

F72820

Synchronous Buck PWM DC-DC Controller

Release Date: July, 2007 Version: V0.24P

F72820 Datasheet Revision History

Version	Date	Page	Revision History
0.21P	Mar/2005		Preliminary version
0.22P	Jun/2005	14	Update application circuit
0.23P	Mar/2006	15	Correct application circuit
0.24P	Jul 2007	13	Update company address

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

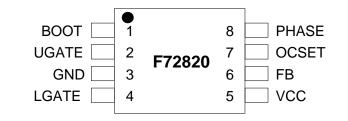
LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Fintek for any damages resulting from such improper use or sales.

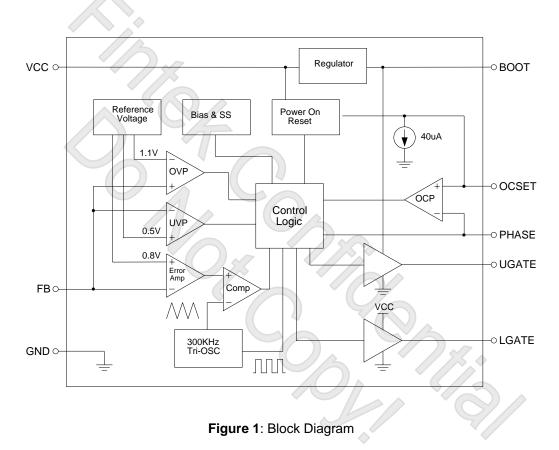
Table of Content

1.	(General Description	1
2.	I	Feature List	1
3.	F	Pin Configuration	2
4.	E	Block Diagram	2
5.	F	Pin Description	3
6.	I	Function Description	4
	6.1	Bootstrap Operation	4
	6.2	Dual Power Operation	4
	6.3	Soft-Start	5
	6.4	Over-current Protection	5
	6.5	Under-voltage Protection	6
	6.6		
	6.7	Converter Shut Down	7
	6.8	PWM Controller Feedback Compensation	7
	6.9		9
7.		Electrical Characteristic	
8.	(Ordering Information	2
9.	I	Package Dimensions (8-SOP/150 mil)	3
10.	/	Application Circuit	4

1. General Description


The F72820 is a single PWM DC-DC converter controller for application requiring high current such as motherboard, graphic card etc. The F72820 uses voltage mode PWM controller with fast transient response (driving two external N-channel MOSFETs in a synchronous rectified buck converter topology) and integrates some functions such as soft-start, over current and short circuit protections etc. Over current protection is achieved by monitoring the voltage drops across the high side MOSFET without the need for a current sensing resistor and short circuit condition is detected through FB pin. If fault conditions occur, the F72820 will initiate the soft start cycle. After three cycles and the fault conditions persist, the controller will go into shut down status. In shut down status, both gate drive signals will be low. To restart the controller, either recycling the Vcc supply or momentarily pulling OCSET pin below 1.25V. The F72820 is available in 8-SOP package.

2. Feature List


- Provides one synchronous rectified buck DC-DC PWM controller
 - Fast transient response (high bandwidth error amplifier; full 0~100% duty cycle)
 - Fixed operation frequency : 300KHz
 - Single loop voltage-mode control
 - Few external components
 - Output range adjustable down to 0.8V
- Operation is under 5V input
- Drives external N-channel MOSFETs
- Over current monitor is used by MOSFET RDS(ON)
- 0.8V internal reference voltage
 - ±2% accuracy over line, load and temperature
- Internal soft-start (typically 3 ms)
- Internal loop compensation
- Under voltage fault monitoring and protection
- Over voltage protection
- 8-SOP package (150 mil)

3. Pin Configuration

4. Block Diagram

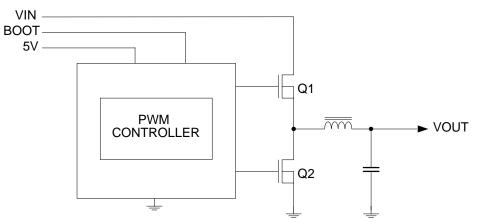


Figure 2: Simplified power system diagram

5. Pin Description

AIN - Input pin(Analog)

