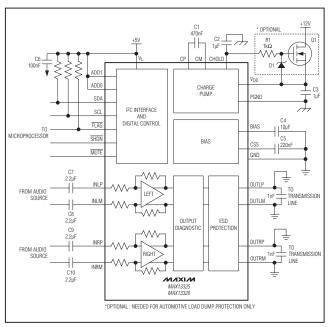


General Description

The MAX13325/MAX13326 dual audio line drivers provide a reliable differential interface between automotive audio components. The devices feature differential inputs and outputs, integrated output diagnostics, and are controlled using an I²C interface or operate in stand-alone mode. The outputs can deliver up to $4V_{RMS}$ into 100Ω loads.


The MAX13325 buffers analog audio signals for transmission over long cable distances with a fixed gain of 12dB, whereas the MAX13326 provides a 0dB fixed gain. The diagnostics on the outputs report conditions on a per channel basis, including short to GND, short to battery, overcurrent, overtemperature, and excessive offset. The output amplifiers can drive capacitive loads up to 4nF to ground and 3nF differentially.

The outputs are protected according to IEC 61000-4-2 ±8kV Contact Discharge, and ±15kV Air Gap. The MAX13325/MAX13326 are specified from -40°C to +105°C and are available in a 28-pin TSSOP package with an exposed pad.

Applications

Automotive Radio and Rear Seat Entertainment Professional Remote Audio Amplifiers

Typical Operating Circuit

Features

- ♦ Comprehensive Programmability and Diagnostics Using I²C Interface
- ♦ Autoretry Function in Stand-Alone Mode
- **♦** Drive Capacitive Loads ≤ 3nF Differentially, ≤ 4nF to Ground
- ♦ 112dB Signal-to-Noise Ratio
- ♦ Low 0.002% THD at 4V_{RMS} into 2.7kΩ Loads
- ♦ High PSRR (70dB at 1kHz)
- ♦ High CMRR (80dB at 1kHz)
- ♦ Low Output Noise (3µVRMS), MAX13326
- **♦** Excellent Channel-to-Channel Matching
- **♦ Load-Dump Transient Protection**
- ♦ Protected Output Against Various Short-Circuit Conditions
- ♦ ESD Protection for ±8kV Contact Discharge, ±15kV Air Gap
- ♦ Long-Distance Drive Capability Typically Up to 15m or Greater
- ♦ Noise-Rejecting Differential Inputs and Outputs
- ♦ Low-Power Shutdown Mode < 10µA</p>
- **♦** Hardware or Software MUTE Function
- ♦ 28-Pin TSSOP Package with Exposed Pad

Ordering Information

PART	PIN- PACKAGE	TEMP RANGE	GAIN (dB)	
MAX13325GUI/V+	28 TSSOP-EP*	-40°C to +105°C	12	
MAX13326GUI/V+**	28 TSSOP-EP*	-40°C to +105°C	0	

/V denotes an automotive qualified part.

- +Denotes a lead(Pb)-free/RoHS-compliant package.
- *EP = Exposed pad.
- **Future product—contact factory for availability.

ABSOLUTE MAXIMUM RATINGS

VDD to PGND -0.3V to +28V CHOLD -0.3V to +28V VL to GND -0.3V to +6V
GND, PGND0.3V to +0.3V OUT to PGND0.3V to 28V
IN_, BIAS to AGND0.3V to (VDD + 0.3V
SCL, SDA, ADD0, ADD1, MUTE, SHDN, FLAG to GND0.3V to +6V
OUT_ Short Circuit to PGND or VDDContinuous Short Circuits Between Any OUTContinuous

Continuous Power Dissipation ($T_A = +70^{\circ}C$) (r	multilayer board)
28-Pin TSSOP (derate 27mW/°C above +70	°C)2162.2mW
Junction-to-Ambient Thermal Resistance (θJA))
(Note 1)	37°C/W
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 14.4V, V_{L} = 5V, R_{L} = \infty, load impedance from OUT_+ to OUT_-, T_{A} = T_{J} = -40^{\circ}C$ to $+105^{\circ}C$, typical values are $T_{A} = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	COI	MIN	TYP	MAX	UNITS	
AMPLIFIER DC CHARACTERIST	ics						
Transient Supply Voltage (Load Dump)	VDDMAX	Using external nM0 duration			50	V	
On anating of Committee Walter and Danage	V _{DD}			4.5		18	V
Operating Supply Voltage Range	VL			2.7		5.5	V
VDD OVLO Threshold	VDDOV	Rising edge		18.5	19.2		V
V _{DD} UVLO Threshold	V _{DDUV}	Falling edge		3.3	3.5		V
V _L UVLO Threshold	VLUV	Falling edge		2.2	2.4		V
Supply Current	loo	T _A = +25°C, no load			39		mA
Supply Current	IDD	$T_A = -40^{\circ}C \text{ to } +105$	$T_A = -40^{\circ}C$ to $+105^{\circ}C$, no load				mA
Logic Supply Current	ΙL	V _L = 5V			1.7		mA
		loo	TA = +25°C		0.5	10	
Shutdown Supply Current	ISHDN	IDD	$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$		0.5		μΑ
		IL			< 0.1	2	μΑ
Turn-On Time (from Shutdown)		MUTE = VL			220		ms
Turn-On Time (from Mute)		SHDN = VL, Ccss	= 220nF		6		ms
Differential Input Resistance	RINDIF	Measure across in	put	18	24	30	kΩ
0		Each input to groun	nd (MAX13325)	15	20	25	1.0
Single-Ended Input Impedance	RIN	Each input to groun	12	16	20	kΩ	
0: 15 1 0 : (11 : 0)		MAX13325		11.8	12	12.2	ID.
Signal-Path Gain (Note 3)	Av	MAX13326	-0.2	0	+0.2	dB	
Channel-to-Channel Gain Tracking						±0.4	dB

