onward, starting with the 1st byte of the code.

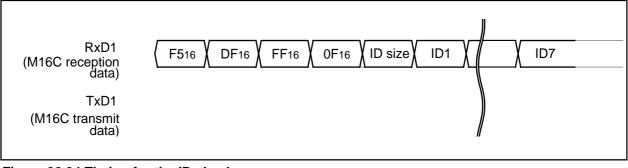


Figure 32.34 Timing for the ID check

ID Code

When the flash memory is not blank, the ID code sent from the peripheral units and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the peripheral units is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses 0FFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFFB16. Write a program into the flash memory, which already has the ID code set for these addresses.

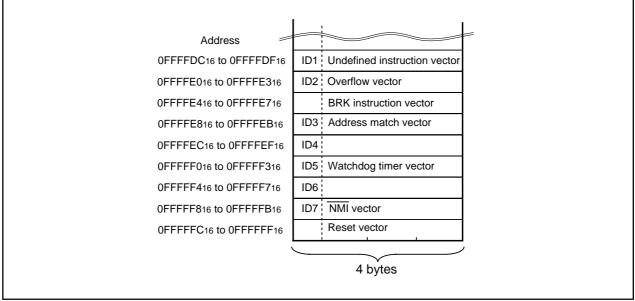
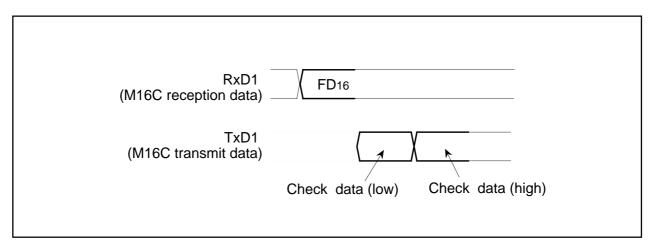


Figure 32.35 ID code storage addresses



Read Check Data

This command reads the check data that confirms that the write data, which was sent with the page program command, was successfully received.

- (1) Transfer the "FD16" command code with the 1st byte.
- (2) The check data (low) is received with the 2nd byte and the check data (high) with the 3rd.

To use this read check data command, first execute the command and then initialize the check data. Next, execute the page program command the required number of times. After that, when the read check command is executed again, the check data for all of the read data that was sent with the page program command during this time is read. The check data is the result of CRC operation of write data.

Figure 32.36 Timing for the read check data

Baud Rate 9600

This command changes baud rate to 9,600 bps. Execute it as follows.

- (1) Transfer the "B016" command code with the 1st byte.
- (2) After the "B016" check code is output with the 2nd byte, change the baud rate to 9,600 bps.

RxD1 (M16C reception data)	B016
TxD1 (M16C transmit data)	B016

Figure 32.37 Timing of baud rate 9600

Baud Rate 19200

This command changes baud rate to 19,200 bps. Execute it as follows.

- (1) Transfer the "B116" command code with the 1st byte.
- (2) After the "B116" check code is output with the 2nd byte, change the baud rate to 19,200 bps.

RxD1 (M16C reception data)	(B116)
TxD1 (M16C transmit data)	B116

Figure 32.38 Timing of baud rate 19200

Baud Rate 38400

This command changes baud rate to 38,400 bps. Execute it as follows.

- (1) Transfer the "B216" command code with the 1st byte.
- (2) After the "B216" check code is output with the 2nd byte, change the baud rate to 38,400 bps.

RxD1 (M16C reception data)	B216
TxD1 (M16C transmit data)	B216

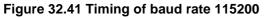
Baud Rate 57600

This command changes baud rate to 57,600 bps. Execute it as follows.

- (1) Transfer the "B316" command code with the 1st byte.
- (2) After the "B316" check code is output with the 2nd byte, change the baud rate to 57,600 bps.

RxD1 (M16C reception data)	B316
TxD1 (M16C transmit data)	B316

Figure 32.40 Timing of baud rate 57600


Baud Rate 115200

This command changes baud rate to 115,200 bps. Execute it as follows.

(1) Transfer the "B416" command code with the 1st byte.

(2) After the "B416" check code is output with the 2nd byte, change the baud rate to 19,200 bps.

RxD1 (M16C reception data)	(B416)
TxD1 (M16C transmit data)	B416

Example Circuit Application for The Standard Serial I/O Mode 2

The below figure shows a circuit application for the standard serial I/O mode 2.

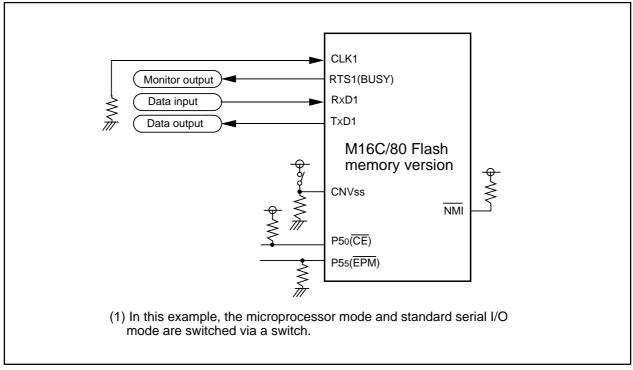


Figure 32.42 Example circuit application for the standard serial I/O mode 2

33. Appendix External ROM version with built-in boot loader

External ROM version of M16C/80 is available with built-in boot loader (firmware). By using the boot loader, users can download their rewrite program of Flash memory to the internal RAM. When using the following Flash memory*, reprogramming of the external Flash memory can be done without downloading the rewrite program.

For more detail, please refer to the "Volume Boot Loader" in the application note of M16C/80 external ROM version.

*: M5M29GB/T160BVP, M5M29GB/T320BVP and the equivalent of these.

The following shows Renesas plans to develop a line of M16C/80 products with built-in boot loader.

(1) ROM capacity

(2) Package 100P6S-A ... Plastic molded QFP 100P6Q-A ... Plastic molded QFP 144P6Q-A ... Plastic molded QFP

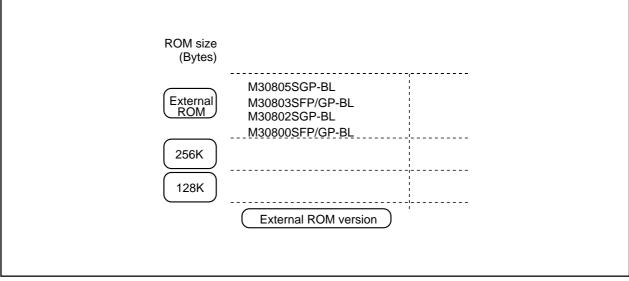
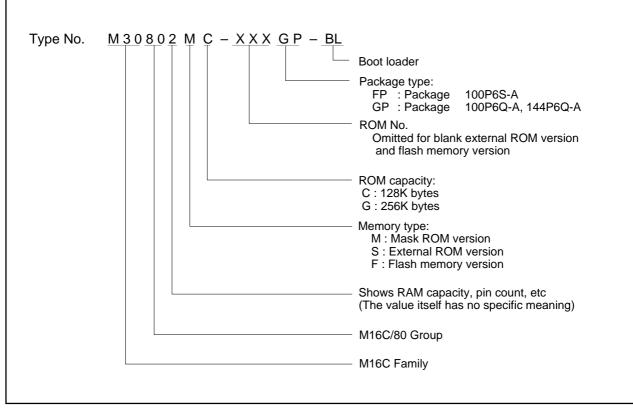
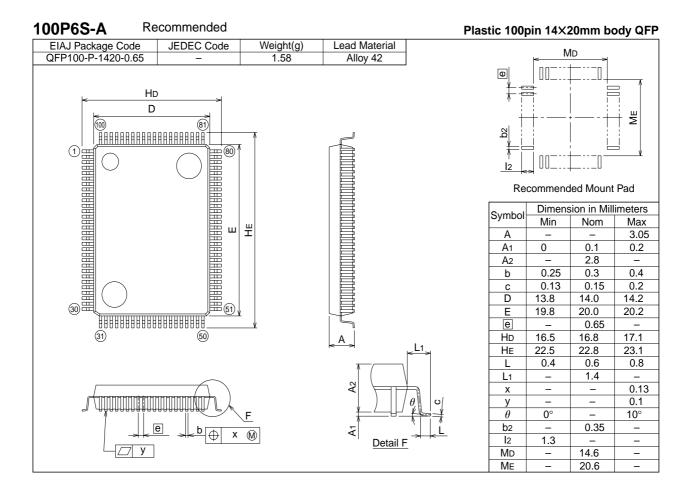