AOUT - Output pin(Analog)

P - Power

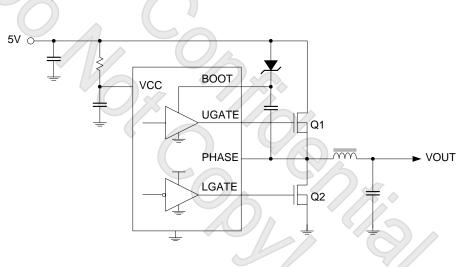
Pin No	Pin Name	TYPE	PWR	Description	
1	BOOT	Р	V	Provide ground reference voltage for high side MOSFET by bootstrap circuit or ATX 12V.	
2	UGATE	AOUT	BOOT	Higher gate drive output. Connect this pin to gate of the high side MOSFET	
3	GND	Р		Power ground pin for the chip	
4	LGATE	AOUT	VCC	Lower gate drive output. Connect this pin to gate of the low side MOSFET	
5	VCC	Р		IC supply voltage. This voltage is monitored for power-on-reset purpose.	
6	FB	AIN	VCC	Inverting input of the error amplifier used to compensate the feedback loop of the PWM controller.	
7	OCSET/SD	AOUT/AIN	VCC	This is multi-function pin. Connecting a resistor from this pin to drain of high side MOSFET and an internal 40uA current source to ground OCSET voltage is reference for over current detect. When OCSET voltage is under 1.25V, shut down function will be enabled.	
8	PHASE	AIN	VCC	Connect to high side MOSFET source and monitor its voltage drop for over current protection.	

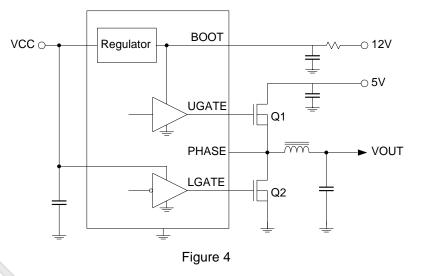
6. Function Description

The F72820 is a single PWM DC-DC converter controller for application requiring high current such as motherboard, graphic card etc. The F72820 uses voltage mode PWM controller with fast transient response (driving two external N-channel MOSFETs in a synchronous rectified buck converter topology) and integrates some functions such as soft-start, over current and short circuit protections etc. Over current protection is achieved by monitoring the voltage drop across the high side MOSFET, eliminating the need for a current sensing resistor and short circuit condition is detected through the FB pin. If fault conditions occur, the F72820 would initiate the soft start cycle. After three cycles and the fault condition persist, the controller will go into shut down status. In shut down, both gate drive signals will be low. To restart the controller, either recycle the Vcc supply or momentarily pull the OCSET pin below 1.25V.

6.1 Bootstrap Operation

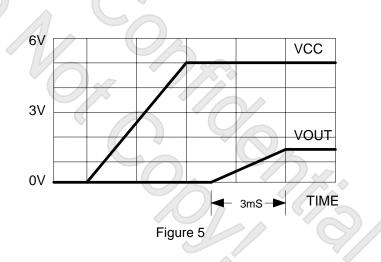
In single power supply system, the UGATE is powered by an external bootstrap circuit as Fig 3. The Boot capacitor, C_{BOOT} is charged and generated a floating reference voltage at phase pin. Typically a 0.1uF C_{BOOT} is enough for the most of applications. The C_{BOOT} capacitor is refreshed and charged to a voltage of "VCC – Diode Drop" while low side power MOS turning on.




Fig 3. Single 5V Power Supply Operation.

