

HDMI Switch ICs

2 for input 1 output switch with Termination sense correspondence (Sync with HPD_SINK)

BU16006KV No.09063EDT01

Description

BU16006KV is 2 input 1 output HDMI/DVI switch LSI. Each Port supports 2.25Gbps. (HDMI 1.3a).

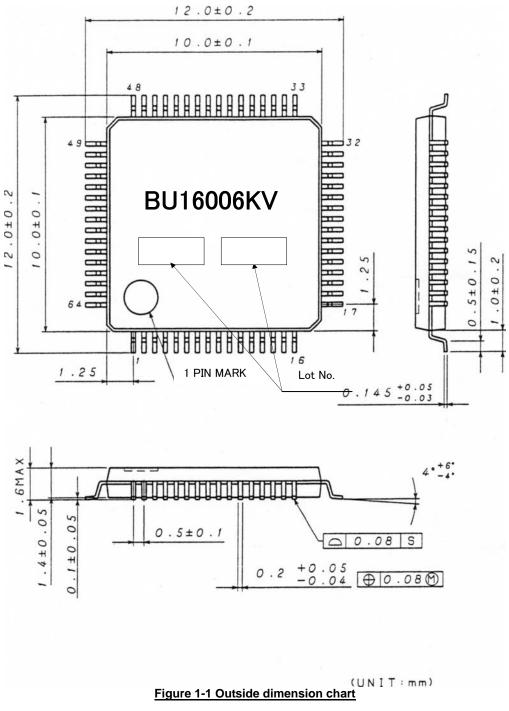
This device control is simple. It requires only 3.3V and a few GPIO controls.

Terminated resistors(50 Ω) are integrated at each input port. When channel is not selected, termination resistors are disconnected. TMDS inputs are high impedance.

This device is integrated equalization function and DDC buffer function, so it can adapt long cable.

Features

- 1) Supports 2.25 Gbps signaling rate for 480i/p, 720i/p, and 1080i/p resolution to 12-bit color depth
- 2) Compatible with HDMI 1.3a
- 3) 5V tolerance to all DDC and HPD_SINK inputs
- 4) Integrated DDC buffer
- 5) Integrated switchable 50Ω receiver termination
- 6) Integrated equalizer circuit to adapt long cable
- 7) HBM ESD protection exceeds 10kV
- 8) 3.3V fixed supply to TMDS I/Os
- 9) 64Pin VQFP package
- 10) ROHS compatible


Applications

Digital TV, DVD Player, Set-Top-Box, Audio Video Receiver, Digital Projector, DVI or HDMI Switch Box

Line up matrix

Part No.	Power Supply (V)	ESD (KV)	Input (ch)	Output (ch)	Data rate (Gbps)	Hot Plug Control	Termination Sense Correspondence	Switching Method	DDC Buffer	Equalizer	De emphasis	Package	RoHS
BU16020KV	3 to 3.6	10	HDMI 4ch	HDMI 1ch	2.7	Yes	Yes	GPIO/I ² C	Yes	Yes (adaptive)	Yes	VQFP100	Yes
BU16018KV	3 to 3.6	10	HDMI 3ch	HDMI 1ch	2.25	Yes	Yes	GPIO	Yes	Yes	Yes	VQFP80	Yes
BU16027KV	3 to 3.6	10	HDMI 3ch	HDMI 1ch	2.25	Yes	Yes	GPIO	Yes	Yes	Yes (Always ON)	VQFP64	Yes
BU16006KV	3 to 3.6	10	HDMI 2ch	HDMI 1ch	2.25	Yes	Yes	GPIO	Yes	Yes	Yes (Always ON)	VQFP64	Yes
BU16024KV	3 to 3.6	10	HDMI 1ch	HDMI 1ch	2.25	Yes	Yes	-	Yes	Yes	Yes	VQFP48C	Yes