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 14.4V, V_{L} = 5V, R_{L} = \infty, load impedance from OUT_+ to OUT_-, T_{A} = T_{J} = -40^{\circ}C$ to $+105^{\circ}C$, typical values are $T_{A} = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
Differential Mode Output Balance OUT_+ to OUT (Note 4)				-40		dB	
Output Offset Voltage	.,	$\overline{\text{MUTE}} = \text{GND}, T_{\text{A}} = +25^{\circ}\text{C}$			±0.5	±10	
(OUT_+ to OUT)	Voos	$\overline{\text{MUTE}} = V_{\text{L}}, T_{\text{A}} = +25^{\circ}$		±0.2	±3	mV	
BIAS Voltage	VBIAS	Relative to V _{DD}			50	52.5	%
BIAS Impedance	ZBIAS	$IBIAS = \pm 10\mu A$		69	92	115	kΩ
Output Valtage Curing Differential		$V_{DD} = 14.4V, V_{IN} = \pm 1$	14.4V, $R_L = 1k\Omega$	±12.5			V
Output-Voltage Swing Differential		$V_{DD} = 5.0V, V_{IN} = \pm 5V_{IN}$	V , $R_L = 1k\Omega$	±4.2			V
		$V_{DD} = 4.5V \text{ to } 18V$		-80	-96		
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 14.5V, +500mV$	/ _{P-P} ripple at 1kHz		-95		dB
		$V_{DD} = 14.5V, +500mV$	/ _{P-P} ripple at 10kHz		-80		
Common-Mode Rejection Ratio	CMRR	VIN = 1VRMS, 100Hz t	o 10kHz	-48	-80		dB
AMPLIFIER AC CHARACTERIST	ICS						
		Vout = 4VRMS, RL = 2	2.7kΩ		0.002		
Total Harmonic Distortion Plus	TUD N	D+N			0.004		0/
Noise (Note 5)	IHD+N				0.03		%
					0.2		
		$V_{OUT} = 1V_{RMS}, R_L = 2.7k\Omega$			0.01		
Total Harmonic Distortion Plus	THD+N	Vout = 1V _{RMS} , R _L = 1		0.02		%	
Noise at V _{DD} = 5V (Note 5)		Vout = 2V _{RMS} , R _L =	1kΩ		0.8]
Capacitive-Load Stability						3	nF
		No sustained	CLOAD to GND			4	_
Capacitive-Load Drive Capability		oscillation	CLOAD differential			3	nF
Signal to Naiga Patia (Nata E)	SNR	MAX13325, gain = 12 A-weighted	dB, Vout = 4VRMS,		112		- dB
Signal-to-Noise Ratio (Note 5)	SINK	MAX13326, gain = 0dB, V _{OUT} = 4V _{RMS} , A-weighted		122			aB ab
Unity-Gain Bandwidth					3		MHz
Output Slew Rate					2.5		V/µs
		A-weighted, MAX1332	25		10		.,
Output-Voltage Noise		A-weighted, MAX13326			3		μV
Crosstalk		V _{IN} = 1V _{RMS} , 1kHz			-110		dB
Mute Time		To achieve soft mute,	Ccss = 220nF		4		ms
Mute Attenuation		V _{IN} = 1V _{RMS} , 1kHz			-75		dB
Click-and-Pop Level (Note 6)	KCP	Into and out of mute			-70		dBV
Click-and-Pop Level (Note 6)	KCP	Into and out of shutdo	wn, 1kΩ		-45		dBV

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 14.4V, V_L = 5V, R_L = \infty, load impedance from OUT_+ to OUT_-, T_A = T_J = -40^{\circ}C to +105^{\circ}C, typical values are T_A = +25^{\circ}C, unless otherwise noted.) (Note 2)$

PARAMETER SYM		PARAMETER SYMBOL CONDITIONS MIN					
CHARGE PUMP							
Charge-Pump Overdrive Voltage,	\/	V _{DD} = 4.5V, I _{SOURCE} = 6.6mA	3.2	4.0		V	
VCHOLD - VDD (Hard Mode)	VCPH	VDD = 18V, ISOURCE = 6.6mA	4.5		5.5	V	
VCHOLD - VDD (Soft Mode)	VCPS	VDD unconnected, ISOURCE = $40\mu A$, VL = $3.3V$		2.1		V	
		$V_L = 5V$		3.9			
Charge-Pump Frequency	FCP	V _{DD} = 5V, I _{SOURCE} = 0mA		333		kHz	
DIAGNOSTICS							
Output Current Limit		Short to GND or battery		580		mA	
Current-Limit Warning Threshold				230		mA	
Open-Load Detection			10			kΩ	
Output Offset Detection		Valid when muted		±250		mV	
Thermal Warning Threshold				135		°C	
Thermal Shutdown Threshold				165		°C	
Thermal Shutdown Hysteresis				15		°C	
ESD PROTECTION							
Air Gap IEC 61000-4-2		OUT_ pins		±15		kV	
Contact Discharge IEC 61000-4-2		OUT_ pins		±8		kV	
НВМ		All pins		±2		kV	

4 ______ *NIXIN*

DIGITAL CHARACTERISTICS

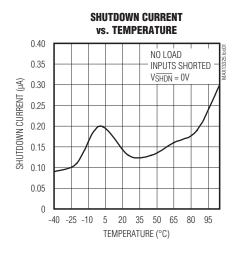
(VDD = 14.4V, VL = 3.3V, TA = TJ = -40°C to +105°C, typical values are TA = +25°C, unless otherwise noted.) (Note 2)