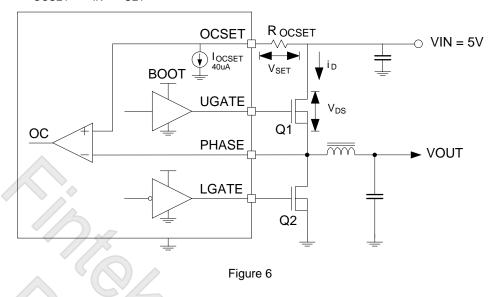
6.2 Dual Power Operation

The F72820 Power-on-reset monitors VCC supply voltage and input voltage at the OCSET pin. POR level is 3.8V with 0.5V hysteresis at VCC voltage and 1.25V at OCSET voltage, The POR function initiates soft-start operation and reset control logic after these supply voltages exceed their POR threshold voltages.



6.3 Soft-Start

The POR function initiates the digital soft-start sequence; the soft start function is used to prevent surge current from power supply input during power on. When soft start event, PWM error amplifier reference inputs are forced to track a voltage level proportional to the soft-start voltage. As the soft-start voltage slews up, the PWM comparator regulates the output relative to the tracked soft-start voltage, slowly charging the output capacitor(s), the soft start duration is 3mS in typical case.


6.4 Over-current Protection

The over current protection function of the F72820 is trigger when the voltage across the RDS (ON) of upper side MOSFET the developed by drain current exceeds over-current tripping level. An external resistor (ROCSET) programs the over-current tripping level of the PWM converter. As show on Figure 6, the internal 40uA current sink develops a voltage across ROCSET that is reference to VIN. The over current comparator detect over current event when UGATE is high and PHASE voltage is under OCSET voltage. When OC be detected, over current protect function will soft start three times and check over current again. If over current event is true, the F72820 will be shut down.

OVER-CURRENT TRIP:

VDS > VSET I D X R DS(ON) > I OCSET X R OCSET V PHASE = VIN - VDS V OCSET = VIN - VSET

6.5 Under-voltage Protection

Pins FB are monitored during converter operation by under-voltage (UV) comparators. If the FB voltage drops below 0.5V, a fault signal is generated. The internal fault logic shut down regulator simultaneously when the fault signal triggers a restart. At time t0, VOUT has dropped below 0.5V of the nominal output voltage. Output is quickly shut down and the internal soft-start function begins producing soft-start ramps. The delay interval, t0 to 3*tss, seen by the output is equivalent to three soft-start cycles. After a short delay interval of 10.5ms, the fourth internal soft-start cycle initiates a normal soft-start ramp of the output, at time 3*tss. Both outputs are brought back into regulation by time 4*tss, as long as the UV event has cleared. When the cause of the UV still been present after the delay interval. A fault signal could then be generated and the outputs once again shutdown.

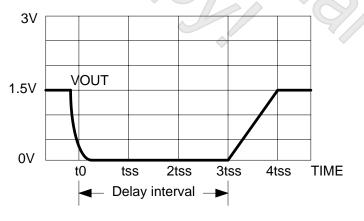
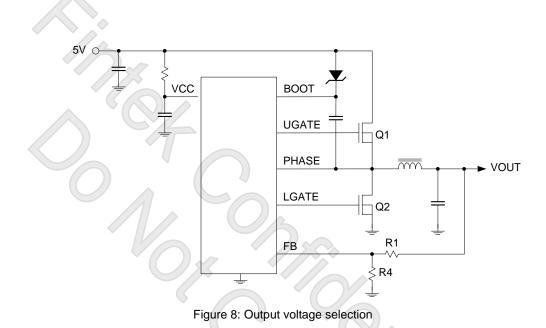