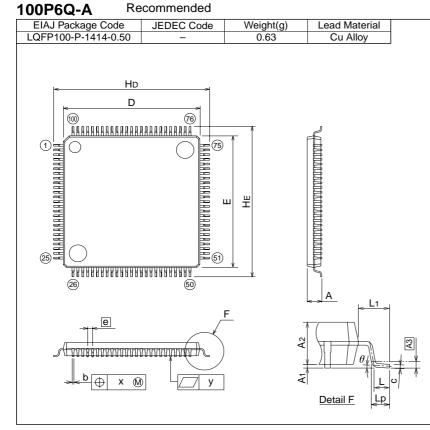
Figure 33.1 ROM Expansion

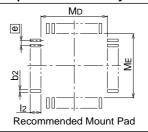
The following lists the M16C/80 products to be supported in the future.

Table 33.1 Product List

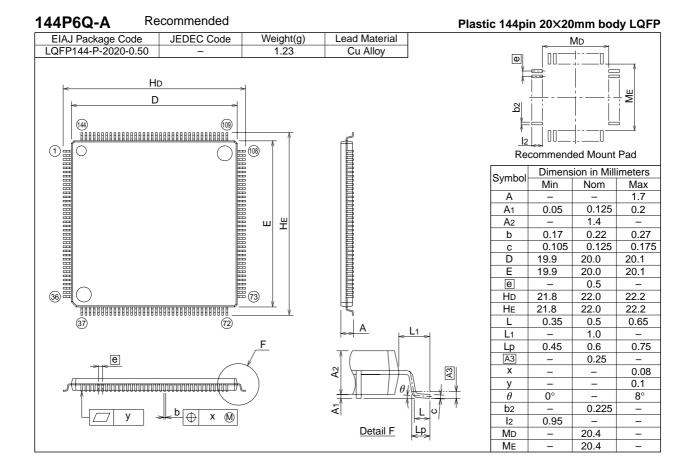
Type No	ROM capacity	RAM capacity	Package type	Remarks
M30800SFP-BL		10 Kbytes	100P6S-A	External ROM version
M30800SGP-BL		,	100P6Q-A	with built-in boot loader
M30802SGP-BL			144P6Q-A	
M30803SFP-BL		24 Kbytes	100P6S-A	
M30803SGP-BL			100P6Q-A	
M30805SGP-BL			144P6Q-A	


Figure 33.2 Type No., memory size, and package



Package Dimension


Plastic 100pin 14×14mm body LQFP

Symbol	Dimension in Millimeters		
Symbol	Min	Nom	Max
Α	-	-	1.7
A1	0	0.1	0.2
A2	_	1.4	-
b	0.13	0.18	0.28
С	0.105	0.125	0.175
D	13.9	14.0	14.1
E	13.9	14.0	14.1
е	_	0.5	-
HD	15.8	16.0	16.2
HE	15.8	16.0	16.2
L	0.3	0.5	0.7
L1	_	1.0	_
Lp	0.45	0.6	0.75
A3	_	0.25	-
х	_	-	0.08
У	—	-	0.1
θ	0°	-	10°
b2	_	0.225	_
l2	0.9	_	-
Md	_	14.4	-
ME	_	14.4	_

Rev.1.00 Aug. 02, 2005 Page 327 of 329 REJ09B0187-0100

Register Index

Α

AD0 to AD7 169 ADCON0 168, 170, 171, 172, 173, 174 ADCON1 168, 170, 171, 172, 173, 174 ADCON2 169 ADIC 63 AIER 73

В

BCN2IC to BCN4IC 63

С

CM0 46, 79 CM1 46 CPSRF 96, 107 CRCD 178 CRCIN 178

D

DA0 to DA1 DACON **177** DCT0 to DCT3 DM0IC to DM3IC DM0SL to DM3SL DMA0 to DMA3 DMD0 to DMD1 DRA0 to DRA3 DRAMCONT **183** DRC0 to DRC3 DS **31** DSA0 to DSA3 DTT **113**

F

FMR0 to FMR1 276

I

ICTB2 **113** IDB0 to IDB1 **113** IFSR **71** INT0IC to INT5IC **63** INVC0 to INVC1 **112** Κ KUPIC 63 Μ MCD 47 0 ONSF 96 Ρ P0 to P10 197 P11 198 P12 to P13 197 P14 198 P15 197 PCR 206 PD0 to PD10 195 PD11 196 PD12 to P13 195 196 PD14 PD15 195 PM0 27 PM1 28 PRCR 55 PS0 to PS1 200 PS2 to PS3 201 PSC 203 PSL0 PSL2 202 PSL3 203 PUR0 to PUR2 204 PUR3 to PUR4 205

R

REFCNT **185** RLVL **49**, **64** RMAD0 to RMAD3 **73** ROMCP **288**

S

 SORIC to S4RIC
 63

 S0TIC to S4TIC
 63

Т

TA0,TA3 95 TA0IC to TA4IC 63 TA0MR to TA4MR 94, 97, 98, 103, 104 TA1,TA2,TA4 95, 114 TA11,TA21,TA41 114 TA1MR,TA2MR,TA4MR 115 TA2MR to TA4MR 100 TABSR 95, 107, 114 TB0,TB1,TB3,TB4,TB5 107 TB0IC to TB5IC 63 TB0MR to TB5MR 106, 108, 109, 110 TB2 107, 114 TB2MR 115 TBSR 107 TRGSR 96, 114

U

U0BRG to U4BRG 129 U0C0 to U2C0 131 U0C1 to U4C1 133 U0MR to U4MR 130, 139, 146 U0RB to U4RB 129 U0TB to U4RB 129 U2SMR to U4SMR 134, 156 U2SMR2 to U4SMR2 135, 156 U2SMR3 136 U3C0 to U4C0 132 U3SMR3 to U4SMR3 136, 163 UCON 134 UDF 95