OUTSIDE DIMENSION CHART

BLOCK DIAGRAM

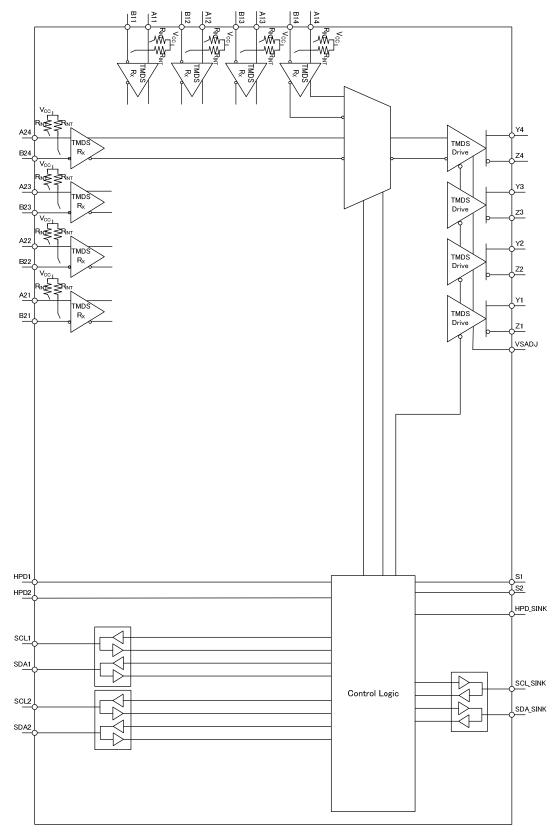


Figure 2-1 Block Diagram

●PIN EXPLANATION

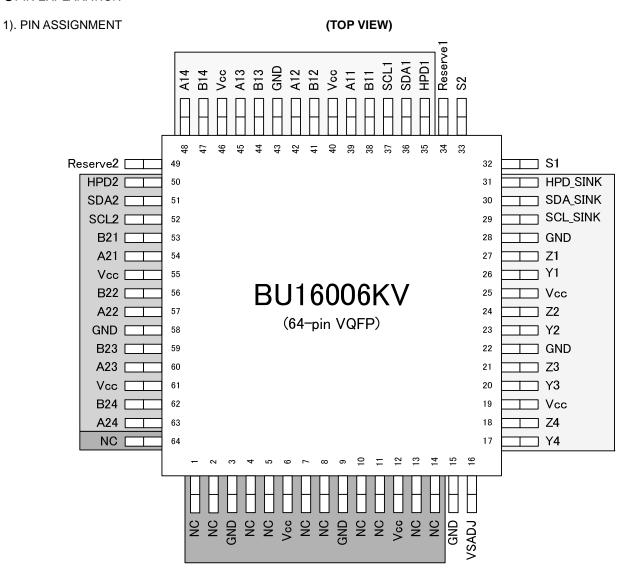
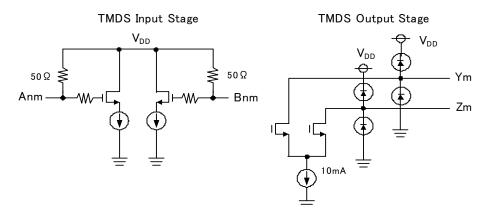
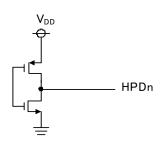
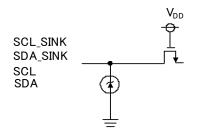



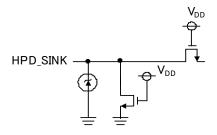
Figure 3-1 Pin Location


2). PIN_LIST

N LIST	1.4.1		1			
TERMIN		I/O	DESCRIPTION			
NAME	No.		0			
A11, A12, A13, A14	39, 42, 45, 48	I	Source port 1 TMDS positive inputs			
A21, A22, A23, A24	54, 57, 60, 63	I	Source port 2 TMDS positive inputs			
B11, B12, B13, B14	38, 41, 44, 47	I	Source port 1 TMDS negative inputs			
B21, B22, B23, B24	53, 56, 59, 62	I	Source port 2 TMDS negative inputs			
CND	3, 9, 15, 22, 28,		Crawad			
GND	43, 58	-	Ground			
HPD1	35	0	Source port 1 hot plug detector output (status pin)			
HPD2	50	0	Source port 2 hot plug detector output (status pin)			
HPD_SINK	31	I	Sink port hot plug detector input (status pin)			
Reserve1	34	I/O	Set to HIGH/LOW/OPEN			
Reserve2	49	I/O	Non Connect Pin			
SCL1	37	I/O	Source port 1 DDC I2C clock line			
SCL2	52	I/O	Source port 2 DDC I2C clock line			
SCL_SINK	29	I/O	Sink port DDC I2C clock line			
SDA1	36	I/O	Source port 1 DDC I2C data line			
SDA2	51	I/O	Source port 2 DDC I2C data line			
SDA_SINK	30	I/O	Sink port DDC I2C data line			
S1, S2	32, 33	I	Source selector			
V00	6, 12, 19, 25,		Power supply			
VCC	40, 46, 55, 61	-				
Vead			TMDS compliant voltage swing control			
VSADJ	16	I	(via 4.64kΩ to GND)			
Y1, Y2, Y3, Y4	26, 23, 20, 17	0	Sink port TMDS positive outputs			
Z1, Z2, Z3, Z4	27, 24, 21, 18	0	Sink port TMDS negative outputs			

●EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS




HPD Output Stage

R-Side I²C Input/Output Stage

T-Side I²C Input/Output Stage

Xn=1,2 m=1,2,3,4

Figure 4-1 I/O pin schematic diagram

Technical Note

● SOURCE SELECTION LOOKUP TABLE

CONTR	OL PINS	3	I/O SELECTED	HOT PLU	G DETECT	STATUS	
HPD_SINK	S 1	S2	Y/Z	SCL_SINK SDA_SINK	HPD1	HPD2	HPD3
Н	Н	Н	A1/B1 Terminations of A2/B2 and A3/B3 are disconnected	SCL1 SDA1	Н	L	L
Н	L	Н	A2/B2 Terminations of A1/B1 and A3/B3 are disconnected	SCL2 SDA2	L	Н	L
н	L	L	Disallowed (indeterminate)State All terminations are disconnected	None (Z) Are pulled HIGH by external pull-up	L	L	Н
Н	Н	L	None (Z) All terminations are disconnected	termination	Н	Н	Н
L	Н	Н	Disallowed (indeterminate)State All terminations are disconnected	SCL1 SDA1	L	L	L
L	L	Н	Disallowed (indeterminate)State All terminations are disconnected	SCL2 SDA2	L	L	L
L	L	L	Disallowed (indeterminate)State All terminations are disconnected	None (Z) Are pulled HIGH by	L	L	L
L	Н	L	None (Z) All terminations are disconnected	external pull-up termination	L	L	L

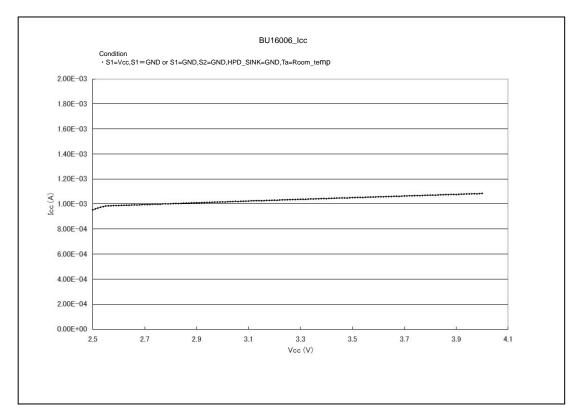


Figure 4-2 Supply voltage(Vcc) vs. Supply current(Icc) [S1=H,S2=L]

• Electrical characteristics

1.) ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) $^{\!(1)}$

ITEM	MIN.	TYP.	MAX.	UNIT
Power supply voltage (Vcc)	-0.3	-	4.0	V
DDC, HPD_SINK input voltage	-0.3	-	6.0	V
Differential input voltage	2.5	-	4.0	V
S1, S2 input voltage	-0.3	-	4.0	V
Power dissipation	-	-	1250※	mW
Strage temperture range	-55	-	125	°C

^{%70}mm×70mm×1.6mm glass epoxy board mount. (Reverse Cu occupation rate:15mm×15mm) When it's used by than Ta=25°C, it's reduced by 12.5mW/°C.

2.) RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vcc	Supply voltage	3	3.3	3.6	V
T_A	Operating free-air temperature	0	-	70	°C
TMDS DIF	FERENTIAL PINS				
V_{IC}	Input common mode voltage	V _{CC} -0.6	-	V _{CC} +0.01	V
V_{ID}	Receiver peak-to-peak differential input voltage	150	-	1560	mVp-p
R _{VSADJ}	Resistor for TMDS compliant voltage swing range	4.60	4.64	4.68	kΩ
AV_{CC}	TMDS Output termination voltage, see Figure 5-1.	3	3.3	3.6	V
R _T	Termination resistance, see Figure 5-1.	45	50	55	Ω
	Signaling rate	0	-	2.25	Gbps
CONTROL	PINS (S1,S2)				
VIH	LVTTL High-level input voltage	2	-	V _{CC}	V
VIL	LVTTL Low-level input voltage	GND	-	0.8	V
STATUS(H	IPD_SINK)				
V_{IH}	LVTTL High-level input voltage	2.4	-	5.5	V
V _{IL}	LVTTL Low-level input voltage	GND	-	0.8	V
DDC PINS	(SCL_SINK, SDA_SINK,SDA[2:1],SCL[2:1])				
V _{I(DDC)}	Input voltage	GND	-	5.5	V