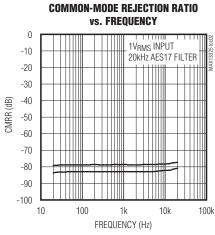
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INTERFACE						
Input-Voltage High	VINH	$V_L = 2.7V \text{ to } 5.5V$	0.75 x V∟			V
Input-Voltage Low	VINL	$V_L = 2.7V \text{ to } 5.5V$			0.25 x V _L	V
Input-Voltage Hysteresis				50		mV
Input Leakage Current					±100	μΑ
Output Low Voltage		FLAG, SDA, ISINK = 3mA			0.4	V
Output Leakage Current		FLAG, SDA = 5.5V			2	μΑ
Stand-Alone FLAG Pulse Width		ADD0, ADD1 = GND		100		ms
Stand-Alone Fault Retry Time		ADD0, ADD1 = GND		500		ms
I ² C TIMING						
Serial-Clock Frequency	fscl		0		400	kHz
Bus Free Time	tBUF	Between START and STOP conditions	1.3			μs
Hold Time	thd,sta	Repeated START condition	0.6			μs
SCL Low Time	tLOW		1.3			μs
SCL High Time	tHIGH		0.6			μs
Data Hold Time	thd:dat		0		900	ns
Data Setup Time	tsu:dat		100			ns
Bus Capacitance	CB	Per bus line			400	рF
Receiving Rise Time	tR	SCL, SDA	20 + 0.1CB		300	ns
Receiving Fall Time	tF	SCL, SDA	20 + 0.1C _B		300	ns
Transmitting Fall Time	tF	SDA, V _L = 3.6V	20 + 0.05CB		250	ns
STOP Condition Setup Time	tsu:sto		0.6			μs
Pulse Width of Suppressed Spike	tsp		0		50	ns

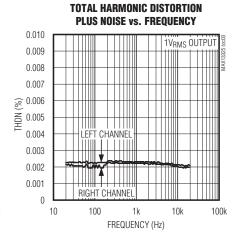
Note 2: All devices are 100% tested at $T_A = +25$ °C. Limits over temperature are guaranteed by design.

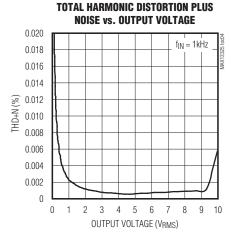
Note 3: Signal path gain is defined as: $20 \times log \left(\frac{\left| (V_{OUT_+}) - (V_{OUT_-}) \right|}{\left| (V_{IN_+}) - (V_{IN_-}) \right|} \right)$.

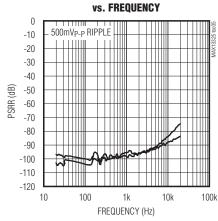
Note 4: Measured in differential output mode, differential input voltage 4VP-P (for 0dB gain), 1VP-P (for 12dB gain) 1kHz:

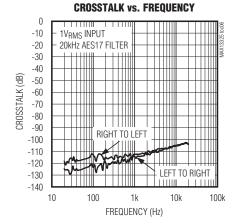

 $\text{Common-mode output balance is defined as} \quad 20 \times log \left(\frac{\left| \left\langle \left| V_{OUT_+} \right| \right\rangle - \left\langle \left| V_{OUT_-} \right| \right\rangle \right|}{\left| \left| \left| V_{OUT_+} \right| \right\rangle + \left\langle \left| V_{OUT_-} \right| \right\rangle \right| \times 2} \right).$

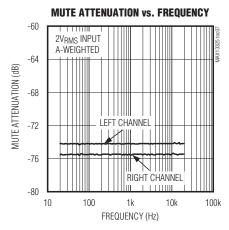

Note 5: Measurement bandwidth 22Hz to 22kHz.

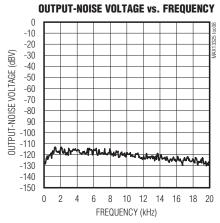

Note 6: KCP level is calculated as 20log[(peak voltage during mode transition, no input signal)/1V_{RMS}]. Units are expressed in dBV.

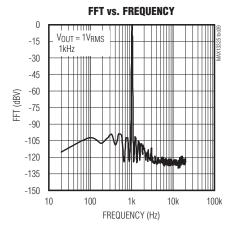

Typical Operating Characteristics

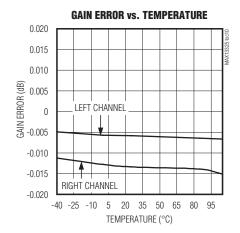

 $(V_{DD} = 14.4V, V_L = 5V, R_L = 1k\Omega, gain = 12dB, T_A = +25^{\circ}C, unless otherwise noted.)$

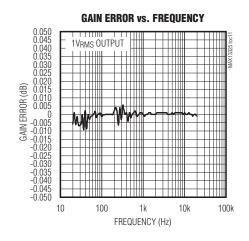


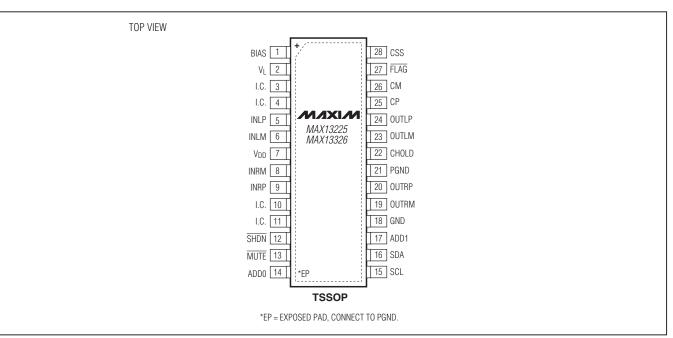



POWER-SUPPLY REJECTION RATIO




Typical Operating Characteristics (continued)


 $(V_{DD} = 14.4V, V_L = 5V, R_L = 1k\Omega, gain = 12dB, T_A = +25^{\circ}C, unless otherwise noted.)$



Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	BIAS	Analog Bias Voltage. Bypass BIAS to GND with a 10µF capacitor.
2	VL	Logic Supply Voltage. Connect V _L to a 2.7V to 5V logic supply. Bypass V _L to GND with a 0.1µF capacitor.
3, 4, 10, 11	I.C.	Internally Connected. Leave unconnected.
5	INLP	Left Audio Positive Input. Either input of each pair can be used as a single-ended input, with the complementary input bypassed to GND.
6	INLM	Left Audio Negative Input. Either input of each pair can be used as a single-ended input, with the complementary input bypassed to GND.
7	V _{DD}	Power-Supply Input. Connect VDD to the supply voltage. Bypass VDD to GND through a 1µF capacitor.
8	INRM	Right Audio Negative Input. Either input of each pair can be used as a single-ended input, with the complementary input bypassed to GND.
9	INRP	Right Audio Positive Input. Either input of each pair can be used as a single-ended input, with the complementary input bypassed to GND.
12	SHDN	Shutdown Input. Drive SHDN low to power down the device.