W

WCR **40** WDC **79** WDTS **79**

Х

X0R to X15R 181 XYC 180

Υ

YOR to Y15R 181

Contents for change	Revision date
 Page 1 line 5 1 M byte> 16 M bytes Page 1 line 15 10 MHz with software one wait> 10 MHz : under planning Page 1 line 16 35 mW (f(XIN)=20MHz, without software wait, Vcc=5V; M30800MC-XXXFP target value)> 45 mA (M30800MC-XXXFP) Page 1 X-Y converter 1 circuit Addition Page 4 line 28 35 mA> 45 mA Page 6 figure 1.1.4 Page 18 figure 1.5.4 and corresponding pages (106) Peripheral subfunction select register> Function select register C (107) Port function select register 0> Function select register A0 (108) Port function select register 1> Function select register B1 (110) Peripheral function select register 1> Function select register B1 	'98. 10.19
 (111) For function select register 2> Function select register A2 (112) Port function select register 3> Function select register A3 (113) Peripheral function select register 2> Function select register B2 Page 21 figure 1.6.3 Register name change same as figure 1.5.4 Page 24 figure 1.8.1 Processor mode register 0 Note 6> Note 7, Note 6 Addition Processor mode register 1 Note 3 	
 Addition: The ALE signal is occurred regardless of internal area and external area. Page 31 table 1.10.4, Page 33 table 1.10.5 R/W> RD/WR Page 42 table 1.11.4 System clock control register 0 Note 2 Page 51 line 7, table 1.15.1 port function select register 3 (address 03B516)> port function select register 3 (address 04B516)> port function select register 3	
 Page 60 line 3 the interrupt occurs> the interrupt can be set to occur on input signal level and input signal edge. Page 65 line 10 Set register> When writing to DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3, set register Page 67 table 1.20.2 Addition: Note 5 Page 86 line 1 successively when> successively two times when 	
tion select register A to I/O port.) • Page 114 table 1.25.6, page 122 table 1.26.1 UARTi transmit/receive mode register Addition: Note 2 UARTi transmit/receive mode register Addition: Note 3 • Page 115 table 1.25.7 UARTi transmit/receive mode register 0 Delate: Note 3	
 Page 123 table 1.26.3 Page 130 table 1.27.3 Page 139 figure 1.29.2 Page 142 line 2 062316> 032616 Page 144 table 1.29.5 Page 156 table 1.31.2 D/A control register (Note) Addition: Note Page 164 figure 1.34.2 16-bit bus mode A9> Ā9 	
	 Page 1 line 15 10 MHz with software one wait -> 10 MHz : under planning Page 1 line 16 35 mW (f(XIN)=20MHz, without software wait, Vcc=5V; M30800MC-XXXFP) Page 1 X-Y converter 1 circuit Addition Page 4 line 28 35 mA -> 45 mA Page 6 figure 1.1.4 Page 18 figure 1.5.4 and corresponding pages (106) Peripheral subfunction select register -> Function select register C (107) Port function select register 1> Function select register A0 (108) Port function select register 1> Function select register A1 (109) Peripheral function select register 1> Function select register B1 (111) Port function select register 2> Function select register B1 (112) Port function select register 3> Function select register A3 (113) Peripheral function select register 3> Function select register B2 Page 21 figure 1.8.1 Processor mode register 0 Note 6> Note 7, Note 6 Addition Processor mode register 1 Note 3 Page 31 line 4 Addition: The ALE signal is occurred regardless of internal area and external area. Page 31 line 4 Addition: The ALE signal is occurred regardless 03B516)> port function select register 3 (address 03B516) and D/A control register (address 039C16) Page 60 line 3 the interrupt occurs> the interrupt can be set to occur on input signal level and input signal edge. Page 61 line 1 successively when -> successively two times when Page 61 line 1 Successively when -> successively two times when Page 114 table 1.25.6, page 122 table 1.26.1 UARTi transmit/receive mode register Addition: Note 3 Page 133 figure 1.28.3 Page 133 table 1.25.7 Page 133 table 1.25.7 Page 133 figure 1.29.5 Page 135 table 1.29.5 Page 135 table 1.29.5

Version	Contents for change	Revision date
REV.B	 Page 165 figure 1.34.3 operation clock> BCLK Page 169 	'98.10.19
	they function as output regardless of the contents of the direction registers. When pins	
	are to be used as the outputs for the D/A converter, do not set the direction registers to	
	output mode.	
	>	
	set the corresponding function select registers A, B and C. When pins are to be used	
	as the outputs for the D/A converter, set the function select register of each pin to I/O	
	port, and set the direction registers to input mode.	
	Table 1.35.1 lists each port and peripheral function.	
REV.C	All page M30800MC-XXXFP> M16C/80 (100-pin version) group	'98.3.2
	Page 2 Figure 1 changed, GP package is added	
	Page 3 Figure 3 Note 1 and Note 2 is added	
	Page 5 Figure 4, Table 2 New type no. is added	
	Page 6 Figure 5 GP is added	
	Page 10 Line 2 18 registers> 28 registers	
	Page 11 (7) Set USP and ISP to an even number so that execution efficiency is increased.	
	> added	
	Page 17 Figure 11 (54) UART4 special mode register 3> added	
	Page 18 Figure 12	
	UART3 special mode register 3> added	
	UART2 special mode register 3> added	
	Function select register B3> added	
	Page 20 Figure 14	
	UART4 special mode register 3> added	
	UART3 special mode register 3> added	
	UART2 special mode register 3> added	
	Page 21 Figure 15 Function select register B3> added	
	Page 24 Figure 23 PM1 Note 4>added	
	Page 31 Figure 26	
	Page 45 Table 14, Page 46 Table 15 Note> added	
	Page 50 Figure 32-4 Changed	
	Page 51 Line 6 port function select register 3> function select register A3	
	Page 52 Line 17 FFFE416 to FFFFE716 are all> FFFFE716 is	
	Page 53 Table 17 BRK instruction	
	If the vector is> If the contents of FFFFE716 is	
	Page 53 Table 18 Instruction fetch and DBC> delated Page 58 Figure 36 IPL> RLVL	
	Page 61 Figure 38 004D16> 009316 Page 67 Figure 44-1Note 3 and 6> added	
	Page 68 Figure 45 memory> memory (forward direction)	
	Page 86 Figure 45 memory> memory (forward direction) Page 70 Figure 46-2DMAi memory address reload register Note:	
	vector register (SVP)> save PC register (SVP)	
	Page 84 Figure 56 Note 4 addresses 034216 and 034316> address 034316	
	Page 93 Table 30 Count source: TBj overflow> added	
	Page 96 Figure 69	
	Three-phase PWM control register 0 Note 4:both bit 0 and 1> bit 1	

Version	Contents for change	Revision date
REV.C	Three-phase PWM control register 1 Page 100 Line 1 In three-phase> In "L" active output polarity in three-phase Page 100 Line 26,31 the state of set by port direction register> the high-impedance state Page 101 Figure 73 Right: INV14> added Page 103 Figure 74 Page 108 Table 32 UART4 LSB first/MSB first selection : Note 1> Note 2 Page 118 Figure 83 UART transmit/receive control register 2 Page 119 Figure UART 3,4 special mode register 3> added Page 126 Line 3 CLK and CLKS select bit (bits 4 and 5 at address 037016)> port function select register (bits of related to-P64 and P65) Page 145 Page 176 Table 124 P91: STxD3 output> added Page 178 Figure 125-2 Function select register A3 Page 179 Figure 125-3 Function select register B0 Page 180 Figure 125-4 Function select register B3 Page 187 A/D Converter (5)	'98.3.2
	Page 187 A/D Converter (5) Page 188 DMAC Page 1 Supply voltage 4.0V-5.5V, Mask ROM version is added. Page 5 Table 1.1.1 DMAC 2 channels> 4 channels Page 8 P0 description is changed Page 9 P6 description is changed Page 9 P6 description is changed Page 10 Figure 1.2.1 M30800FC, M30803FG are added. Page 18 Figure 1.4.3 (15) DRAM control register 0XXX0000> ?XXX???? Page 19 Figure 1.4.3 (15) DRAM control register 0XXX0000> ?XXX???? Page 20 Figure 1.4.4 Delate Note, (143)-(147) 00> ?? Page 20 Figure 1.5.1 Add Note Page 25 Figure 1.6.1 Processor mode register 1 When reset 0016> C016 Page 30 Line 15 output to A9 to A20> A8 to A20 Page 32 Figure 1.7.2 Page 38 Figure 1.7.6 Page 38 Figure 1.8.1 and 1.8.2 Note Page 42 Page 43 Figure 1.8.5 Note 2, Line 6 Pin outputs "L" is delated. Page 45 Page 47 Line 15 as BCLK> as BCLK from the interrupt routine Table 1.8.3 Page 48 Status Transition of BCLK	'98.4.12