3.) ELECTRICAL CHARACTERISTICS

Over recommended operating conditions (unless otherwise noted)

0 701 10	ecommended operating conditions	(a.i.edd differenced)				
SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ⁽¹⁾	MAX.	UNIT
lcc	Supply current	$\begin{split} &V_{\text{IH}^-} = \text{Vcc,V}_{\text{IL}} = \text{Vcc-}0.4\text{V,R}_{\text{VSADJ}} = \\ &4.64\text{k}\Omega \\ &R_{\text{T}} = 50\Omega,\text{AVcc} = 3.3\text{V} \\ &A\text{m/Bm} = 2.25 \text{ Gbps HDMI data} \\ &\text{pattern,} \\ &m = 2,3,4 \\ &A1,\text{B1} = 225 \text{ MHz clock} \end{split}$	-	120	150	mA
P _D	Power dissipation	$\begin{split} V_{IH} &= V_{cc}, V_{IL} = Vcc\text{-}0.4V, R_{VSADJ} = \\ 4.64k \Omega \\ R_T &= 50 \Omega , AVcc = 3.3V \\ Am/Bm &= 2.25Gbps \; HDMI \; data \\ pattern, \\ m &= 2,3,4 \\ A1/B1 &= 255 \; MH_Z \; clock \end{split}$	-	450	600	mW
TMDS DIF	FERENTIAL PINS (A/B;Y/Z)					
V _{OH}	Single-ended high-level output voltage		Avcc -200	-	Avcc-50	mV
V _{OL}	Single-ended low-level output voltage		Avcc -600	-	Avcc-400	mV
V _{SWING}	Single-ended low-level swing voltage	See Figure 5-2, AVcc = 3.3V, $R_T = 50 \Omega$	300	-	460	mV
Vod _(O)	Overshoot of output differential voltage		-	6%	15%	2xV _{swing}
Vod _(U)	Undershoot of output differential voltage		-	12%	25%	2xV _{swing}
$V_{OD(pp)}$	Steady state output differential voltage	See Figure 5-2, Am/Bm = 250 Mbps HDMI data pattern , m = 2,3,4 A1/B1 = 25 MHz clock	600	-	920	mVp-p
R _{INT}	Input termination resistance	V _{IN} = 2.9V	45	50	55	Ω
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage between logic states		-	5	-	mV

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ⁽¹⁾	MAX.	UNIT	
	DDC Input and ou	ıtput					
	Tx					.,	
V _{IH}	High-level input voltage		2.1	-	5.5	V	
V _{IL}	Low-level input voltage	VI=5.5V	-0.3 -10	-	0.35 10	V	
I _{IKT①}	Input leak current, Input leak current,	VI=Vcc	-10	-	10	uA uA	
I _{OHT}	High-level output current	VO=3.6V	-10	-	10	uA	
I _{ILT}	Low-level input current	VIL=GND	-10	-	10	uA	
V _{OLT}	Low-level output voltage	RL=4.7kΩ	0.43	0.5	0.57	V	
V _{OLT} -V _{IL}	Low-level input voltage below output low-level voltage		20	100	190	mV	
V _{IH}	High_level input voltage		2.4	-	5.5	V	
V _{IL}	Low-level input voltage		-0.3	-	0.8	V	
$I_{\text{IKR}_{\textcircled{1}}}$	Input leak current	VI=5.5V	-10	-	10	uA	
I _{IKR②}	Input leak current	VI=Vcc	-10	-	10	uA	
I _{OHR}	High-level output current	VO=3.6V	-10	-	10	uA	
I_{ILR}	Low-level input current	VIL=GND	-10	-	10	uA	
V_{OLR}	Low-level output voltage	lout = 4mA	-	-	0.2	V	
STATUS P	INS (HPD 1, HPD 2,)						
$V_{\text{OH}(TTL)}$	TTL High –level output voltage	$I_{OH} = -8mA$	2.4	-	Vcc	V	
$V_{\text{OL}(TTL)}$	TTL Low –level output voltage	I _{OL} = 8mA	0	-	0.4	V	
CONTROL	. PINS (S1, S2)						
I _{IH}	High –level digital input current	V _{IH} = Vcc	-10	-	10	uA	
I _{IL}	Low –level digital input current	V _{IL} = GND	-10	-	10	uA	
STATUS P	INS (HPD_SINK)						
	High lavel digital in the control of	V _{IH} = 5.5V	10	50	100	uA	
I _{IH}	High –level digital input current	V _{IH} = Vcc	5	30	80	uA	
I _{IL}	Low –level digital input current	V _{IL} = GND	-10	-	10	uA	
	•						