Pin Description (continued)

PIN	NAME	FUNCTION
13	MUTE	Mute Input. Drive MUTE low to mute the outputs. The outputs are low impedance in mute.
14	ADD0	I ² C Address Inputs. Connect ADD0 and ADD1 to V _L , GND, SCL, or SDA to select 7 I ² C addresses. Connect ADD0 and ADD1 to GND for stand-alone mode.
15	SCL	Serial Clock
16	SDA	Serial-Data IO
17	ADD1	I ² C Address Inputs. Connect ADD0 and ADD1 to V _L , GND, SCL, or SDA to select 7 I ² C addresses. Connect ADD0 and ADD1 to GND for stand-alone mode.
18	GND	Analog Ground. Ground connection for the input bias and gain circuits.
19	OUTRM	Right Audio Negative Output. Each output is current limited.
20	OUTRP	Right Audio Positive Output . Each output is current limited.
21	PGND	Power Ground. Ground connection for the output stage drivers.
22	CHOLD	Charge-Pump Output. Bypass CHOLD with 1µF to PGND.
23	OUTLM	Left Audio Negative Output. Each output is current limited.
24	OUTLP	Left Audio Positive Outputs. Each output is current limited.
25	CP	Charge-Pump Flying Capacitor, Positive Connection
26	СМ	Charge-Pump Flying Capacitor, Negative Connection
27	FLAG	Open-Drain Fault Flag Output. FLAG indicates a fault on any one channel. In stand-alone mode, FLAG is stretched to a typical pulse width of 100ms.
28	CSS	Soft-Start Capacitor Connection. CSS is charged/discharged by < 100µA current to get soft mute/ play transition. Bypass to GND through a 220nF capacitor.
_	EP	Exposed Pad. Connect to PGND.

Detailed Description

The MAX13325/MAX13326 audio line drivers are designed to transmit audio data across noisy environments. The differential interface is highly resistant to noise injection from external sources common to automotive applications.

The MAX13325/MAX13326 operate in stand-alone or I²C-compatible mode with diagnostic outputs capable of detecting short to GND or battery, overcurrent, overtemperature, or excessive offset. A short across another audio output signal line is also protected.

Table 1. Register Address Map

ADDRESS	REGISTER TYPE	NAME	READ/WRITE	DEFAULT
0x00	Configuration	CONFIG	Read/Write	0x00
0x01	Command Byte	CMD	Read/Write	0x00
0x02	General Fault	GFAULT	Read	0x00
0x03	Left-Channel Fault	LFAULT	Cleared on Read	0x00
0x04	Right-Channel Fault	RFAULT	Cleared on Read	0x00
0x05	Flag	FLAG	Read	0x02 (12dB) 0x03 (0dB)
0x06	General Faults Mask	GMASK	Read/Write	0x00
0x07	Left Faults Mask	LMASK	Read/Write	0x00
0x08	Right Faults Mask	RMASK	Read/Write	0x00

Configuration Register

Table 2. Configuration Register Format

FUNCTION	ADDRESS	REGISTER DATA					POR STATE			
FONCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	(HEX)
Configuration Register	0x00	DIAG	ENABLE	MUTE	Х	OLDL	OLDR	×	×	0x00

DIAG: Set DIAG to 1 to enable diagnostic mode. Write '0' to disable diagnostic mode.

ENABLE: Set ENABLE bit to 1 to enable the device. Write '0' disables the device. Low on the SHDN pin overrides the ENABLE bit.

MUTE: Set the MUTE bit to 1 to mute both the output channels. Output is low impedance when in mute. Low on the MUTE pin input overrides the MUTE bit.

OLDL: Write 1 to the OLDL bit to initiate the open-load detection for the left channel. To run OLDL again, write '0' and '1' again.

OLDR: Write 1 to the OLDR bit to initiate the open-load detection for the right channel. To run OLDR again, write '0' and '1' again.

Command Byte Register

Table 3. Command Byte Register Format

FUNCTION	ADDRESS	REGISTER DATA							POR STATE	
FUNCTION CODE (CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	(HEX)
Command Byte Register	0x01	RETRYR	RETRYL	х	х	х	Х	х	х	0x00

RETRYR: The right-channel power amplifier switches off after a fault condition. Write '1' to turn it back on after the fault condition

RETRYL: The left-channel power amplifier switches off after a fault condition. Write '1' to turn on the left-channel power amplifier after the fault condition.

General Faults

Table 4. General Fault Register Format

FUNCTION	ADDRESS		REGISTER DATA							POR STATE
FONCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	(HEX)
General Fault Register	0x02	Х	TWARN	TSHDN	DUMP	Х	×	Х	Х	0x00

TWARN: The TWARN bit is set to '1' when the temperature warning threshold is reached.

TSHDN: The TSHDN is set to '1' when the temperature shutdown threshold is reached.

DUMP: The DUMP bit is set to '1' when the V_{DD} voltage exceeds the overvoltage threshold. Set the appropriate mask bit in the GMASK register to detect the general faults. See Table 8.

Left-Channel Faults

Table 5. Left-Channel Fault Register Format

	ADDRESS	REGISTER DATA							DOD STATE	
FUNCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	POR STATE (HEX)
Left-Channel Fault Register	0x03	SVDDL	SGNDL	LIMITL	Х	OFFSETL	OPENL	х	х	0x00

SVDDL: The SVDDL bit is set to '1' when a short to VDD is detected on the left channel.