Figure 7



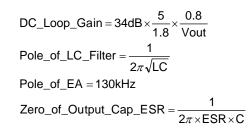
6.6 Output Voltage Selection

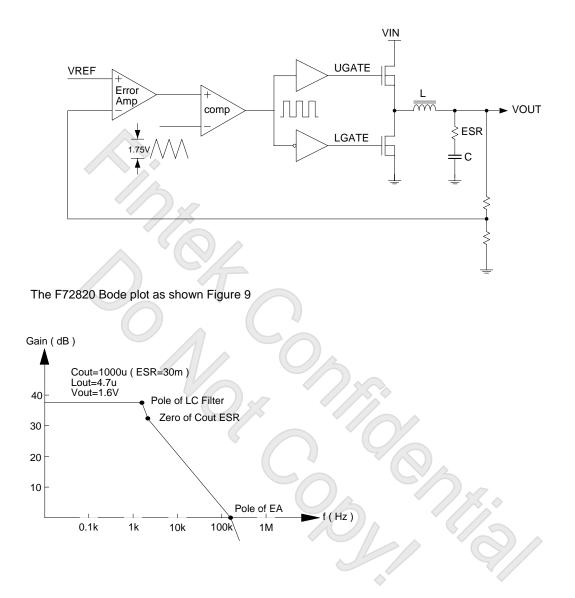
The output voltage of the PWM converter can be programmed to any level between VIN (i.e. 5+V) and the internal reference, 0.8V. An external resistor divider is used to scale the output voltage relative to the reference voltage and feed it back to the inverting input of the error amplifier, see Figure 8. Depending on the value chosen for R1 (the resistor connected between VOUT1 and FB), R4 (the resistor connected from FB to GND) can be calculated based on the following equation:

$$R4 = \frac{R1 \times 0.8V}{VOUT - 0.8V} \tag{EQ1}$$

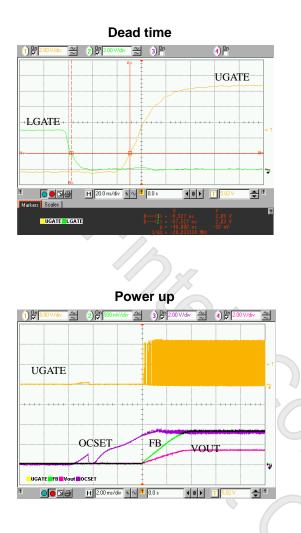
If the desired output voltage is 0.8V, simply route VOUT back to FB through R1, but do not populate R4.

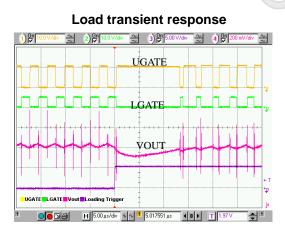
6.7 Converter Shut Down

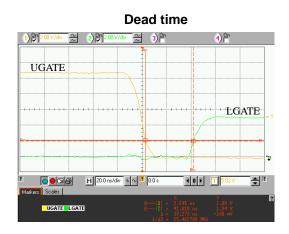

Pulling low the OCSET pin by a small signal transistor can shutdown the F72820 PWM controller as show is typical application circuit.

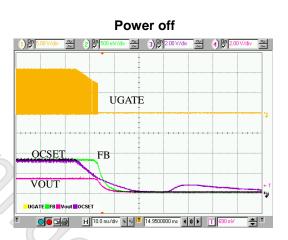

6.8 PWM Controller Feedback Compensation

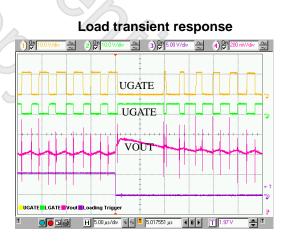
The F72820 is a voltage mode step down PWM controller. The gain of error amp is fixed at 34dB for simplified design and saving external components. The amplitude of internal Tri-wave OSC is 1.75V. The loop gain and loop Zero/Pole are calculated as follow equations.