Version	Contents for change	Revision date
REV.C	Page 58 Table 1.9.3 Software interrupt number 40,41, Add fault error, Add Note 2 Page 59 Interrupt control register Line 4 delate Page 64 Interrupt sequence (1) Page 66 Saving registers Last line added Page 67 Interrupt Priority *1 delated, Last line added Page 72 (2) Setting the stack pointer Last line added Page 74 Watchdog timer Line 2	
	A watchdog timer interrupt is generated when> Whether a watchdog timer interrupt is generated or reset is selected when Last part :Watchdog timer function select bit is initialized only at reset. After reset, watchdog timer interrupt is selected. added	
	Page 75 Figure 75System clock control register 0 addedPage 97 Figure 1.13.9Count valuePage 181 Figure 1.25.4Page 182 Figure 1.25.5	
	Page 131 Figure 1.16.12Both register Note2 addedPage 135 Table 1.17.3RxDi bit 1 and 6 at address 03C716> bit 1 and 7Page 132 Table 1.18.3RxDi bit 1 and 6 at address 03C716> bit 1 and 7Page 147 Figure 1.19.1Upper figure changed, note addedPage 153Bit 4 overflow> underflow	
	Page 154 Figure 1.20.3 overflow> underflow Page 159 Clock phase setting UARTi transmission-reception control register 0, whereas UARTi special mode register 3> Bit 6 of UARTi transmission-reception control register 0, whereas bit 1 of UARTi special mode register 3	
	Line 15 output is high impedance> output is indeterminate. Page 171 Line 3 Set the function select register A to I/O port and the direction register to input mode. added	
	Page 171 Figure 1.22.2 Note delate Page 176 Figure 1.24.3 added Page 178 Figure 1.25.1 When reset> indeterminate, Note 4 is added. Page 200 Table 1.26.2 and 1.26.3 and Figure 1.26.14 CNVss is added Page 204- Electric characteristics added	
Rev.C1	Page 214 Table 1.28.22th(BCLK-DW) addPage 220 Figure 1.28.6th(BCLK-CAS)> th(BCLK-DW)Page 223 Figure 1.28.9WR, WRL, WRH(sepalate bus) wave change	99.5.12
Rev.C2	Page 24 Line 3 A software reset has almost the same> A software reset has the same	99.5.20
	Page 161 Note 2: When f(XIN) is over 10 MHz, the fAD frequency must be under 10 MHz by dividing> addition	99.6.4
	Page 18 Figure 1.4.3(60) Timer B3,4,5 count start flag value changePage 19 Figure 1.4.4Flash memory control register 0 and 1 addedPage 22 Figure 1.5.3Flash memory control register 0 and 1 added	99.7.6

Version	Contents for change	Revision date
	Page 43 Figure 1.8.4 CM0 Note 5 delate	
	Page 81 Figure 1.11.5 DMAi memory address reload register	
	Address DRA2, DRA3 0000016> XXXXXX16	
	Page 181, 182 Figures 1.25.4-1.25.5	
	D0-D15 waveform changed	
	Page 185 (6) Pull up control register changed	
	Page 208 Table 1.28.3	
	VT+-VT- TB0IN-TB2IN> TB0IN-TB5IN,	
	TA2out-TA4out> TA0out-TA4out	
	Page 211 Table 1.28.19	
	Page 212 Table 1.28.20	
	Page 213 Table 1.28.21	
	Page 214 Table 1.28.22	
	Page 216 Figure 1.28.2	
	Page 217 Figure 1.28.3	
	Page 218 Figure 1.28.4	
	Page 219 Figure 1.28.5	
	Page 220 Figure 1.28.6	
	Page 221 Figure 1.28.7	
	Page 223 Figure 1.28.9	
		00.0.24
Rev.C3	Flash memory ROM version added	99.9.24 99.12.8
	Page 2,3 Figure 1.1.1, 1.1.2 Japanese font change to English font	
Rev.D	Page 1 • DMAC4 channels (trigger: 24 sources)> 31 sources	14/3/'00
	 Supply voltage 4.2 to 5.5V (f(XIN)=20MHz) Flash memory version> addition 	
	 Interrupt4 software> 5 software 	
	Page 1,5 Table 1.1.1	
	Feature • Memory capacity ROM 128 Kbytes> (See ROM expansion figure.)	
	RAM 10K> 10/20 Kbytes	
	Page 5 Table 1.1.1 Interrupt4 software> 5 software	
	Page 2, 3 Figure 1.1.1, 1.1.2 Note 1 addition	
	Page 6 Figure 1.1.4, Table 1.1.2 M30803MG-XXXFP/GP addition	
	Page 7 Figure1.1.5 ROM capacity G:256 Kbytes addition	
	Page 8 P00 to P07	
	However, it is possible to select pull-up resistance presence to the usable port as I/O	
	port by setting> addition	
	CNVss Connect it to the Vss pin when operating in single-chip or memory	
	expansion mode. Connect it to the Vcc pin when in microprocessor mode>	
	Connect it to the Vss pin when operating in single-chip or memory expansion mode	
	after reset. Connect it to the Vcc pin when in microprocessor mode after reset.	
	BYTE When operating in single-chip mode, connect this pin to VSS> When	
	not using the external bus, connect this pin to VSS.	
	Page 9 P50 to P57 In single chip mode,> delate	
	Page 10 Figure 1.2.1 M30803FG> M30803MG/FG	
	Page 13 Figure 1.4.3 (2) processor mode register C016> 0016	
	Page 20 to 23 Figure 1.5.1 to 1.5.4 Note addition	

rsion	Contents for change	Revision date
	Page 25 Figure 1.6.1, 1.6.2 Figure 1.6.1 is divided to Figure 1.6.1and 1.6.2	
	Page 30 Table 1.7.4	
	Page 34 Figure 1.7.3 Note addition	
	Page 36 Line 3 the chip select control register> the wait control registe	
	Page 38, 39 Figure 1.7.6, 1.7.7 Note change	
	Page 42 Line 7 addition	
	When the main clock is stoped (bit 5 at address 000616 =1) or the mode is shifted to	
	stop mode (bit 0 at address 000716 =1), the main clock division register (address	
	000C16) is set to the divided-8 mode.	
	Page 42 (3)BCLK When shifting to stop mode,> When main clock is stoped or shifting to	
	stop mode,	
	Page 43 Figure 1.8.4 CM0 Note 6 change, Note 7, 8 addition, CM1 Note 4 addition	
	Page 44 Figure 1.8.5 Note 2 change	
	Page 48 Line 5 When shifting to stop mode and reset,> When shifting to stop mode,	
	reset or stopping main clock,	
	(12) Low power dissipation mode addition	
	When the main clock is stoped, the main clock division register (address 000C16) is	
	set to the division by 8 mode.	
	Page 51 Figure 1.8.7. Clock transition Note 3, 4 addition	
	Page 52 Line 9 addition	
	Page 54 Software Interrupts (2) Overflow interrupt, "CMPX" addition	
	Page 55 (2) Peripheral I/O interrupts	
	 Bus collision detection/start, stop condition (UART2, UART3, UART4) interrupts> 	
	change Page 57 • Variable vector tables addition	
	Set an even address to the start address of vector table setting in INTB so that operating efficiency is increased.	
	Page 58 Table 1.9.3	
	Bus collision detection/start, stop condition interrupts> Bus collision detection, start/	
	stop condition detection interrupts	
	Page 58 Table 1.9.3, page 68 Figure 1.9.8	
	Software interrupt number 40, 41 fault errir> addition	
	Page 71 Address match interrupt Line 7 addition Page 72 (3) The MI interrupt	
	 Do not reset the CPU with the input to the NMI pin being in the "L" state> • Signal of "L" level width more than 1 clock of CPU operation clock (BCLK) is necessary for 	
	Page 72 (4) External interrupt	
	Page 74 Figure 1.10.1	
	Page 76 Line 2	
	"DMAC is a function that to transmit 1 data of a source address (8 bits /16 bits) to a	
	destination address when transmission request occurs. " addition.	
	Page 76 Line 12 addition	
	When writing to DSA2 and DSA3, set register bank select flag (B flag) to "1" and use	
	LDC instruction to set SB and FB registers.	
	Page 76 Figure 1.11.1	
	Page 77 Table 1.11.1 Transfer memory space (16 Mbyte space)> addition	