SYMBOL	DADAMETED	TEST COMPITIONS	LIMITS			UNIT
STWIDOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ⁽¹⁾	MAX.	UNII
TMDS DIF	FERENTIAL PINS (Y/Z)					1
t _{PLH}	Propagation delay time		_	480	_	ps
IPLH	low-high-level output			400		ρs
t_{PHL}	Propagation delay time		_	500	_	ps
YPHL	low-high-level output			300		po
t _r	Differential output signal rise		_	150	_	ps
ч	time (20%-80%)			100		Po
t _f	Differential output signal fall	See Figure 5-2, AV _{CC} = 3.3V,	_	150	_	ps
	,	$R_T = 50 \Omega$				Po
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})		-	20	-	ps
t _{sk(D)}	Intra-pair differential skew, see		_	50	_	ps
-3K(D)	Figure 5-3.					F-
$t_{sk(o)}$	Inter-pair channel-to-channel		-	50	-	ps
	output skew ⁽²⁾					
t _{sk(pp)}	Part to part skew ⁽³⁾		-	400	-	ps
DDC I/O P	INS (SCL, SCL_SINK, SDA, SDA	_SINK)				
	Propagation delay time,		-		-	
$t_{pdLHTR(DDC)}$	low-to-high-level output			650		ns
	Tx to Rx	$R_L = 4.7 \text{K} \Omega$, $C_L = 100 \text{pF}$				
$t_{\text{pdHLTR(DDC)}}$	Propagation delay time,	- , - ,				
	high-to-low-level output		-	200	-	ns
	Tx to Rx					
	Propagation delay time,					
$t_{\text{pdLHRT(DDC)}}$	low-to-high-level output		-	500	-	ns
	Rx to Tx	$R_L = 1.67 K \Omega, C_L = 400 pF$				
	Propagation delay time,	· ·				
$t_{pdHLRT(DDC)}$	high-to-low-level output		-	350	-	ns
	Rx to Tx					
tr Tx _(DDC)	Tx output Rise time	$R_{L} = 4.7 \text{K} \Omega$, $C_{L} = 100 \text{pF}$	-	800	-	ns
tf Tx _(DDC)	Tx output Fall time	•	-	150	-	ns
tr Rx _(DDC)	Rx output Rise time	$R_L = 1.67 K \Omega, C_L = 400 pF$	-	950	-	ns
tf Rx _(DDC)	Rx output Fall time	, - ,	-	50	-	ns
t _{sx}	Select to switch output		-	8	-	ns
t _{dis}	Disable time		-	5	-	ns
t _{en}	Enable time		-	7	-	ns
$t_{\rm sx(DDC)}$	Switch time from SCLn to SCL_SINK	C _L =10pF	-	800	-	ns
C _{IO}	Input/output capacitance	V _I =0V		15		pF
STATUS P	INS(HPD1,HPD2,HPD3)					
	Propagation delay time,					
$t_{\text{pdLH(HPD)}}$	low-to-high-level output from	C _L =10pF	-	5	-	ns
	HPD_SINK to HPDn(n=1,2)					
	Propagation delay time,					
$t_{pdHL(HPD)}$	high-to-low-level output from	C _L =10pF	-	5	-	ns
	HPD_SINK to HPDn(n=1,2)					
4	Switch time from port select to	C 10pF		-		
$t_{\text{sx}(\text{HPD})}$	the latest valid status of HPD	C _L =10pF	-	8	-	ns

Note:

- 1. All typical values are at 25°C and with a 3.3V supply.
- 2. $t_{sk(o)}$ is the magnitude of the difference in propagation delay times between any specified terminals of channel of a devices when inputs are tied together.
- 3. t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of channel of two devices, or between channel 1 of two devices, when both devices operate with the same source, the same supply voltages, at the same temperature, and have identical packages and test circuits.

