High Power GaAs DPDT Diversity Switch
DC-4.0 GHz

Features

- Ideal for high power diversity switch applications including WiMax, WLAN MESH Networks, and Fixed Wireless Access
- Broadband Performance: DC - 4.0 GHz
- Low Insertion Loss: $0.8 \mathrm{~dB} @ 2.5 \mathrm{GHz}$ and $1.2 \mathrm{~dB} @ 3.5 \mathrm{GHz}$
- High P1dB Compression: 39.5 dBm @ 5 V
- Fast Settling for Low Gate Lag Requirements
- Lead-Free 3 mm 12-Lead PQFN Package
- 100\% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

M/A-COM's MASW-007587 is a broadband GaAs PHEMT MMIC diversity switch available in a leadfree 3 mm 12-lead PQFN package. The MASW007587 is ideally suited for applications where very small size and high linear power are required.

Typical applications include 2.5 \& 3.5 GHz WiMax, WLAN MESH networks, fixed wireless access, and other higher power systems. Designed for high power, this DPDT switch maintains high linearity up to 4.0 GHz .

The MASW-007587 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
MASW-007587-TR3000	3000 piece reel
MASW-007587-000SMB	Sample Test Board (Includes 5 Samples)

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description
1	GND	Ground
2	GND	Ground
3	V 11	Control 1
4	ANT1	Antenna Port 1
5	GND	Ground
6	ANT2	Antenna Port 2
7	V 2	Control 2
8	GND	Ground
9	GND	Ground
10	Rx	Receive Port
11	GND	Ground
12	Tx	Transmit Port
13	Paddle ${ }^{2}$	RF and DC Ground

2. The exposed pad centered on the package bottom must be connected to RF and DC ground.
[^0]Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V} / 3 \mathrm{~V}, 39 \mathrm{pF}$ Capacitor ${ }^{3}$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss ${ }^{4}$	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \\ 2.45 \mathrm{GHz} \\ 3-4 \mathrm{GHz} \end{gathered}$	dB dB dB dB dB	- — —	$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 1.2 \end{aligned}$
Isolation (on/off or off/on) Iso @ Tx when IL from Ant 2 to Rx Iso @ Rx when IL from Ant 1 to Tx	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \\ 2.45 \mathrm{GHz} \\ 3-4 \mathrm{GHz} \end{gathered}$	dB dB dB dB dB	$\begin{aligned} & - \\ & - \\ & 24 \end{aligned}$	$\begin{gathered} 41.5 \\ 35 \\ 30 \\ 30 \\ 27 \end{gathered}$	- - -
Isolation (on/off or off/on) Iso @ Tx when IL from Ant 1 to Rx Iso @ Rx when IL from Ant 2 to Tx	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \\ 2.45 \mathrm{GHz} \\ 3-4 \mathrm{GHz} \end{gathered}$	dB dB dB dB dB	\bar{Z}	$\begin{gathered} 46.5 \\ 43 \\ 38 \\ 38 \\ 32 \end{gathered}$	- — -
Return Loss	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \\ 3-4 \mathrm{GHz} \end{gathered}$	dB dB dB dB	- - -	$\begin{gathered} 14 \\ 15 \\ 19.5 \\ 14 \end{gathered}$	— — —
IP3	Two Tone, $+15 \mathrm{dBm} /$ Tone, 5 MHz Spacing, 2.4 GHz $\begin{aligned} & \mathrm{V}_{\mathrm{C}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=8 \mathrm{~V} \end{aligned}$	dBm dBm dBm	—	$\begin{gathered} 57.5 \\ 59 \\ 60 \\ \hline \end{gathered}$	-
Input P1dB	$\begin{aligned} & 2.4 \mathrm{GHz}, \mathrm{~V}_{\mathrm{C}}=3 \mathrm{~V} \\ & 2.4 \mathrm{GHz}, \mathrm{~V}_{\mathrm{C}}=5 \mathrm{~V} \\ & 2.4 \mathrm{GHz}, \mathrm{~V}_{\mathrm{C}}=8 \mathrm{~V} \end{aligned}$	dBm dBm dBm	—	$\begin{gathered} 34 \\ 39.5 \\ 41 \end{gathered}$	-
$2^{\text {nd }}$ Harmonic	2.4 GHz, Pin $=15 \mathrm{dBm}$	dBc	-	-86	-
$3{ }^{\text {rd }}$ Harmonic	2.4 GHz, Pin $=15 \mathrm{dBm}$	dBc	-	-91	-
Trise, Tfall	10\% to 90\% RF 90\% to 10% RF	$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$	-	$\begin{aligned} & 64 \\ & 80 \end{aligned}$	-
Ton, Toff	50\% control to 90\% RF and 50\% control to 10\% RF	nS	-	90	-
Transients	-	mV	-	5	-
Control Current	-	$\mu \mathrm{A}$	-	5	10

3. For positive voltage control, external DC blocking capacitors are required on all RF ports.
4. Insertion loss can be optimized by varying the DC blocking capacitor value. For use above $2.5 \mathrm{GHz}, \mathrm{M} / \mathrm{A}-\mathrm{COM}$ recommends using smaller capacitor values. For example, use 5 pF for 3.2 GHz .

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit ww.macomtech.com for additional data sheets and product information.

Evaluation Board for 3 mm 12-Lead PQFN

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Input Power @ 3 V Control	+35 dBm CW
Input Power @ 5 V Control	+37 dBm CW
Voltage	≤ 8 volts
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. M/A-COM does not recommend sustained operation near these survivability limits.

Application Schematic

[^1]
Truth Table ${ }^{7,8}$

Control $\mathbf{V}_{\mathbf{c}} \mathbf{1}$	Control $\mathbf{V}_{\mathbf{c}} \mathbf{2}$	ANT 1 $\mathbf{- ~ R x}$	ANT 1 $\mathbf{- ~ T x}$	ANT 2 $\mathbf{- ~ T x}$	ANT 2 $\mathbf{- ~ R x}$
1	0	On	Off	On	Off
0	1	Off	On	Off	On

7. Differential voltage, V (state 1) - V (state 0), must be +2.7 V minimum and must not exceed 8.0 V .
8. $1=+2.9 \mathrm{~V}$ to $+8 \mathrm{~V}, 0=0 \mathrm{~V}+0.2 \mathrm{~V}$.

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

[^2]
Typical Performance Curves

Insertion Loss, 4 pF Capacitors

Isolation, 4 pF Capacitors

S11,

Insertion Loss, 39 pF Capacitors

Isolation, 39 pF Capacitors

S11,

4

[^3]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit ww.macomtech.com for additional data sheets and product information. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Lead-Free 3 mm 12-Lead PQFN ${ }^{\dagger}$

\dagger Reference Application Note M538 for lead-free solder reflow recommendations.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

[^2]: - North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

 Visit www.macomtech.com for additional data sheets and product information.

[^3]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
 Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