Version		Contents for change	Revision date
	Page 78 Figure 1.11.2	Note :6 OR instruction> OR instruction etc.	
	Page 80 Figure 1.11.4	DRCi • Transfer counter> • Transfer count register	
	Page 81 Figure 1.11.5		
	DMAi, DSAi, DRAi Ti	ransfer count specification "(16 Mbytes area)" addition	
	DRAi memory addres	ss counter> memory address register	
	Page 85 Line 9 addition	(1) Internal factors, (2) External factors change	
	Page 87 Fugure 1.12.1	"Timer B2 overflow" addition	
	Page 88 Fugure 1.12.2	Timer A> Timer B2 overflow (to timer A count source)	
	Page 93 Table 1.13.2	Cout source • TB2 overflows, TAj overflows> •TB2 overflows	
	or underflows , TAj o	verflows or underflows	
	Page 95 Figure 1.13.7	When using two-phase signal processing Note 3> addition	
	Page 102 Figure 1.14.3	TBSR When reset 0016> 000XXXXXX16	
	b4-b0	When read, the value is "0"> indeterminate	
	Page 104 Table 1.14.2	Cout source • TBj overflows> •TBj overflows or underflows	
	Page 124 Figure 1.16.5	UiTB Note 1 delate	
	Page 126-127 Figure 1.16.	7 to 1.16.8 CRD change	
	Page 130 Figure 1.16.11	SDHI Enabled <> Disabled	
	Page 144 (a) Separate 0	CTS/RTS pins function (UART0)	
	Page 146 Table 1.19.1	Addition in "Other things"	
	Page 147 Figure 1.19.1 è,,I	Figure	
	A "L" level returns fro	m TxD due to the occurrence of a parity error> A "L" level	
	returns from SIM care	d	
	Page 149 Figure 1.19.4	Note addition	
	Page 150 Table 1.20.1	Note 1: LSB first> MSB first, Note 3 Change	
	Page 156 Figure 1.20.4	4 to 5 cycles> 3 to 6 cycles	
	Page 163, 165-169 Figure	1.21.2-Figure 1.21.8 ADCON1 Note 2-6 addition	
	Page 170 Line 14,23 addit	tion	
	Page 171 Line 5 addition		
	Page 172 Figure 1.22.3	Note :3 D/A control register> D/A register	
	Page 176 Figure 1.24.3		
	Page 178 Figure 1.25.1 No	ote 1 position change	
	Page 178 Line 10 DRAM co	ontroler> addition	
	Page 179 Figure 1.25.2 No	te 1> change	
	Page 184 (1) Direction regis	sters, (2) Port registers> change	
	Page 185 (4) Function sele	ct register B> change	
	Page 189 Figure 1.26.4	Port Pi direction register Note 2 addition	
	Page 190 Figure 1.26.5	Port Pi register Note 1 and 2 addition	
	Page 191 Table 1.26.1	Note addition	
	Page 192 Figure 1.26.6	Function select register A1 Note 1 addition	
	Page 194 Figure 1.26.8	Function select register B1 Note 2 addition	
	Page 195 Figure 1.26.9	Function select register B3	
	Note 1> addition, F	PSL3_3-PSL3_6 change	
	Page 196 Figure 1.26.13	Port control register Note 2 addition	
	Page 197 Figure 1.26.4	Port Pi direction register Note 2 addition	
	Page 200 Precaution on A/	-	
		Wait Mode (2) all clock stop bits> all clock stop control bits	
	Page 203 Noise addition		
	-	errupt (1) line 7> addition	

Version	Contents for change	Revision date
	Page 204 Making power consumption electricity small> addition	
	Page 207 Table 1.28.3 VT+ – VT- SCL2-SCL4, SDA2-SDA4 Addition	
	Page 208 Table 1.28.5 Note Change	
	Page 215 Table 1.28.22 tre expression change	
	Page 217-220 Figure 1.28.2-1.28.5 tw(WR) addition, th(BCLK-DB) delate	
	Page 219, 220, 222, 223, 225	
	Figure 1.28.4, 1.28.5, 1.28.7, 1.28.8, 1.28.10 addition	
	Page 225, 226 Figure 1.28.10, 1.28.11 th(BCLK-DB) -5 ns.min> -7 ns.min	
	Page 227 Figure 1.28.12 Refresh timing (self refresh) RAS timing	
	Page 230 3V of electric characteristics addition	
	Page 246 Table 1.29.1 Data hold> addition	
	Page 247 Figure 1.29.2 Package type 144P6Q> 144P6Q-A	
	Page 248 Flash memory line 5 change	
	Page 250 Function outline Line 24 (Parallel function)> delate	
	Page 269 Standard serial I/O mode Line 26 externl device> external device (programmer)	
	Page 285 Figure1.31.21 programer> peripheral unit (programmer)	
Rev.D3	Page 43 Figure1.8.4 Note of the system clock control register 0>addition	19/6/'00
	Page 44 Line 4 Note>addition	
	Page 45 Table1.8.2 Note>addition	
	Page 71 Line 9 "Address match interrupt is not generated with a start instruction of interrupt	
	routine.">Delete	
	Page 73 (6) Precaution of Address mach interrupt>addition	
	Page 79 Figure1.11.2 Note>change	
	Page 87 Precaution for DMAC>addition	
	Page 131 Figure1.16.11 Bit 7>Must set to "1" in selecting IIC mode.	
	Page 152 Figure1.20.1 Bit 7>Must set to "1" in selecting IIC mode.	
	Page 182 Addition	
	Page 205 (3) Address match interrupt in Interrupt precautions>addition	
	Page 206 (2) DMAC>addition	
	Page 207 Precautions for using CLKOUT pin>addition	
	Page 210 Table1.28.3 Icc when clock stop Topr=25C ^o >change	
	Page 212 Table1.28.6 External clock input HIGH and LOW pulse waidth 22>20	
	External clock rise and fall time 10>5	
	Page 215, 216 Table1.28.19, 20 th(BCLK-DB)>delete, tw(WR)>addition	
	Page 218 Table1.28.22 th(BCLK-DB) -5ns> -7ns	
	Page 233 Table1.28.23 Icc when clock stop Topr=25C ^o >change	
	Page 235 Table1.28.27 th(CAS-DB)>addition	
	Page 238, 239 Table1.28.39, 40 tw(WR)>addition, th(BCLK-RD) 0ns>-3ns	
	Page 240 Table1.28.41 td(AD-ALE)=10 ⁹ /(f(BCLK)X2)-20>10 ⁹ /(f(BCLK)X2)-27	
	Page 241 Table1.28.42 th(BCLK-CAS) Ons>-3ns	
	Page 242 Figure1.28.15 tac1(RD-DB) min>max, tac1(AD-DB) min>max	
	Page 243 Figure1.28.16 tac2(RD-DB) min>max, tac2(AD-DB) min>max	
	Page 244, 255 Figure1.28.17 2 wait, Figure1.28.18 3 wait>addition	
	Page 246 Figure1.28.19 tac3(AD-DB)>addition, tsu(DB-RD)>tsu(DB-BCLK), th(BCLK-RD) Ons>-	
	3ns, td(AD-ALE)=(tcyc/2-20)ns>27)ns	
	Page 247 Figure1.28.20 Addition	
	Page 248, 249 Figure1.28.21, 1.28.22>addition	

