

# 1.25Gbps Single Fiber Bi-directional SFF 2\*10 Transceiver

(For 15km point-to-point transmission)

## Members of Flexon<sup>™</sup> Family



- Compatible with SFF MSA
- ♦ Refer to IEEE 802.3ah -2004
- Compatible with Bellcore GR-468
- ◆ Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compliant with RoHS

# Description

Fiberxon 1.25G single fiber bi-directional SFF transceiver is high performance, cost effective modules, which supports data rate of 1.25Gbps and transmission distance up to 15km.

FTM-9612S-K15EG is normally used in the client side (ONU), which transmits 1310nm optical signal and receives 1490nm optical signal.

FTM-9612S-K15EG is compliant with RoHS.

### **Features**

- ♦ 1.25Gbps bi-directional data links
- ♦ Up to 15km point-point transmission
- ◆ 1310nm FP transmitter and 1490nm PIN receiver for FTM-9612S-K15EG
- Class I laser product
- ◆ Low EMI and excellent ESD protection
- ◆ SFF 2\*10 MSA package (2000 version), SC receptacle
- Single +3.3V Power Supply
- ◆ FTM-9612S-K15EG Operating Case Temperature

Extended temperature: 0 to +85°C

## **Applications**

- Gigabit Ethernet Application
- Point-to-Point FTTX Application
- Optical network unit(ONU) for Gigabit Ethernet
   PtoP optical networks(GE-Media Converter)

#### **Standard**



### **Regulatory Compliance**

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Flexon<sup>TM</sup> regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of the documentation.

**Table 1 - Regulatory Compliance** 

| Feature                       | Standard                      | Performance                   |
|-------------------------------|-------------------------------|-------------------------------|
| Electrostatic Discharge       | MIL-STD-883E                  | Class 2(>2000 V)              |
| (ESD) to the Electrical Pins  | Method 3015.7                 | Class 2(>2000 V)              |
| Electrostatic Discharge (ESD) | IEC 61000-4-2                 | Compatible with standards     |
| to the Duplex LC Receptacle   | GR-1089-CORE                  | Compatible with standards     |
| Electromagnetic               | FCC Part 15 Class B           |                               |
| Interference (EMI)            | EN55022 Class B (CISPR 22B)   | Compatible with standards     |
| Interference (EIVII)          | VCCI Class B                  |                               |
| Immunity                      | IEC 61000-4-3                 | Compatible with standards     |
| Laser Eye Safety              | FDA 21CFR 1040.10 and 1040.11 | Compatible with Class 1 laser |
| Laser Eye Salety              | EN60950, EN (IEC) 60825-1,2   | product.                      |
| Component Recognition         | UL and CSA                    | Compatible with standards     |
| RoHS                          | 2002/95/EC 4.1&4.2            | Compliant with standards note |
| TOUTO                         | 2005/747/EC                   |                               |

#### Note:

In light of item 5 in Annex of 2002/95/EC, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes." and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Fiberxon's transceivers, because Fiberxon's transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

## **Absolute Maximum Ratings**

Absolute Maximum Ratings are those values beyond which damage to the devices may occur.

Table 2 - Absolute Maximum Ratings

| Parameter                  | Symbol           | Min.                             | Max.            | Unit        | Note |  |
|----------------------------|------------------|----------------------------------|-----------------|-------------|------|--|
| Storage Temperature        | Ts               | -40                              | +85             | °C          |      |  |
| Operating Case Temperature | T <sub>C</sub>   | 0                                | +85             | °C          |      |  |
| Operating Humidity         | H <sub>OPR</sub> | 5                                | 95              | %           |      |  |
| Supply Voltage             | V <sub>CC</sub>  | 0                                | 4.0             | V           |      |  |
| Input Voltage              | V <sub>IN</sub>  | 0                                | V <sub>CC</sub> | V           |      |  |
| Receiver Damaged Threshold | $V_{RDT}$        |                                  | +3              | dBm         |      |  |
| Lead Soldering Temperature |                  | Compliance                       | with soldering  | temperature |      |  |
|                            |                  | profile that satisfied with RoHS |                 |             |      |  |



# **Recommended Operating Conditions**

**Table 3 - Recommended Operating Conditions** 

| Parameter                  | Symbol          | Min. | Typical | Max. | Unit | Note |
|----------------------------|-----------------|------|---------|------|------|------|
| Operating Case Temperature | T <sub>C</sub>  | 0    |         | +85  | °C   |      |
| Power Supply Voltage       | V <sub>CC</sub> | 3.13 | 3.3     | 3.47 | V    |      |
| Power Supply Current       | I <sub>cc</sub> |      |         | 300  | mA   |      |
| Data Rate                  |                 |      | 1.25    |      | Gbps |      |

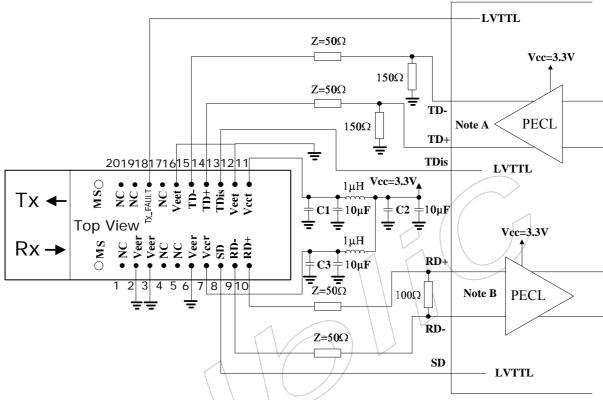
### FTM-9612S-K15EG (1310nm FP Tx/1490nm PIN Rx for ONU, 15km)

Table 4 –Optical and Electrical Characteristics (Over operating case temperature, V<sub>cc</sub>=3.13 to 3.47V)

| Param                  | eter                   | Symbol                | Min.                    | Typical | Max.                 | Unit  | Note |  |
|------------------------|------------------------|-----------------------|-------------------------|---------|----------------------|-------|------|--|
| Transmitter            |                        |                       |                         |         |                      |       |      |  |
| Centre Wavelength      | $\lambda_{\mathrm{C}}$ | 1281                  | 1310                    | 1350    | nm                   |       |      |  |
| Average Launch Po      | wer                    | P <sub>0ut</sub>      | -6                      |         | 0                    | dBm   | 1    |  |
| Launch Power of Ol     | FF Transmitter         | Poff                  |                         |         | -45                  | dBm   |      |  |
|                        | 1281nm                 |                       |                         |         | 2.34                 |       |      |  |
|                        | 1286nm                 |                       |                         |         | 2.66                 |       |      |  |
|                        | 1290nm                 | \\\                   |                         |         | 2.99                 |       |      |  |
|                        | 1295nm                 |                       |                         |         |                      |       |      |  |
| Spectral               | 1297nm                 | $\Delta \lambda$      |                         |         | 3.5                  | nm    |      |  |
| width(RMS)             | 1329nm                 | Δλ                    |                         |         | 3.5                  | 11111 |      |  |
|                        | 1331nm                 |                       |                         |         |                      |       |      |  |
|                        | 1340nm                 |                       |                         |         | 2.77                 |       |      |  |
|                        | 1343nm                 |                       |                         |         | 2.58                 |       |      |  |
|                        | 1350nm                 |                       |                         |         | 2.24                 |       |      |  |
| Extinction Ratio       | Extinction Ratio       |                       | 9                       |         |                      | dB    |      |  |
| Launch OMA             |                        | OMA                   | -8.2                    |         |                      | dBm   |      |  |
| Rise/Fall Time (20%    | ~80%)                  | tr /tf                |                         |         | 0.26                 | ns    |      |  |
| Relative Intensity No  | oise                   | RIN <sub>15</sub> OMA |                         |         | -113                 | dB/Hz |      |  |
| Optical Return Loss    | tolerance              |                       |                         |         | 12                   | dB    |      |  |
| Total Jitter (TP1 to T | P2)                    | $J_{	ext{total}}$     |                         |         | 0.334                | UI    |      |  |
| Input Differential Vo  | ltage                  | V <sub>IN</sub>       | 1000                    |         | 2400                 | mV    |      |  |
| Output Optical Eye     |                        |                       | IEEE 802.3ah compatible |         |                      |       |      |  |
|                        | Compatible with        | V                     | 2.0                     |         | W                    | V     |      |  |
| Tx Disable Signal      | LVTTL input            | $V_{BIH}$             | 2.0                     |         | V <sub>CC</sub>      | V     |      |  |
| Level                  | Compatible with        | $V_{BIL}$             | 0                       |         | 0.8                  | V     |      |  |
|                        | LVTTL input            | V BIL                 | U                       |         | 0.0                  | v     |      |  |
|                        | Compatible with        | V                     | 2.0                     | 2.0     | V <sub>CC</sub> +0.3 | V     |      |  |
| Tx Fault Signal        | LVTTL output           | $V_{BIH}$             | 2.0                     |         | V CC FU.3            | ٧     |      |  |
| Level                  | Compatible with        | $V_{BIL}$             | 0                       |         | 0.8                  | V     |      |  |
|                        | LVTTL output           | A RIL                 | J                       |         | 0.0                  | ľ     |      |  |



| Receiver                                          |                                                         |                  |     |   |      |     |   |  |
|---------------------------------------------------|---------------------------------------------------------|------------------|-----|---|------|-----|---|--|
| Centre Wavelength $\lambda_{C}$ 1480 1490 1500 nm |                                                         |                  |     |   |      |     |   |  |
| Receiver Sensitivity                              | Receiver Sensitivity                                    |                  |     |   | -22  | dBm | 3 |  |
| Receiver Overload                                 |                                                         |                  | 0   |   |      | dBm | 3 |  |
| SD De-Assert                                      |                                                         | SD <sub>D</sub>  | -35 |   |      | dBm |   |  |
| SD Assert                                         |                                                         | SD <sub>A</sub>  |     |   | -24  | dBm |   |  |
| SD Hysteresis                                     |                                                         |                  | 0.5 |   | 4    | dB  |   |  |
| Receiver Reflectand                               | ce                                                      |                  |     |   | -14  | dB  |   |  |
| Output Differential Voltage                       |                                                         | V <sub>OUT</sub> | 400 |   | 2400 | mV  |   |  |
| Circuit Datast Lavel                              | Signal Detected Voltage "H" Compatible with LVTTL input | $V_{SDH}$        | 2.0 |   | Vcc  | V   |   |  |
| Signal-Detect Level                               | Signal Detected Voltage "L" Compatible with LVTTL input | V <sub>SDL</sub> | 0   | - | 0.8  | V   |   |  |


#### Note:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2<sup>7</sup>-1 test pattern @1.25Gbps.
- 3. Vcc=3.3V, PRBS  $2^7$ -1 @1.25Gbps, ER=9dB and BER=1 $\times$ 10<sup>-12</sup>

# Recommended Interface Circuit

Figure 1 shows the recommended interface circuit.





Note: C1=C2=C3=0.1µF or 0.01µF

Note A: Circuit assumes open emitter output

Note B: Circuit assumes high impedance internal bias @Vcc-1.3V

Figure 1, Recommended Interface Circuit

### **Pin Definitions**

Figure 2 below shows the pin numbering of SFF  $2\times10$  electrical interface. The pin functions are described in Table 5 with some accompanying notes.

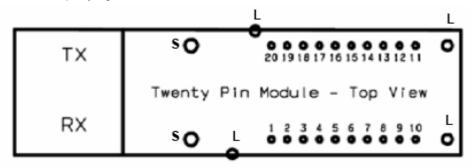



Figure 2, Pin View

#### Table 5 - Pin Function Definitions



| Pin No. | Symbol            | I/O   | Description                                                               | Notes  |
|---------|-------------------|-------|---------------------------------------------------------------------------|--------|
|         | S                 |       | Mount Studs                                                               |        |
|         | L                 |       | Housing Leads                                                             |        |
| 1       | NC                |       | No Function Definition                                                    |        |
| 2       | Veer              |       | Receiver Ground                                                           |        |
| 3       | Veer              |       | Receiver Ground                                                           |        |
| 4       | NC                |       | No Function Definition                                                    |        |
| 5       | NC                |       | No Function Definition                                                    |        |
| 6       | Veer              |       | Receiver Ground                                                           | 1      |
| 7       | V <sub>CC</sub> r | I     | Receiver Power Supply                                                     |        |
| 8       | SD                | 0     | Signal Detect—"H": normal operation, "L" loss of signal                   | LVTTL  |
| 9       | RD-               | 0     | Negative Data Output                                                      | LVPECL |
| 10      | RD+               | 0     | Passive Data Output                                                       | LVPECL |
| 11      | V <sub>CC</sub> t | I     | Transmitter Power Supply                                                  |        |
| 12      | Veet              |       | Transmitter Ground /                                                      |        |
| 13      | TDis              |       | Transmitter Enable Control—"H": Laser Disable, "L' : Laser Enable         | LVTTL  |
| 14      | TD+               | 1     | Passive Data Input                                                        | LVPECL |
| 15      | TD-               | \ \ \ | Negative Data Input                                                       | LVPECL |
| 16      | Veet              | 1 +   | Transmitter Ground                                                        |        |
| 17      | (NC               | /     | No Function Definition                                                    |        |
| 18      | TX-FAULT          | 0     | Laser Failure Alarm Indication  "H": normal operation, "L": Laser Failure | LVTTL  |
| 19      | NC                |       | No Function Definition                                                    |        |
| 20      | NC                |       | No Function Definition                                                    |        |

# **Mechanical Design Diagram**

The mechanical design diagram is shown in Figure 3.