●MEASUREMENT SYMBOL AND CIRCUIT

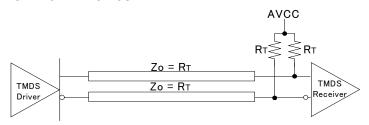
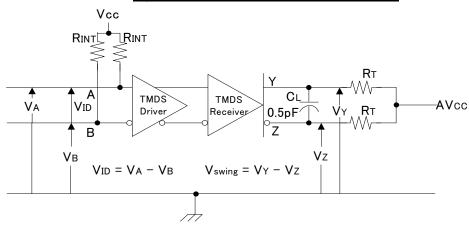



Figure 5-1 Termination for TMDS Output Driver

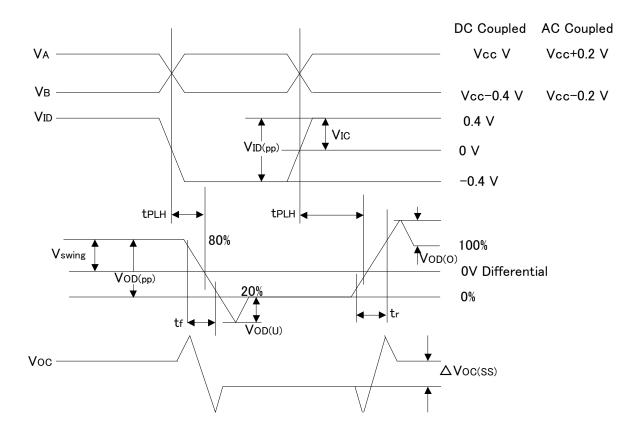


Figure 5-2. Timing Test Circuit and Definitions

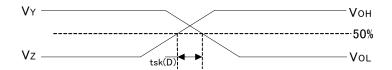


Figure 5-3 Definition of Intra-Pair Differential Skew

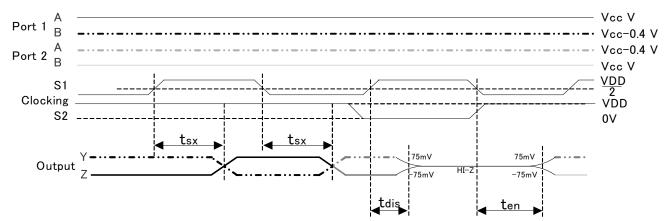


Figure 5-4 TMDS Outputs Control Timing Definitions

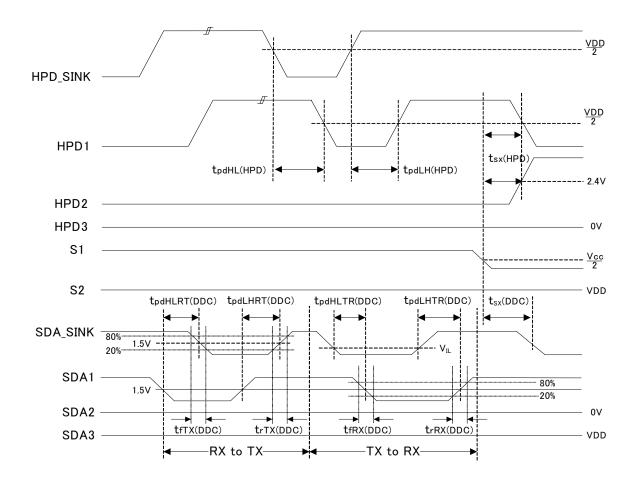


Figure 5-5 DDC and HPD Timing Definitions

1). HPD_SINK Pull down resistance.

HPD_SINK is a 5V tolerant structure shown in Figure 6-1.

It needs some drive current to pull down HPD_SINK "H" to "L"(max10uA@HPD_SINK=2V).

So to pull down HPD_SINK, please use $10k\Omega$ (or under $10k\Omega$) resistor.

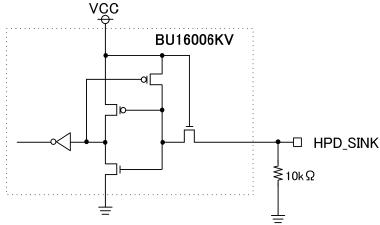


Figure 6-1 HPD SINK I/O schematic

2). About don't use terminal. Unused TMDS input channel can be opened.

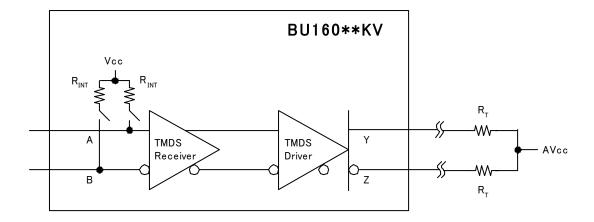
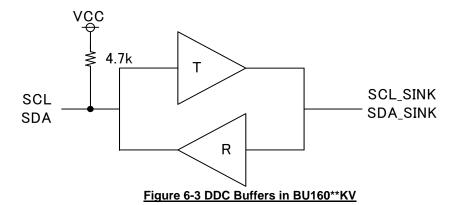



Figure 6-2 TMDS Input Fail-Safe Recommendation

Unused DDC Buffers of R side polled up to Vcc.

Open unused HPDn.

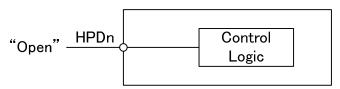


Figure 6-4 Open unused HPDn

3). About serial connect notice.

When HDMI sw output connect to other HDMI sw input like following application. There is possibility that. 1080p(12bit) image isn't displayed. It's depend on receiver IC characteristic. When system is required 1080p (12bit), Rohm doesn't recommend serial connect application.

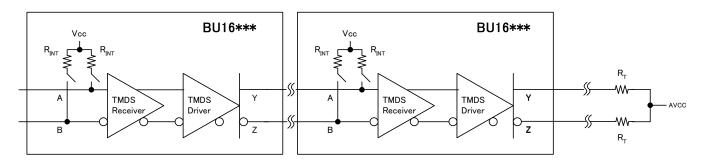


Figure 6-5 serial connect notice

4). Offset voltage appearance.

If differential input is opened, offset voltage appear at differential output OE is set to low to avoid it.

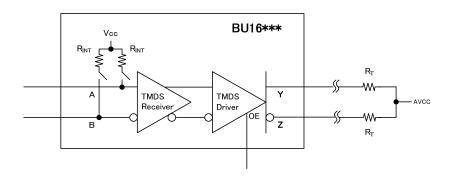


Figure 6-6 Offset voltage avoid

5). Limitation of Master and slave direction.

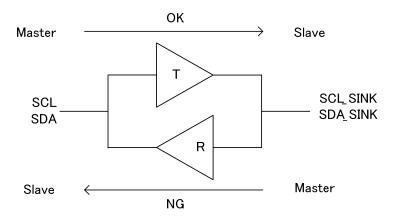


Figure 6-7 Limitation of Master and slave direction

6). Attention in use as repeater.

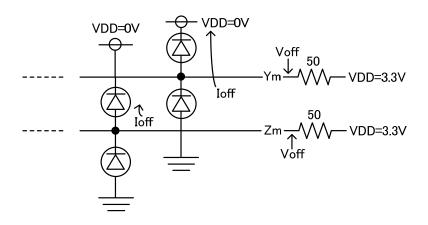
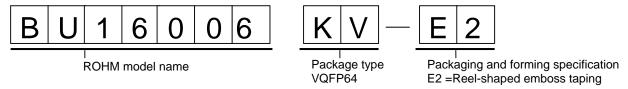
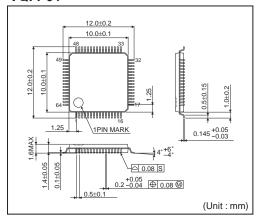
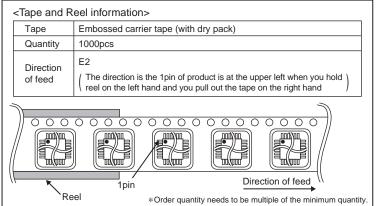



Figure 6-8 loff specification not meet to HDMI CTS


Depend on HDMI CTS, Voff must be less than VDD-10mV, but this IC not meet to CTS cause of loff.


Ordering part number

Package specification

VQFP64

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/