Version	Contents for change	Revision date
	Page 250 Figure1.28.23 th(BCLK-DB)>th(CAS-DB)	
	Page 251 Figure 1.28.24 td(DB-CAS)>tsu(DB-CAS), th(BCLK-CAS)>th(BCLK-DB)	
	Page 252 Figure1.28.25 td(CAS-RAS)>tsu(CAS-RAS)	
	Page 255 Table1.29.1 Power supply (under planning)>delete, Program/erase voltage	
	f(XIN)>f(BCLK), 2.7V-5.5V>delete	
Rev.E	144-pin version description addition	09/02/'01
	Pages 1, 6 •Supply voltage> external ROM version addition	
	Page 7 (3) Package 144P6Q> 144P6Q-A	
	Page 21 Figure 1.4.4 (111) Function select register C 0016> 0XXXXXX0	
	(119) Function select register B3 ?0000???> 00000X0X	
	Similarly, page 202 Figures 1.26.11 When reset ?0000???> 00000X0X	
	Figures 1.26.12 When reset 0016> 0XXXXXX0	
	Page 28 Figure 1.6.2 ROMIess version addition	
	Page 29 Figure 1.6.3 External area 0 to 3 addition	
	Page 34 Addition	
	Page 37 Figure 1.7.4 Input RDY signal at i + 1 cycles for i wait> RDY signal received timing	
	for i wait: i +1	
	Page 46 Figure 1.8.4 System clock control register 0 CM0> contents of the Function	
	changed, Notes 10, 11 addition	
	Page 48 On the second line from the bottom, 'Although stop mode must be set to "1".'>addition	
	Page 49 Table 1.8.4 CS0 to CS3> CS0 to CS3, <u>BHE</u> WR, <u>BHE</u> , WRL, WRH, <u>W</u> , CASL> WR, WRL, WRH, <u>DW</u> , CASL	
	Page 52 Table 1.8.6 CM0i: Clock control register 0 (address 000616) bit i, MCDi: Main clock	
	division register (address 000C16) bit i> addition	
	Page 60 • Vector table dedicated for emulator	
	Interrupt vector address (address 00002016 to 00002316)> (address	
	00002016 to 00002216)	
	Page 69 Interrupt priority	
	'the interrupt that a request came to most in the first place is accepted at first, and	
	then,'> delete	
	Page 75 (6) Explanation of No.1 and No. 2 are partly revised.	
	Page 76, 77 From "• To return from an interrupt" to the end of page 77> addition	
	Page 78 "In the stopreleased." on the third line from the bottom> addition	
	Page 79 Figure 1.10.2 Notes 10, 11> addition	
	Page 87 Figure 1.11.6 is partly revised.	
	Page 88 Table for "Coefficient j, k" is partly revised.	
	Page 89 Figure 1.11.7 is partly revised.	
	Page 90 Explanation of (3) is partly revised.	
	Page 94 Figure 1.13.3 Timer Ai register>Notes 2 to 4 addition, •Pulse width modulation	
	mode (8-bit PWM)> Values that can be set is changed, Up/down flag> Note addi- tion	
	Page 97 Figure 1.13.6> change	
	Page 98 Table 1.13.3> Note 2 addition, •Normal processing operation> •Normal pro-	
	cessing operation (Timer A2 and timer A3), •Multiply-by-4 processing operation>	
	•Multiply-by-4 processing operation (Timer A3 and timer A4)	
	Page 99 Figure 1.13.7 Timer Ai mode register (When using two-phase pulse signal process-	

Version	Contents for change	Revision date
	ing)> "Note 2 Timer A2 is fixed to multiply-by-4 processing operation." is added, note 3 change	
	Page 109 Figure 1.14.6 Note 1 It is indeterminate when reset> addition	
	Page 112 Figure 1.15.2 Dead time timer>Note 1 addition, Timer B2 interrupt occurrence	
	frequency set counter>Note 3 addition	
	Page 113 Notes 2, 3> addition	
	Page 114 three-phase waveform mode> three phase PWM output mode	
	Page 128 Figure 1.16.5 UARTi bit rate generator> Note 2 addition	
	Page 128 Figure 1.16.5 UARTi transmit buffer register, UARTi bit rate generator>Note 1 addition	
	Page 129 Figure 1.16.6 UARTi transmit/receive mode register>Note 2 addition in CKDIR of UART mode	
	Page 133 Figure 1.16.10 UART transmit/receive control register 2>Note delete	
	Page 136 Note 2, Page 143 Note 3 the UARTi receive interrupt request bit is not set to "1"	
	> the UARTi receive interrupt request bit <u>will not change</u>	
1	Page 145 Figure 1.18.1 UARTi transmit/receive mode register (i=0,1)> Note 1 addition,	
	UARTi transmit/receive mode register (i=2 to 4)> Note 2 addition	
	Page 157 On the 12th line, allocated to bit $\underline{3}$ in UART2 transmission buffer register $\underline{1}$	
	(address 033 <u>E</u> 16)> allocated to bit <u>11</u> in UART2 transmission buffer register (address 033 <u>E</u> 16)	
	Page 161 < Master Mode (TxDi and RxDi are selected, DINC = 0) >	
	, and the <u>STxDi, SRxDi</u> and CLKi pins>, and the <u>TxDi, RxDi</u> and CLKi pins	
	Page 165 Table 1.21.1 Absolute precision> change	
	Page 170 Table 1.21.3 Reading of result of A/D converter> (at any time) addition	
	Page 173 Table 1.21.6 Input pin> change to ANo to AN7, With emphasis on the pin> addition	
	Page 182 On the second line from the bottom,, and dummy cycle for refresh>, and	
	processing necessary for dummy cycle to refresh DRAM	
	Page 183 Figure 1.25.2 is partly revised.	
	Page 189 On the 18th and 27th lines, page 194 Port Pi direction register Note 2, page 196	
	Port Pi register Note 1 for setting of bus control such as address bus and data bus is	
	> of pins A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS 3, WRL/WR/CASL,	
	WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY are	
	Page 203 Figure 1.26.13 is partly revised.	
	Page 207, 208 Timer A (event counter mode)> (3) addition, Timer A (one-shot timer mode)	
	> (2) changes to (3), (2) and (4) addition	
	Page 209 Timer B (pulse period/pulse width measurement mode)> (3) addition	
	Page 212 to 214 (2) NMI interrupt •The NMI pin also serves as P85, •Signal of "L" level	
	> addition	
	(3) Address match interrupt From "• To return from an interrupt" to	
	"; Interrupt completed" on page 77> addition	
	(4) External interrupt, (5) Rewrite the interrupt control register> addition	
	Page 215 Explanation of (3) is partly revised.	
	Page 215 HOLD signal> addition	
	Page 216 DRAM controller> addition	