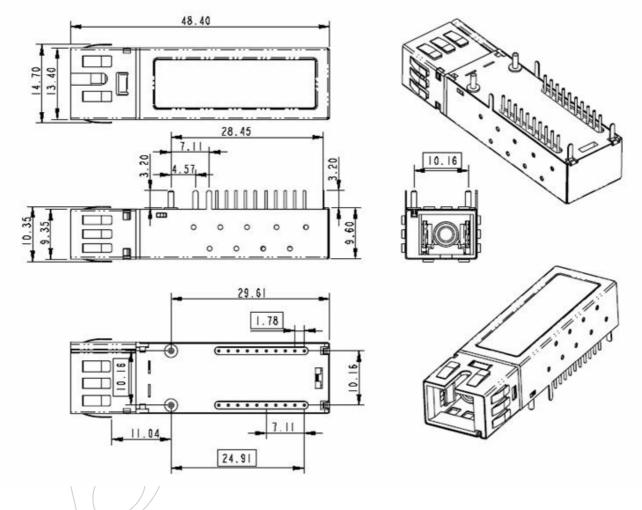
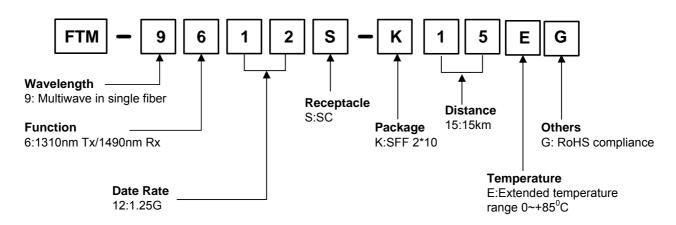




Figure 3, Mechanical Design Diagram of the SFF 2\*10 (Unit: mm)

# **Ordering information**



| Part No.        | Product Description                                                   |  |  |  |  |
|-----------------|-----------------------------------------------------------------------|--|--|--|--|
| FTM-9612S-K15EG | 1310nm Tx/1490nm RX for ONU, 1.25Gbps, 15km, SFF 2*10, SC receptacle, |  |  |  |  |
|                 | 0°C~+85°C, RoHS compliance                                            |  |  |  |  |



#### **Related Documents**

For further information, please refer to the following documents:

SFF Multi-Source Agreement (MSA)

### **Obtaining Document**

You can visit our website:

http://www.fiberxon.com

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

### **Revision History**

| Revision | Initiate    | Review     | Approve    | Subject                         | Release Date  |
|----------|-------------|------------|------------|---------------------------------|---------------|
| Rev. 1a  | Solaris.Zhu | Monica Wei | Walker.Wei | Initial datasheet               | July 30, 2006 |
| Rev. 1b  | Solaris.Zhu | Monica Wei | Walker.Wei | Updated Average Launch          | Sep. 25, 2006 |
|          |             |            |            | Power , Receiver Sensitivity    |               |
| Rev. 1c  | Solaris.Zhu | Monica Wei | Walker.Wei | Updated Average Launch          | Nov. 09, 2006 |
|          |             |            |            | Power , Receiver                |               |
|          |             |            |            | Sensitivity ,Receiver overload  |               |
|          |             |            |            | and Receiver Damaged            |               |
|          |             |            |            | Threshold                       |               |
| Rev. 1d  | Solaris.Zhu | Monica Wei | Walker.Wei | Updated part number from        | Dec 27 2006   |
|          |             |            |            | FTM-9612S-K15G to               |               |
|          |             |            |            | FTM-9612S-K15EG, and            |               |
|          |             |            |            | deleted FTM-9912S-K15G          |               |
| Rev. 1e  | Solaris.Zhu | Monica Wei | Walker.Wei | Changed Average Launch          | Apr 23 2007   |
|          |             |            |            | Power from -7~0dBm to           |               |
|          |             |            |            | -6~0dBm; Added spec of Input    |               |
|          |             |            |            | Differential Voltage and Output |               |
|          |             |            |            | Differential Voltage; Use SFF   |               |
|          |             |            |            | MSA 2000 version to replace     |               |
|          |             |            |            | MAS 1998 version; Update        |               |
|          |             |            |            | spectral width value            |               |
| Rev. 1f  | Solaris.Zhu | Monica Wei | Walker.Wei | Updated version from            | Aug 27 2007   |
|          |             |            |            | preliminary to formal one;      |               |
|          |             |            |            | Updated TP1 to TP2 Total        |               |
|          |             |            |            | Jitter spec to 0.334UI          |               |

### © Copyright Fiberxon Inc. 2007

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may



result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN"AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document. Contact

U.S.A. Headquarter:

5201 Great America Parkway, Suite 340

Santa Clara, CA 95054

U. S. A.

Tel: 408-562-6288 Fax: 408-562-6289

Or visit our website: http://www.fiberxon.com