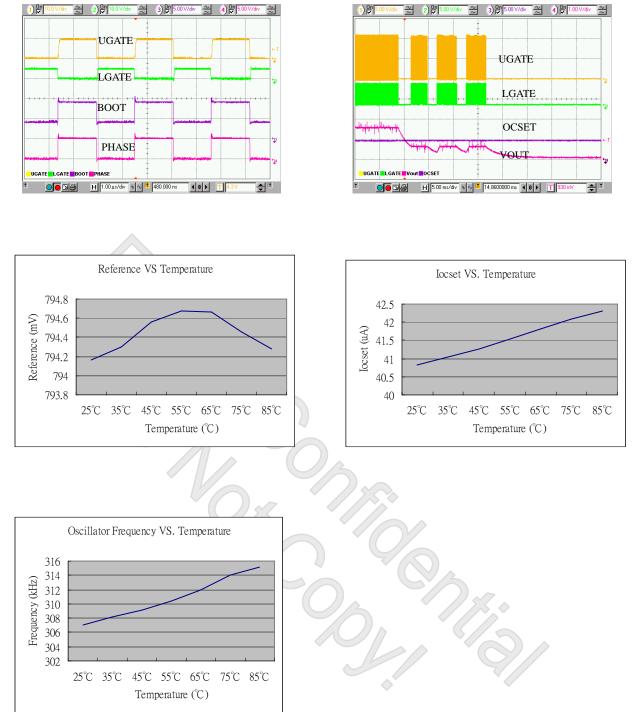









6.9 Typical Characteristic



Over-Current Protect

F72820

7. Electrical Characteristic

Absolute Maximum Ratings

PARAMETER	SYMBOL	RATINGS	UNIT
IC supply voltage	VCC	7	V
Gate drivers supply voltage	12VCC	15	V
PWM controller outputs	UGATE, LGATE		V
Feedback voltages of both regulators	FB, FB2, COMP	GND - 0.3-17	V
ESD classification	НВМ	2	kV
Maximum junction temperature (plastic package)	Tj	150	°C
Maximum storage temperature	T _{STO}	-65 ~ 150	°C
Maximum lead temperature (soldering 10s)		260	°C

Note: If ICs are stressed beyond the limits listed in the "absolute maximum ratings", they may be permanently destroyed. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

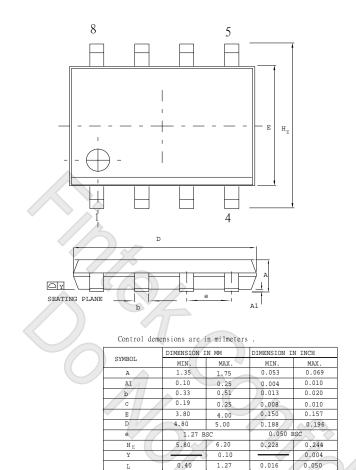
Package thermal information

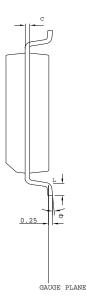
PARAMETER	SYMBOL	SOIC	UNIT
Thermal resistance junction-ambient	Rth_ja	133	°C/W
DC and AC electrical characteristics			

DC and AC electrical characteristics

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
VCC SUPPLY CURRENT/Regulated Voltage							
Nominal supply current 5VCC	I _{cc}	UGATE, LGATE and DRIVE2 open		2	4	mA	
Regulated Voltage from BOOT	V _{cc}	V _{BOOT} = 12V	5.0	5.5	6	V	
POWER-ON RESET	POWER-ON RESET						
Rising VCC threshold		VOCSET = 4.5V		3.8	4.0	V	
Falling VCC threshold		VOCSET1 = 4.5V	3.1	3.3		V	
Rising V _{OCSET} Threshold			0.8	1.25	2.0	V	
OSCILLATOR AND Protection							
Free running frequency	Fosc	V _{cc} =5V	250	300	350	kHz	
Ramp Amplitude	∆V _{osc}			1.75 [*]		V _{P-P}	
FB Over Voltage Trip		FB Rising	1.0	1.1	1.2	V	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
FB Under Voltage Trip		FB Falling	0.4	0.5	0.6	V	
OCSET Current Source	I _{OCSET}	V _{OCSET} = 4.5V	35	40	45	uA	
Soft-start interval	T _{ss}		1	3	6	ms	
REFERENCE VOLTAGE	REFERENCE VOLTAGE						
Reference voltage	V_{REF}		0.784	0.8	0.816	V	
PWM CONTROLLER GATE DRIVERS							
Upper Drive Source	R _{UGATE}	BOOT = 12V ; BOOT – V _{UGATE} = 1V		8	12	Ω	
Upper Drive Sink	R _{UGATE}	V _{UGATE} =1V		4	6	Ω	
Lower Drive Source	R _{LGATE}	VCC – V _{LGATE} = 1V		3	4.5	Ω	
Lower Drive Sink	R _{LGATE}	V _{LGATE} =1V		2	3	Ω	
Error Amplifier							
DC Gain	155			34*		dB	


