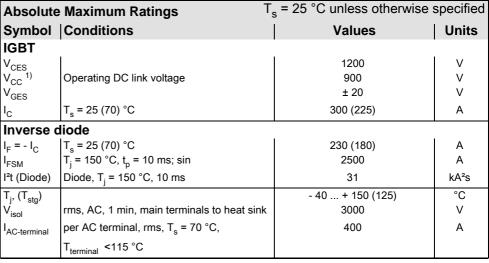
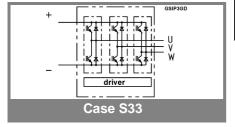

SKiiP 313GD122-3DUL


6-pack-integrated intelligent Power System

Power Section SKiiP 313GD122-3DUL


Data

Power section features

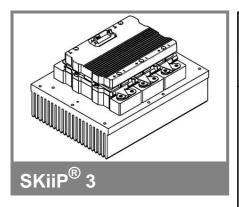
- SKiiP technology inside
- SPT (Soft Punch Through) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal

Characteristics		T_s = 25 °C unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{CEsat}	I_C = 193 A, T_j = 25 (125) °C; measured at terminal		2,3 (2,5)	2,6	V			
V_{CEO}	T _i = 25 (125) °C; at terminal		1,1 (1)	1,3 (1,2)	V			
r_{CE}	T _j = 25 (125) °C; at terminal		6 (7,8)	7 (8,8)	mΩ			
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}\text{C}$		0,6 (18)		mA			
E _{on} + E _{off}	I _C = 193 A, V _{CC} = 600 V		58		mJ			
	T _j = 125 °C, V _{CC} = 900 V		102		mJ			
R _{CC+EE}	terminal chip, T _j = 25 °C		0,5		mΩ			
L _{CE}	top, bottom		12		nH			
C _{CHC}	per phase, AC-side		1,7		nF			
Inverse diode								
$V_F = V_{EC}$	I _F = 193 A, T _j = 25 (125) °C measured at terminal		2 (1,8)	2,3	V			
V _{TO}	T _i = 25 (125) °C		1 (0,7)	1,2 (0,9)	V			
r _T	T _i = 25 (125) °C		5,3 (5,6)	7 (7,4)	mΩ			
E _{rr}	I _C = 193 A, V _{CC} = 600 V		15		mJ			
	T _j = 125 °C, V _{CC} = 900 V		20		mJ			
Mechani	cal data							
M _{dc}	DC terminals, SI Units	6		8	Nm			
M _{ac}	AC terminals, SI Units	13		15	Nm			
W	SKiiP® 3 System w/o heat sink		2,4		kg			
w	heat sink	7,5 kg						
Thermal characteristics (PX16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)								
R _{th(j-s)I}	per IGBT			0,092	K/W			
R _{th(j-s)D}	per diode			0,23	K/W			
Z _{th}	R _i (mK/W) (max. values)	tau _i (s)						
	2 3 4	1	2	3	4			
$Z_{th(j-r)I}$ $Z_{th(j-r)D}$								

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

210

85


0,4

20

 $Z_{th(r-a)}$

5,5

SKiiP 313GD122-3DUL

6-pack-integrated intelligent Power System

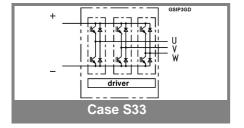
6-pack integrated gate driver SKiiP 313GD122-3DUL

Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protection against under voltage
- · Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2)	3000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	20	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25 °C			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	365+20*f/kHz+0,00111*(I _{AC} /A) ²			mA
V_{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		300		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		375		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U_{DC} -protection ($U_{analog OUT} = 9 V$);		900		V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