SGNDL: The SGNDL bit is set to '1' when a short to GND is detected on the left channel.

LIMITL: The LIMITL bit is set to '1' when the current-limit threshold is tripped for left output.

OFFSETL: The OFFSETL bit is set to '1' when excessive offset is detected on the left-channel output.

OPENL: The OPENL bit is set to '1' when an open load is detected on the left channel.

Set the appropriate mask bit in the LMASK register to detect the faults on the left channel. See Table 9.

When any bit of the LFAULT register is high, the FLAG output is low.

Right-Channel Faults

Table 6. Right-Channel Fault Register Format

	ADDRESS	REGISTER DATA							DOD STATE	
FUNCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	POR STATE (HEX)
Right-Channel Fault Register	0x04	SVDDR	SGNDR	LIMITR	Х	OFFSETR	OPENR	х	х	0x00

SVDDR: The SVDDR bit is set to '1' when a short to VDD is detected on the right channel.

SGNDR: The SGNDR bit is set to '1' when a short to GND is detected on the right channel.

LIMITR: The LIMITR bit is set to '1' when the current-limit threshold is tripped for right output.

OFFSETR: The OFFSETR bit is set to '1' when excessive offset is detected on the right-channel output.

OPENR: The OPENR bit is set to '1' when an open load is detected on the right channel.

Set the appropriate mask bit in the RMASK register to detect the faults on the right channel. See Table 10.

When any bit of the RFAULT register is high, the FLAG output is pulled low.

FLAG Register

Table 7. Flag Register Format

	ADDRESS	REGISTER DATA								DOD CTATE
FUNCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	POR STATE (HEX)
FLAG Register	0x05	FLAG	LHIGHZ	RHIGHZ	OFFSETL	OFFSETR	ID2	ID1	ID0	0x02/0x03

FLAG: FLAG bit is set to '1' when the $\overline{\text{FLAG}}$ output is logic-low. The FLAG bit allows to quickly access the status of the device without using the $\overline{\text{FLAG}}$ output and without having to read all the fault registers.

LHIGHZ: The LHIGHZ bit is set to '1' when the left-channel output is high impedance; for example due to a short circuit.

RHIGHZ: The RHIGHZ bit is set to '1' when the right-channel output is high impedance; for example due to a short circuit.

OFFSETL: The OFFSETL bit is set to '1' when excessive offset is detected on the left-channel output.

OFFSETR: The OFFSETR bit is set to '1' when excessive offset is detected on the right-channel output.

ID[2:0]: The ID[2:0] bits indicate the device type (12dB = 010 and 0dB = 011).

General Mask Register

Table 8. General Mask Register Format

	ADDRESS	DDRESS REGISTER DATA							DOD STATE	
FUNCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	POR STATE (HEX)
General Mask Register	0x06	0	MTWARN	MTSHDN	MDUMP	х	х	х	х	0x00

MTWARN: Set MTWARN to '1' to enable the TWARN fault detection. See Table 4. MTSHDN: Set MTSHDN to '1' to enable the TSHDN fault detection. See Table 4. MDUMP: Set MDUMP to '1' to enable the DUMP fault detection. See Table 4.

Left-Channel Mask Register

Table 9. Left-Channel Mask Register

	ADDRESS	REGISTER DATA							POR	
FUNCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	STATE (HEX)
Left-Channel Mask Register	0x07	MSVDDL	MSGNDL	MLIMITL	0	MOFFSETL	MOPENL	Х	Х	0x00

MSVDDL: Set MSVDDL to 1 to enable the short to Vnn detection on the left channel.

MSGNDL: Set MSGNDL to 1 to enable the short to GND detection on the left channel.

MLIMITL: Set MLIMITL to 1 to enable overcurrent detection on the left channel.

MOFFSETL: Set MOFFSETL to 1 to enable excessive-offset detection on the left-channel output.

MOPENL: Set MOPENL to 1 to enable open-load detection on the left channel.

Right-Channel Mask Register

Table 10. Right-Channel Mask Register

	ADDRESS	REGISTER DATA							POR	
FUNCTION	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	STATE (HEX)
Right-Channel Mask Register	0x08	MSVDDR	MSGNDR	MLIMITR	0	MOFFSETR	MOPENR	×	Х	0x00

MSVDDR: Set MSVDDR to 1 to enable the short to VDD detection on the right channel.

MSGNDR: Set MSGNDR to 1 to enable the short to GND detection on the right channel.

MLIMITR: Set MLIMITR to 1 to enable overcurrent detection on the right channel.

MOFFSETR: Set MOFFSETR to 1 to enable excessive-offset detection on the right channel.

MOPENR: Set MOPENR to 1 to enable open-load detection on the right channel.

I²C and Stand-Alone Diagnostics

When the DIAG bit and the appropriate mask bits are set to 1, the MAX13325/MAX13326 enter diagnostic mode. In this mode, the MAX13325/MAX13326 detect short to GND, short to battery, overcurrent condition, overtemperature condition, excessive offset, and report the diagnosis using the I²C serial interface, FLAG bit, and the $\overline{\text{FLAG}}$ output.

For stand-alone mode, there exists a 500ms stand-alone fault retry function (for autoretry) until the fault goes away. The $\overline{\text{FLAG}}$ output is pulsed to indicate a fault.

Output Short to VDD

When in diagnostic mode, the MAX13325/MAX13326 detect if any of the differential outputs is shorted to V_{DD} or battery. Upon detection of the short to V_{DD} or battery, the faulted channel is switched off and its output goes into a high-impedance state. The fault is reported using the I²C interface and the \overline{FLAG} output. See Table 11.

Output Short to GND

When in diagnostic mode, the MAX13325/MAX13326 detect if any of the differential outputs is shorted to ground. Upon detection of the short to ground, the faulted channel is switched off and its output goes into a high-impedance state. The fault is reported using the I²C interface and the FLAG output. See Table 12.

Overtemperature

When in diagnostic mode, if the MAX13325/MAX13326 exceed the overtemperature warning or temperature shutdown thresholds the device reports the condition using the I 2 C interface and the $\overline{\text{FLAG}}$ output. See Table 13.

Excessive Offset

When in diagnostic mode with mute enabled, if there is excessive offset on any output, the MAX13325/ MAX13326 reports the condition through the I^2C interface and the \overline{FLAG} output. See Table 14.

Table 11. Output Short to VDD/Battery Diagnostic

FAULT CONDITION	STATUS REPORT	UNMASK	RECOVERY
	FLAG is asserted low.	1 114401/	Cleared on reading the LFAULT
	FLAG bit set. See Table 7.	In LMASK register, set MSVDDL bit to 1.	register. See Table 5.
Left-Channel Output	SVDDL bit is set in the LFAULT register. See Table 5.	See Table 9.	Note: 500ms autoretry in stand- alone mode.
Short to V _{DD}	Left channel switches off and output goes to high-impedance state.	Cannot be masked.	Output is enabled by setting the RETRYL bit to 1 in the Common Byte register. See Table 3.
	FLAG is asserted low.		Cleared on reading the RFAULT
	FLAG bit set. See Table 7.	In RMASK register, set MSVDDR bit to 1. See	register. See Table 6.
Right-Channel	SVDDR bit is set in the RFAULT register. See Table 6.	Table 10.	Note: 500ms autoretry in stand- alone mode.
Output Short to V _{DD}	Right channel switches off and output goes to high-impedance state.	Cannot be masked.	Output is enabled by setting the RETRYR bit to 1 in the Command Byte register. See Table 3.

Table 12. Output Short to GND Diagnostic

FAULT CONDITION	STATUS REPORT	UNMASK	RECOVERY
	FLAG is asserted low.		Cleared on reading the LFAULT
	FLAG bit set. See Table 7.	In LMASK register, set MSGNDL bit to 1. See	register. See Table 5.
Left-Channel Output Short to GND	SGNDL bit is set in the LFAULT register. See Table 5.	Table 9.	Note: 500ms autoretry in stand- alone mode.
	Left channel switches off and output goes to high-impedance state.	Cannot be masked.	Output is enabled by setting the RETRYL bit to 1 in the Command Byte register. See Table 3.
	FLAG is asserted low.		Cleared on reading the RFAULT
	FLAG bit set. See Table 7.	In RMASK register, set MSGNDR bit to 1. See	register. See Table 6.
Right-Channel Output Short to GND	SGNDR bit is set in the RFAULT register. See Table 6.	Table 10.	Note: 500ms autoretry in stand- alone mode.
	Right channel switches off and output goes to high-impedance state.	Cannot be masked.	Output is enabled by setting the RETRYR bit to 1 in the Command Byte register. See Table 3.

Table 13. Overtemperature Diagnostic

FAULT CONDITION	STATUS REPORT	UNMASK	RECOVERY
	FLAG is asserted low.	La CAMACIC de distant est	Die temperature falls below warning
Overtemperature	FLAG bit set. See Table 7.	In GMASK register, set MTWARN bit to 1. See	threshold.
Warning	TWARN bit is set in the GFAULT register. See Table 4.	Table 8.	Cleared on reading the GFAULT register.
	FLAG is asserted low.		Die temperature falls below
	FLAG bit set. See Table 7.	In GMASK register, set	shutdown threshold. Cleared on reading the GFAULT
Ougstoren proture	TSHDN bit is set in the GFAULT Register. See Table 4.	MTSHDN bit to 1. See Table 8.	register. Note: 500ms autoretry in stand- alone mode.
Overtemperature Shutdown	Left and right channels switch off and output goes to high-impedance state.	Cannot be masked.	Left channel is enabled by setting the RETRYL bit to 1 in the Command Byte register. Right channel is enabled by setting the RETRYR bit to 1 in the Command Byte register. See Table 3.

Table 14. Excessive Offset Diagnostic

FAULT CONDITION	FAULT CONDITION STATUS REPORT		RECOVERY		
	FLAG is asserted low.				
Excessive Output Offset on Left	FLAG bit set. See Table 7.	In the LMASK register, set MOFFSETL bit to 1. See	Cleared on reading the LFAULT		
Channel	OFFSETL bit is set in the LFAULT register. See Table 5.	Table 9.	register.		
	FLAG is asserted low.				
Excessive Output Offset on Right	FLAG bit set.	In the RMASK register, set MOFFSETR bit to 1. See	Cleared on reading the RFAULT		
Channel	OFFSETR bit is set in the RFAULT register. See Table 6.	Table 10.	register.		

MIXIM

Overcurrent

When in diagnostic mode, if any of the output pairs is excessively loaded, the MAX13325/MAX13326 issue a warning and report the condition through the I²C interface and the FLAG output. The faulted channel is not switched off. See Table 15.

Open Load

When in diagnostic mode and the open-load detection is initiated, the selected channel is switched off for 1ms during which the diagnosis is taking place. Upon

detecting an open load on any channel, the MAX13325/ MAX13326 report the condition using the I^2C interface and the FLAG output. See Table 16.

Overvoltage

When in diagnostic mode, if the MAX13325/MAX13326 exceed the V_{DD} overvoltage threshold (for example during a load-dump condition), the device reports the condition using the I²C interface and the $\overline{\text{FLAG}}$ output. See Table 17.