Version	Contents for change	Revision date
	Page 217 Setting the registers, Notes on the microprocessor mode single-chip mode>addition	
	Page 217 Explanation of note on Flash memroy version is added. Page 219 Note 2 80mA> –80mA	
	Page 220 Table 1.28.3 Ta> Topr, Note2> addition	
	Pages 220, 243 Tables 1.28.3, 1.28.23 Icc Power supply current ROMless version> addi- tion, Ta> Topr, Note 2> addition	
	Page 227 Calculation for td(AD-ALE) is partly revised.	
	Page 234, 235 Figures 1.28.6 and 1.28.7 Timing for td(AD-ALE) is partly revised.	
	Page 243 Table 1.28.23 Topr=25°C, when clock is stopped: 2.0μA> 1.0μA, Notes 1, 2> addition	
	Page 250 Table 1.28.41 th(BCLK-RD) Min. 0 ns> –3 ns	
	Pages 251, 258 to 262 Table 1.28.42, figures 1.28.21 to 1.28.25 th(BCLK-CAS): -3 ns> 0 ns	
	Pages 251, 259, 261 Table 1.28,42, figures 1.28.22, 1.28.24 th(BCLK-DW): 0 ns> –3 ns Page 266 Table 1.29.2 M30805FGGP RAM capacity <u>24</u> Kbytes> <u>20</u> Kbytes	
	Page 270 Figure 1.30.1 Flash memory control register 0 Note 1 Also write to this bit "H" level> addition	
	Page 273 (3) Disabling erase or serial I/O mode> delete, (7), (8)> addition Page 285 Note> addition	
	Page 288> addition	
	Pages 291, 307 Tables 1.31.1, 1.31.5 Note 2 status register 1 data> status register data 1	
	Page 319 144P6Q-A version> addition	
Rev.E1	Page 32 Table 1.7.3> change	16/03/'0
Rev.E2	Page 28 Figure 1.6.1 Note 8> addition	10/05/'0′
	Page 88 Table for "Coefficient j, k" is partly revised.	
Rev.E3	Page 7 Figure 1.1.5 and Table 1.1.2, product names> added	20/08/'0
	Page 8 Figure 1.1.6, Boot loader (BL)>addition	
	Page 85 Figure 1.11.5, DMAi SFR address register, Note 2, <u>destination</u> fixed address>	
	source fixed address, source fixed address> destination fixed address	
	Page 218 Precaution of boot loader> addition	
	Page 319 Appendix boot loader> addition	
Rev.1.0	Page 4 Figure 1.3 XOUT> revised	02/08/'0
	Page 18 Figure 4.1 and 4.2> revised	
	Page 20 Figure 4.3, Timer B3 mode register value 00?x0000> 00??0000	
	Three-phase output buffer register 0, 1 value 0016> 3F16	
	Page 21 Figure 4.4, Timer B0 mode register value 00?x0000> 00??0000	
	UART transmit/receive control register 2 value x0000000> x0xx0000	
	Flash memory control register1 value ?????0??> ????0???	
	Page 22 (address006A16) DM1IC> DM2IC revised	
	Page 24 (address037016) UCON2> UCON revised	
	Page 26 "Carry out a software reset after oscillation of main clock is fully stable"> added, (1), (2)> revised	
	Page 27 Figure 6.1 10:Inhibited> 10:Must not be set	

 Note 9 'In addition, do not rewrite CM04 and CM05 simultaneously'> added Page 48 'The priority level of the interrupt which is not used to cancel stop mode, must have been changed to 0.', 'If only a hardware reset or an NMI interrupt is used to cancel stop mode, change the priority level of all interrupt to 0, then shift to stop mode.'> added Page 50 'The priority level of the interrupt which is not used to cancel wait mode, must have been changed to 0.', 'If only a hardware reset or an NMI interrupt is used to cancel stop mode, change the priority level of all interrupt regulated to cancel stop mode, change the priority level of all interrupt regulated to cancel stop mode, change the priority level of CM07=1'' and CM05=''' deleted. Page 54 Figure 8.7 'The arrow of CM07=1'' and CM05=''' deleted. Page 73 (Signal of 'L' level widthfor NMI pin.' -> 'Signals input to the NMIfrom the operation clock of CPU.' Page 75 (5) Rewrite the interrupt control register When attempting to clear the interruptInstructions :MOV'> added Page 70 (Signal of 'L' level widthfor NMI pin.' -> 'Signals input to the NMIfrom the operation clock of CPU.' Page 78 'Therefore, we recom-mend using the watchdog time to improve reliability of a system.' -> added Page 90 (2 instructions' -> '26 cycles', Program example revised, (4)> added Page 90 (2 instructions' -> '26 cycles', Program example revised, (4)> added Page 90 (2 instructions' -> '26 cycles', Program example revised, (4)> added Page 91 (5) Recommended procedure for saching DMA transfer> added Page 92 (Count source for each timer becomes an operation clock for timer operation as counting and reloading.etc.' -> added, Figure 13.1 Up/Dom flag, Note 2> added Page 99 Figure 13.1 Up/Dom flag, Note 2> added Page 99 Figure 13.1 Up/Dom flag, Note 2> added Page 106 Figure 14.2, 11: Inhibited -> 11: Must	Version	Contents for change	Revision date
Page 134 Figure 16.10 UART transmit/receive control register 2 x0000000> x0xx0000		 Page 46, 79 Note 9 'Do not set CM04 and CM07 simultaneously.'> deleted Note 9 'In addition,do not rewrite CM04 and CM05 simultaneously'> added Page 48 'The priority level of the interrupt which is not used to cancel stop mode,change the priority level of all interrupt to 0,then shift to stop mode.''-> added Page 50 'The priority level of the interrupt which is not used to cancel wait mode,must have been changed to 0.', 'If only a hardware reset or an NMI interrupt is used to cancel stop mode,change the priority level of all interrupt to 0,then shift to vait mode,''> added Page 54 figure 8.7 The arrow of CM07='1' and CM05='1' deleted. Page 74 'Signal of 'L' level withfor NMI pin.' -> 'Signals input to the NMIfrom the opera- tion clock of CPU.' Page 75 (5) Rewrite the interrupt control register 'When attempting to clear the interruptInstructions :MOV'> added Page 90 '2 instructions'> '26 cycles', Program example revised, (4)> added Page 91 (5) Recommended procedure for starting DMA transfer> added Page 92 'Count source for each timer becomes an operation clock for timer operation as counting and reloading,etc.'> added, Figure 12.1 One-shot mode> One-shot timer mode Page 95 Figure 13.3 Timer Ai register (FFFF -> FFFE revised) Page 106 Figure 14.2, 11: Inhibited> 11: Must not be set Page 106 Figure 14.2, 11: Inhibited -> 11: Must not be set Page 106 Figure 14.2, 11: Inhibited -> 11: Must not be set Page 106 Figure 15.1 Note 5 Rewrite the INV00 to INV02 and INV06 bits when the timers A1,A2,A4 and B stop> added There-phase output buffer register 0.' Page 103 Timer Ai register 0.' Page 104 Figure 15.1 Note 5 Rewrite the INV00 to INV02 and INV06 bits when the timers A1,A2,A4 and B stop> added There-phase output buffer register 0, 1 0016> 3F16 Page 103 Figure 15.2, Note 1> added Page 104 Figur	date 02/08/'05