Note: Design Guarantee


8. Ordering Information

Part Number	Package Type	Production Flow
F72820 SG	8-SOP (Green Package)	Commercial, 0°C to +70°C

9. Package Dimensions (8-SOP/150 mil)

FTF Feature Integration Technology Inc.

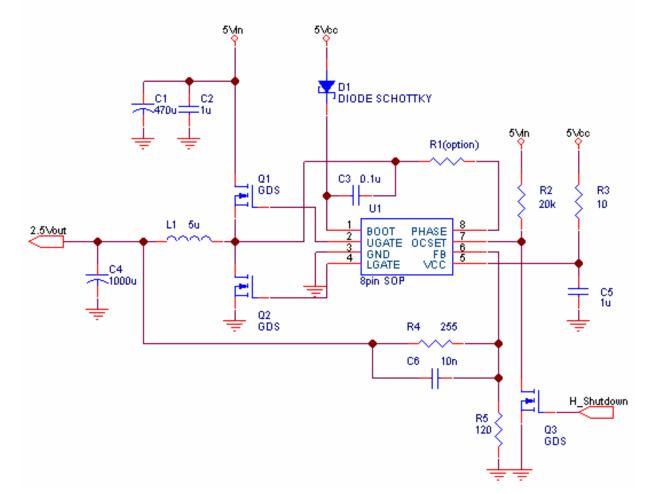
Headquarters

3F-7, No 36, Tai Yuan St., Chupei City, Hsinchu, Taiwan 302, R.O.C. TEL : 886-3-5600168 FAX : 886-3-5600166 www: http://www.fintek.com.tw

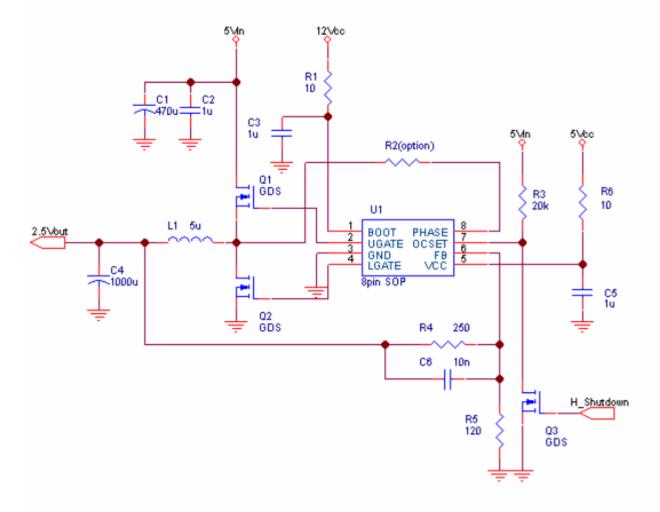
Taipei Office

Bldg. K4, 7F, No.700, Chung Cheng Rd., Chungho City, Taipei, Taiwan 235, R.O.C. TEL : 866-2-8227-8027 FAX : 866-2-8227-8037

Please note that all datasheet and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this datasheet belong to their respective



۰.


10. Application Circuit

F72820S 12v single power supply application circuit