Table 15. Overcurrent Diagnostic

FAULT CONDITION	STATUS REPORT	UNMASK	RECOVERY		
	FLAG is asserted low.		Load current falls below the		
Overcurrent on Left	FLAG bit set. See Table 7.	In the LMASK register, set MLIMITL bit to 1. See	current-limit threshold.		
Channel	LIMITL bit is set in the LFAULT register. See Table 5.	Table 9.	Cleared on reading the LFAULT register.		
	FLAG is asserted low.		Load current falls below the		
Overcurrent on Right Channel	FLAG bit set. See Table 7.	In the RMASK register, set MLIMITR bit to 1. See	current-limit threshold.		
	LIMITR bit is set in the RFAULT register. See Table 6.	Table 10.	Cleared on reading the RFAULT register.		

Table 16. Open-Load Diagnostic

FAULT CONDITION	STATUS REPORT	UNMASK	RECOVERY
Left-Channel Open	FLAG is asserted low.		
	FLAG bit set. See Table 7.	In the LMASK register, set MOPENL bit to 1. See	Cleared on reading
Load	OPENL bit is set in the LFAULT	Table 9. the LFAULT register	the LFAULT register.
	register. See Table 5.		
	FLAG is asserted low.		
Right-Channel Open Load	FLAG bit set. See Table 7.	In the RMASK register, set MOPENR bit to 1. See	Cleared on reading
	OPENR bit is set in the RFAULT	Table 10.	the RFAULT register.
	register. See Table 6.	145.0 10.	

Table 17. Overvoltage Diagnostic

FAULT CONDITION	STATUS REPORT	UNMASK	RECOVERY		
	FLAG is asserted low.				
	FLAG bit set. See Table 7.	In GMASK register, set	VDD voltage falls below overvoltage threshold. Cleared on reading the GFAULT register. Note: 500ms autoretry in stand-alone mode.		
Overvoltage Shutdown	DUMP bit is set in the GFAULT register. See Table 4.	MDUMP bit to 1. See Table 8.			
	Left and right channels switch off and output goes to a high-impedance state.	Cannot be masked.	Left channel is enabled by setting the RETRYL bit to 1. Right channel is enabled by setting the RETRYR bit to 1. See Table 3.		

Applications Information

Serial Interface

Writing to the MAX13325/MAX13326 using I²C requires that first the master sends a START (S) condition followed by the device's I²C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP (P) condition to relinquish control of the bus, or a Repeated START (Sr) condition to communicate to another I²C slave (see Figure 1).

Bit Transfer

Each SCL rising edge transfers one data bit. The data on SDA must remain stable during the high portion of the SCL clock pulse (see Figure 2). Changes in SDA while SCL is high are read as control signals (see the *START and STOP Conditions* section). When the serial interface is inactive, SDA and SCL idle high.

START and STOP Conditions

A master device initiates communication by issuing a START condition, which is a high-to-low transition on SDA with SCL high. A START condition from the master signals the beginning of a transmission to the MAX13325/MAX13326. The master terminates transmission by a STOP condition (see the *Acknowledge Bit* section). A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 3). The STOP condition frees the bus. If a Repeated START condition is generated instead of a STOP condition, the bus remains active. When a STOP condition or incorrect slave ID is detected, the device internally disconnects SCL from the serial interface until the next START or Repeated START condition, minimizing digital noise and feedthrough.

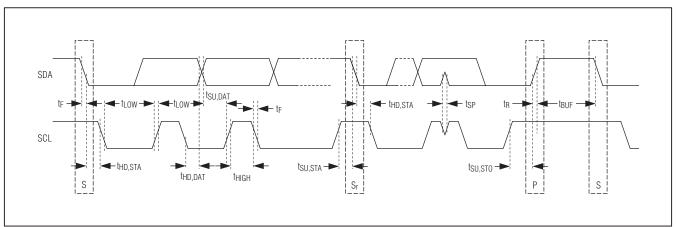


Figure 1. I²C Timing

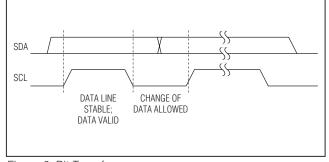


Figure 2. Bit Transfer

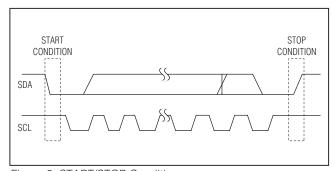


Figure 3. START/STOP Conditions

Acknowledge Bit

The acknowledge (ACK) bit is a clocked 9th bit that the MAX13325/MAX13326 use to handshake receipt of each byte of data when in write mode. The MAX13325/MAX13326 pull down SDA during the entire mastergenerated 9th clock pulse if the previous byte is successfully received (see Figure 4). Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master may retry communication. The master must pull down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX13325/MAX13326 are in read mode. An acknowledge must be sent by the master after each

read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the MAX13325/MAX13326, followed by a STOP condition.

Slave Address

The MAX13325/MAX13326 are programmable to one of seven I²C slave addresses. These slave addresses are unique device IDs. Connect ADD_ to GND, VL, SCL, or SDA to set the I²C slave address. The address is defined as the seven most significant bits (MSBs) followed by the read/write bit. Set the read/write bit to 1 to configure the MAX13325/MAX13326 to read mode. Set the read/write bit to 0 to configure the device to write mode. The address is the first byte of information sent after the START condition.

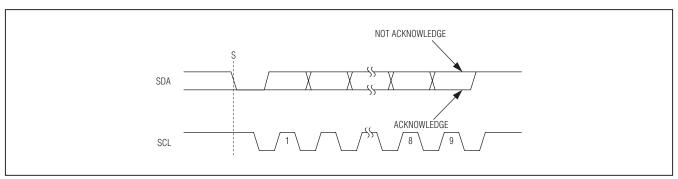


Figure 4. Acknowledge and Not-Acknowledge Bits

Table 18. Slave Address

ADD1	ADD0	A 6	A 5	A 4	А3	A2	A 1	A0	R/W	SLAVE ADDRESS READ (HEX)	SLAVE ADDRESS WRITE (HEX)	MODE
GND	GND	_	_	_	_	_	_	_	_	_	_	Stand- alone
GND	VL	1	1	0	0	0	0	1	1/0	0xC3	0xC2	I ² C
VL	GND	1	1	0	0	0	1	0	1/0	0xC5	0xC4	I2C
VL	VL	1	1	0	0	0	1	1	1/0	0xC7	0xC6	I ² C
VL	SCL	1	1	0	0	1	0	0	1/0	0xC9	0xC8	I2C
VL	SDA	1	1	0	0	1	0	1	1/0	0xCB	0xCA	I ² C
SCL	VL	1	1	0	0	1	1	0	1/0	0xCD	0xCC	I2C
SDA	Vı	1	1	0	0	1	1	1	1/0	0xCF	0xCE	I ² C

Register Address Map Single-Byte Write Operation

For a single-byte write operation, send the slave address as the first byte followed by the register address and then a single data byte (see Figure 5).

Burst Write Operation

For a burst write operation, send the slave address as the first byte followed by the register address and then the data bytes (see Figure 6).

Single-Byte Read Operation

For a single-byte read operation, send the slave address with the read bit set, as the first byte followed by the register address. Then send a Repeated START condition followed by the slave address. After the slave sends the data byte, send a not-acknowledge followed by a STOP condition (see Figure 7).

Burst Read Operation

For a burst read operation, send the slave address with a write as the first byte followed by the register address. Then send a Repeated START condition followed by the slave address. The slave sends data bytes until a not-acknowledge condition is sent (see Figure 8).

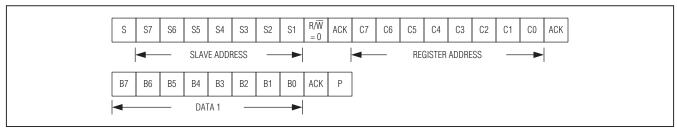


Figure 5. A Single-Byte Write Operation

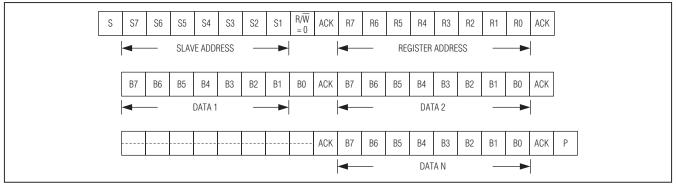


Figure 6. A Burst Write Operation

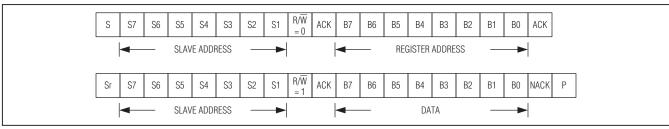


Figure 7. A Single-Byte Read Operation

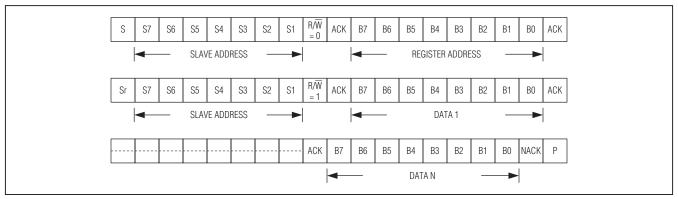


Figure 8. A Burst Read Operation

Charge-Pump Capacitor Selection

Use ceramic capacitors with a low ESR for optimum performance. For optimal performance over the extended temperature range, select capacitors with an X7R dielectric. Table 19 lists suggested manufacturers.

Flying Capacitor (C1)

The value of the flying capacitor (see the *Typical Operating Circuit*) affects the charge pump's load regulation and output resistance. A C1 value that is too small degrades the device's ability to provide sufficient current drive, which leads to a loss of output voltage. Increasing the value of C1 improves load regulation and reduces the charge-pump output resistance. For optimum performance, use a 470nF capacitor for C1.

Hold Capacitor (C2)

The hold capacitor value (see the *Typical Operating Circuit*) and ESR directly affect the ripple at the internal negative rail. Increasing the value of C2 reduces output ripple. Likewise, decreasing the ESR of C2 reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels. For optimum performance, use a $1\mu F$ capacitor for C2.

Power-Supply Bypass Capacitor (C3)

The power-supply bypass capacitor (see the *Typical Operating Circuit*) lowers the output impedance of the power supply, and reduces the impact of the MAX13325/MAX13326 charge-pump switching transients. Bypass V_{DD} with C3, the same value as C2, and place it physically close to the V_{DD} and PGND pins.

Load-Dump Protection

With minimal external components, the MAX13325/MAX13326 can be protected against automotive load-dump conditions. See the *Typical Operating Circuit*.

nMOSFET (Q1)

Q1 should be selected to withstand the full-voltage exposure (BVDSS > 45V). The gate-source turn-on voltage should be chosen to be less than VCPS to ensure initial startup. Using an external nMOS, RTR020N05, 300ms duration component provides 50V load-dump protection.

Zener Diode (D1)

During short-to-battery condition, OUT_ lifts up CHOLD using an internal diode. In order not to violate the maximum gate-source voltage of Q1, a zener diode of appropriate clamping voltage should be added between the gate and source terminals.

Series Resistor (R1)

Normally, a series resistor for current limitation is needed during short-to-battery condition. R1 should be chosen according to (18V - VDD(min) - VZENER)/1mA so that no excessive current is being drawn from CHOLD.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Connect the EP and GND together at a single point on the PCB. Ensure ground return resistance is minimized for optimum crosstalk performance.

Table 19. Suggested Capacitor Vendors

SUPPLIER	PHONE	FAX	WEBSITE
Murata	770-436-1300	770-436-3030	www.murata.com
Taiyo Yuden	800-348-2496	847-925-0899	www.t-yuden.com
TDK	847-803-6100	847-390-4405	www.component.tdk.com

PROCESS: BCD

Dual Automotive, Audio Line Drivers with I²C Control and Diagnostic

Chip Information

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 TSSOP-EP	U28E+5	21-0108

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.