Version	Contents for change	Revision date
Version Rev.1.0	 Page 136 Figure 16.12 Special mode register 3 'SDAi digital delay time set bit'> revised 001: 1 to 2 cycles of 1/f(XIN) 010: 1 to 2 cycles of 1/f(XIN) 011: 1 to 2 cycles of 1/f(XIN) 100: 1 to 2 cycles of 1/f(XIN) 100: 1 to 2 cycles of 1/f(XIN) 101: 1 to 2 cycles of 1/f(XIN) 101: 1 to 2 cycles of 1/f(XIN) 101: 1 to 2 cycles of 1/f(XIN) 110: 1 to 2 cycles of 1/f(XIN) 111: 1 to 2 cycles of 1/f(XIN) Page 150 Figure18.5 /P> P revised Page 152 Typical transmit/receive timing in UART mode (compliant with the SIM interface) Diagram revised Page 153 (a) Function for outputting a parity error signal With the error signal output enable bit TxDi pin when a parity error is detected. > During reception, with the error signal output enable bit TxDi pin when a parity error is detected. In step with this function, of a parity error signal> added 	
	And during transmission, of the transfer clock> added Page 160 the baud rate generator> the UARTi bit rate generator baud rate generator stops counting> the count stops Page 160 UART2 Special Mode Register 2 (Address 033616)> UARTi Special Mode Register 2(i=2 to 4) (Address 033616,032616,02F616), SCL2> SCLi, SDA2> SDAi, UART2> UARTi revised	
	 Page 161 UART2 Special Mode Register 3(Address 033516)> UARTi Special Mode Register 3(i=2 to 4)(Address 033516,032516,02F516) SDA2> SDSi revised Page 163 Figure 20.6 Special mode register 3 'SDAi digital delay time set bit'> revised 001: 1 to 2 cycles of 1/f(XIN) 010: 1 to 2 cycles of 1/f(XIN) 100: 1 to 2 cycles of 1/f(XIN) 100: 1 to 2 cycles of 1/f(XIN) 101: 1 to 2 cycles of 1/f(XIN) 110: 1 to 2 cycles of 1/f(XIN) 110: 1 to 2 cycles of 1/f(XIN) 111: 1 to 2 cycles of 1/f(XIN) Page 176 Set the function select register A> Set the function select register A3 Page 193 Figure 26.2, P74, P75, P80 move to (inside dotted-line included) Page 208 Timer> added Page 209 (5) If an exernal triger input is used to start counting, the next external triger input must be avoided within 300ns before the timer A reaches "0000h"> added Page 210 Timer B (pulse period/pulse width measurement mode) (4)> added 	

Version	Contents for change	Revision date
Rev.1.0	Page 210 Stop Mode and Wait Mode (4),(5)> added	02/08/'05
	(4) Follow the procedure below to enter stop mode.Initial Setting	
	Set each interrupt priority level after setting the minimum interrupt priority level	
	required to exit stop mode and wait mode, controlled by the RLVL2 to RLVL0	
	bits in the RLVL register, to "7".	
	Before Execution of WAIT Instruction	
	[1] Set the interrupt priority level of the interrupt being used to exit stop mode	
	[2] Set the interrupt priority levels of the interrupts not being used to exit stop mode	
	[3] Set the IPL in the FLG register. Then set the minimum interrupt priority level	
	required to exit stop mode and wait mode to the same level as the IPL.	
	(Interrupt priority level of the interrupt used to exit stop mode > mimimum inter	
	rupt priority level to exit stop mode \geq interrupt priority level of the interrupts not	
	used to exit stop mode)	
	[4] Set the I flag to "1"	
	[5] Set the CM10 bit in the CM1 register to "1" (all clocks stop) after setting the	
	PRC0 bit in the PRCR register to "1" (write enabled)	
	After Exiting Stop Mode	
	Set the interrupt priority level required to exit stop mode to "7" immediately after	
	exiting stop mode.	
	(5) When microcomputer enters stop mode again after exiting from stop mode us	
	ing the NMI interrupt,	
	use the following procedure to set the CM10 bit to "1".	
	[1] Exit stop mode using the /NMI interrupt	
	[2] Generate a dummy interrupt	
	[3] Set the CM10 bit to "1"	
	example:	
	INT #63 ; Dummy interrupt	
	BSET CM1 ; All clocks stopped (in stop mode)	
	; /*for dummy interrupt* /	
	DUMMY:	
	REIT	

Version	Conte	nts for change	Revision date
Rev.1.0	Page 210 (2)> (2)Wait and (3)Stop divid	led	02/08/'05
	(2) When entering wait mode, the in	struction queue reads ahead to instructions fol-	
	lowing the WAIT instruction, and the program stops.		
	The next instruction may be executed before entering wait mode, depending on		
	the combination of instructions and their execution timing.		
	Therefore, write at least 4 NOP instructions following the WAIT instruction.		
	(3) When entering stop mode, the instruction queue reads ahead to instructions to set		
	the CM10 bit to "1", and the program stops.		
	The next instruction may be executed, before entering stop mode or executing		
	the interrupt routine to exit stop i	mode, depending on the combination of instruc-	
	tions and their execution timing.		
	Therefore, write a jmp.b instruction and at least 4 NOP instructions following the		
	instruction to enter stop mode as	s shown below.	
	bset 0,prcr	; Removing protection	
	bset 0,cm1	; Stopping all clocks(Entering stop mode)	
	jmp.b LABEL_001	; Executing jmp.b instruction(Jump to the next instruction soon	
	LABEL_001:	; with adding no instruction between jmp.b and LABEL.)	
	nop	; nop(1)	
	nop	; nop(2)	
	nop	; nop(3)	
	nop	; nop(4)	
	mov.b #0,prcr	; Setting protection	
	•		
	•		
	•		
	Page 211 (4) (6)> Description revised		
	Page 211 A/D Converter (6)> added		
	Page 214 (2)The NMI interrupt		
		n.'> 'Signals input to the NMIfrom the	
	operation clock of CPU.'		
	Page 217 (5) Rewrite the interrupt control r	register	
	When attempting to clear the interru	-	
	Page 217 DMAC		
	0	am example revised	
	'2 instructions'> '26 cycles', Program example revised Page 218 (4), (5)> added		
	Page 219 HOLD signal		
		re set to will not become high-impedance	
	ports> added		
	Memory expansion mode added		
		ode and transition after shifting from the micropro-	
	cessor mode to the memory expansion	ion mode / sigle-chip mode> deleted	

Version	Contents for change	Revision date
Rev.1.0	Page 221 Notes on CNVSS pin reset at "H" level> added Page 222 Microprocesser mode or Memory expansion mode> added Page 222 Microprocessor(Usage Precaution)> added If the software reset is executed when the CNVss pin is connected to Vcc to start up in microprocessor mode, write at least three NOP instructions following the writing instruction to the PM0 Register. example:	02/08/'05
	mov.b #02H,PRCR bset 3,PM0 ; or "mov.b #8BH,PM0" (instruction to execute software reset) nop ; write at least three NOP instructions nop nop nop	
	Page 227 Table 28.3 , Table 28.4> added Page 249 (Note 4) contained in the title of Table 28.23> deleted Page 274 Read data from an even address in the user ROM area when reading the status register> added	
	 Page 278 main clock frequency> BCLK Page 279 Table 30.1 Read status register command's second bus cycle 'X'> 'X(Note 6) Note 6 (that is an even address)> added Page 286 Figure 30.8 (When reading the status register,set an even number address in the user ROM area)> added 	
	 Page 287 Figure 30.9 ROM code protect level 2 set bit> deleted, Notes 3 to 5> added Page 289 In this mode, the M16C/80 (flash memory version) operates in a manner similar to the flash memory M5M29FB/T800 from Mitsubishi. Since there are some differences with regard to the functions not available with the microcomputer and matters related to memory capacity, the M16C/80 cannot be programed by a pro gramer for the flash memory> deleted Page 7,271,323 Mitsubishi>Renesas revised 	
	Page 289 Mitsubishi>deleted Page 294 from Mitsubisi> from the factory revised Page 323 Mitsubisi> the following revised All Pages Words standardized: A/D converter, D/A converter and XY converter All Pages Figure number and Table number change	

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M16C/80 Group Publication Data : Rev.B Oct. 19, 1998 Rev.1.00 Aug. 02, 2005

Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/80 Group Hardware Manual

Renesas Technology Corp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan