## 16-Bit Original Microcontroller

## CMOS

## F²MC-16LX MB90420G/425G Series

## MB90423GA/423GC/F423GA/F423GC/427GA/427GC/428GA/428GC/ MB90F428GA/F428GC/V420G

## ■ DESCRIPTIONS

The FUJITSU MB90420G/425G Series is a 16-bit general purpose high-capacity microcontroller designed for vehicle meter control applications etc.
The instruction set retains the same AT architecture as the FUJITSU original F²MC-8L and F²MC-16L series, with further refinements including high-level language instructions, expanded addressing mode, enhanced (signed) multipler-divider computation and bit processing.
In addition, a 32-bit accumulator is built in to enable long word processing.

## ■ FEATURES

- 16 -bit input capture (4 channels)

Detects rising, falling, or both edges.
16 -bit capture register $\times 4$
Pin input edge detection latches the 16 -bit free-run timer counter value, and generates an interrupt request.

- 16-bit reload timer (2 channels)

16-bit reload timer operation (select toggle output or one-shot output)
Event count function selection provided
(Continued)

## PACKAGES


(FPT-100P-M06)

(FPT-100P-M05)

## MB90420G/425G Series

- Watch timer (main clock)

Operates directly from oscillator clock.
Compensates for oscillator deviation
Read/write enabled second/minute/hour register
Signal interrupt

- 16-bit PPG (3 channels)

Output pins (3) , external trigger input pin (1)
Output clock frequencies : fcp, fcp/ $2^{2}$, fcp/24, fcp/2 $2^{6}$

- Delay interrupt

Generates interrupt for task switching.
Interruptions to CPU can be generated/deleted by software setting.

- External interrupts (8 channels)

8 -channel independent operation
Interrupt source setting available : "L" to "H" edge/ "H" to "L" edge/ "L" level/ "H" level.

- A/D converter

10-bit or 8 -bit resolution $\times 8$ channels (input multiplexed)
Conversion time : $6.13 \mu \mathrm{~s}$ or less (at fcp $=16 \mathrm{MHz}$ )
External trigger startup available (P50/INTO/ADTG)
Internal timer startup available (16-bit reload timer 1)

- UART (2 channels)

Full duplex double buffer type
Supports asynchronous/synchronous transfer (with start/stop bits)
Internal timer can be selected as clock (16-bit reload timer 0)
Asynchronous : $4808 \mathrm{bps}, 5208 \mathrm{bps}, 9615 \mathrm{bps}, 10417 \mathrm{bps}, 19230 \mathrm{bps}, 38460 \mathrm{bps}, 62500 \mathrm{bps}, 500000 \mathrm{bps}$
Synchronous : $500 \mathrm{Kbps}, 1 \mathrm{Mbps}$, 2Mbps (at fcp $=16 \mathrm{MHz}$ )

- CAN interface *1

Conforms to CAN specifications version 2.0 Part A and B.
Automatic resend in case of error.
Automatic transfer in response to remote frame.
16 prioritized message buffers for data and messages for data and ID
Multiple message support
Receiving filter has flexible configuration : All bit compare/all bit mask/two partial bit masks
Supports up to 1 Mbps
CAN WAKEUP function (connects RX internally to INTO)

- LCD controller/driver (1 channel)

Segment driver and command driver with direct LCD panel (display) drive capability

- Low voltage/Program Looping detect reset *2

Automatic reset when low voltage is detected
Program Looping detection function

- Stepping motor controller (4 channels)

High current output for all channels $\times 4$
Synchronized 8/10-bit PWM for all channels $\times 2$

- Sound generator

8 -bit PWM signal mixed with tone frequency from 8 -bit reload counter.
PWM frequencies : $62.5 \mathrm{kHz}, 31.2 \mathrm{kHz}, 15.6 \mathrm{kHz}, 7.8 \mathrm{kHz}$ (at fcp $=16 \mathrm{MHz}$ )
Tone frequencies: $1 / 2$ PWM frequency, divided by (reload frequency +1 )
(Continued)

## MB90420G/425G Series

## (Continued)

- Input/output ports

Push-pull output and Schmitt trigger input
Programmable in bit units for input/output or peripheral signals.

- Flash memory

Supports automatic programming, Embeded Algorithm ${ }^{\text {TM }}$, write/erase/erase pause/erase resume instructions
Flag indicates algorithm completion
Minato Electronics flash writer
Boot block configuration
Erasable by blocks
Block protection by external programming voltage
*1: MB90420G series has 2 channels built-in, MB90425G series has 1 channel built-in
*2 : Built-in to MB90420GA/425GA series only. Not built-in to MB90420GC/425GC series.
Embeded Algorithm is a registered trademark of Advanced Micro Devices Inc.

## MB90420G/425G Series

## PRODUCT LINEUP

- MB90420G Series

|  | MB90F423GA | MB90F423GC | MB90423GA | MB90423GC | MB90V420G |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration | Flash ROM model |  | Mask ROM model |  | Evaluation model |
| CPU | F²MC-16LX CPU |  |  |  |  |
| Clock | 1 system | 2 systems | 1 system | 2 systems | 2 systems |
| System clock | On-chip PLL clock multiplier type ( $\times 1, \times 2, \times 3, \times 4,1 / 2$ when PLL stopped) Minimum instruction execution time 62.5 ns (with 4 MHz oscillator $\times 4$ ) |  |  |  |  |
| ROM | Flash ROM 128 KB |  | Mask ROM 128 KB |  | External |
| RAM | 6 KB |  | 6 KB |  | 6 KB |
| CAN interface | 2 channels |  |  |  |  |
| Low voltage/ CPU operation detection reset | Yes | No | Yes | No | No |
| Packages | QFP100, LQFP100 |  |  |  | PGA-256 |
| Emulator dedicated power supply* | - |  |  |  | No |

* : When used with emulation pod MB2145-507, use DIP switch S2 setting. For details see the MB2145-50 Hardware Manual (2.7 "Emulator Dedicated Power Supply Pin") .
- MB90425G Series

| Parameter number | MB90F428GA | MB90F428GC | MB90427GA | MB90427GC | MB90428GA | MB90428GC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration | Flash ROM model |  | Mask ROM model |  |  |  |
| CPU | F²MC-16LX CPU |  |  |  |  |  |
| Clock | 1 system | 2 systems | 1 system | 2 systems | 1 system | 2 systems |
| System clock | On-chip PLL clock multiplier type ( $\times 1, \times 2, \times 3, \times 4,1 / 2$ when PLL stopped) Minimum instruction execution time 62.5 ns (with 4 MHz oscillator $\times 4$ ) |  |  |  |  |  |
| ROM | Flash ROM 128 KB |  | Mask ROM 64 KB |  | Mask ROM 128 KB |  |
| RAM | 6 KB |  | 4 KB |  | 6 KB |  |
| CAN interface | 1 channel |  |  |  |  |  |
| Low voltage/CPU operation detection reset | Yes | No | Yes | No | Yes | No |
| Packages | QFP100, LQFP100 |  |  |  |  |  |
| Emulator dedicated power supply | - |  |  |  |  |  |

Note : MB90V420G can be used as evaluation model for MB90420G/425G series.

## MB90420G/425G Series

## PIN ASSIGNMENTS

## - QFP 100

(TOP VIEW)

(FPT-100P-M06)

## MB90420G/425G Series

- LQFP 100



## MB90420G/425G Series

## ■ PIN DESCRIPTIONS

| Pin no. |  | Symbol | Circuit type | Description |
| :---: | :---: | :---: | :---: | :---: |
| LQFP | QFP |  |  |  |
| 80 | 82 | X0 | A | High speed oscillator input pin. |
| 81 | 83 | X1 |  | High speed oscillator output pin. |
| 78 | 80 | X0A | A | Low speed oscillator input pin. If no oscillator is connected, apply pull-down processing. |
| 77 | 79 | X1A |  | Low speed oscillator output pin. If no oscillator is connected, leave open. |
| 75 | 77 | $\overline{\mathrm{RST}}$ | B | Reset input pin. |
| 83 | 85 | P00 | G | General purpose input/output port. |
|  |  | SIN0 |  | UART ch. 0 serial data input pin. |
|  |  | INT4 |  | INT4 external interrupt input pin. |
| 84 | 86 | P01 | G | General purpose input/output port. |
|  |  | SOT0 |  | UART ch. 0 serial data output pin. |
|  |  | INT5 |  | INT5 external interrupt input pin. |
| 85 | 87 | P02 | G | General purpose input/output port. |
|  |  | SCK0 |  | UART ch. 0 serial clock input/output pin. |
|  |  | INT6 |  | INT6 external interrupt input pin. |
| 86 | 88 | P03 | G | General purpose input/output port. |
|  |  | SIN1 |  | UART ch. 1 serial data input pin. |
|  |  | INT7 |  | INT7 external interrupt input pin. |
| 87 | 89 | P04 | G | General purpose input/output port. |
|  |  | SOT1 |  | UART ch. 1 serial data output pin. |
| 88 | 90 | P05 | G | General purpose input/output port. |
|  |  | SCK1 |  | UART ch. 1 serial clock input/output pin. |
|  |  | TRG |  | 16-bit PPG ch.0-2 external trigger input pin. |
| 89 | 91 | P06 | G | General purpose input/output port. |
|  |  | PPG0 |  | 16-bit PPG ch. 0 output pin. |
|  |  | TOT1 |  | 16-bit reload timer ch. 1 TOT output pin. |
| 90 | 92 | P07 | G | General purpose input/output port. |
|  |  | PPG1 |  | 16-bit PPG ch. 1 output pin. |
|  |  | TIN1 |  | 16-bit reload timer ch. 1 TIN output pin. |
| 91 | 93 | P10 | G | General purpose input/output port. |
|  |  | PPG2 |  | 16-bit PPG ch. 2 output pin. |

(Continued)

## MB90420G/425G Series

| Pin no. |  | Symbol | Circuit type | Description |
| :---: | :---: | :---: | :---: | :---: |
| LQFP | QFP |  |  |  |
| 92 | 94 | P11 | G | General purpose input/output port. |
|  |  | TOT0 |  | 16-bit reload timer ch. 0 TOT output pin. |
|  |  | WOT |  | Real-time watch timer WOT output pin. |
| 93 | 95 | P12 | G | General purpose input/output port. |
|  |  | TIN0 |  | 16-bit reload timer ch. 0 TIN output pin. |
|  |  | IN3 |  | Input capture ch. 3 trigger input pin. |
| 94 to 96 | 96 to 98 | P13 to P15 | G | General purpose input/output ports. |
|  |  | IN2 to INO |  | Input capture ch.0-2 trigger input pins. |
| 97 to 100 | $\begin{gathered} 99 \text { to } 100, \\ 1 \text { to } 2 \end{gathered}$ | COMO to COM3 | 1 | LCD controller/driver common output pins. |
| $\begin{gathered} 1 \text { to } 8, \\ 10 \text { to } 13 \end{gathered}$ | $\begin{aligned} & 3 \text { to } 10, \\ & 12 \text { to } 15 \end{aligned}$ | $\begin{aligned} & \hline \text { SEGO to } \\ & \text { SEG11 } \end{aligned}$ | 1 | LCD controller/driver segment output pins. |
| 14 to 15 | 16 to 17 | P36 to P37 | E | General purpose output ports. |
|  |  | $\begin{gathered} \hline \text { SEG12 to } \\ \text { SEG13 } \end{gathered}$ |  | LCD controller/driver segment output pins. |
| $\begin{aligned} & 16 \text { to } 20, \\ & 22 \text { to } 24 \end{aligned}$ | $\begin{aligned} & 18 \text { to } 22, \\ & 24 \text { to } 26 \end{aligned}$ | P40 to P47 | E | General purpose input output ports. |
|  |  | $\begin{aligned} & \hline \text { SEG14 to } \\ & \text { SEG21 } \end{aligned}$ |  | LCD controller/driver segment output pins. |
| 26 to 27 | 28 to 29 | P90 to P91 | E | General purpose input output ports. |
|  |  | $\begin{aligned} & \text { SEG22 to } \\ & \text { SEG23 } \end{aligned}$ |  | LCD controller/driver segment output pins. |
| 34 | 36 | P50 | G | General purpose input output ports. |
|  |  | INT0 |  | INT0 external interrupt input pin. |
|  |  | ADTG |  | A/D converter external trigger input pin. |
| $\begin{aligned} & 36 \text { to } 39, \\ & 41 \text { to } 44 \end{aligned}$ | $\begin{aligned} & 38 \text { to } 41 \\ & 43 \text { to } 46 \end{aligned}$ | P60 to P67 | F | General purpose input output ports. |
|  |  | ANO to AN7 |  | A/D converter input pins. |
| 45 | 47 | P51 | G | General purpose input output port. |
|  |  | INT1 |  | INT1 external interrupt input pin. |
|  |  | (RX1 *1) |  | CAN interface 1 RX intput pin. |
| 46 | 48 | P52 | G | General purpose input output port. |
|  |  | INT2 |  | INT2 external interrupt input pin. |
|  |  | (TX1 *1) |  | CAN interface 1 TX output pin. |
| 50 | 52 | P53 | G | General purpose input output port. |
|  |  | INT3 |  | INT3 external interrupt input pin. |

(Continued)

## MB90420G/425G Series

| Pin no. |  | Symbol | Circuit type | Description |
| :---: | :---: | :---: | :---: | :---: |
| LQFP | QFP |  |  |  |
| 52 to 55 | 54 to 57 | P70 to P73 | H | General purpose input output ports. |
|  |  | PWM1P0 <br> PWM1M0 <br> PWM2P0 <br> PWM2M0 |  | Stepping motor controller ch. 0 output pins. |
| 57 to 60 | 59 to 62 | P74 to P77 | H | General purpose input output ports. |
|  |  | PWM1P1 <br> PWM1M1 PWM2P1 PWM2M1 |  | Stepping motor controller ch. 1 output pins. |
| 62 to 65 | 64 to 67 | P80 to P83 | H | General purpose input output ports. |
|  |  | PWM1P2 PWM1M2 PWM2P2 PWM2M2 |  | Stepping motor controller ch. 2 output pins. |
| 67 to 70 | 69 to 72 | P84 to P87 | H | General purpose input output ports. |
|  |  | PWM1P3 PWM1M3 PWM2P3 PWM2M3 |  | Stepping motor controller ch. 3 output pins. |
| 72 | 74 | P54 | G | General purpose input output port. |
|  |  | TX0 |  | CAN interface 0 TX output pin. |
| 73 | 75 | P55 | G | General purpose output port. |
|  |  | RX0 |  | CAN interface 0 RX input pin. |
| 74 | 76 | P56 | G | General purpose input output port. |
|  |  | SGO |  | Sound generator SG0 output pin. |
|  |  | FRCK |  | Free-run timer clock input pin. |
| 76 | 78 | P57 | G | General purpose input output port. |
|  |  | SGA |  | Sound generator SGA output pin. |
| 28 to 31 | 30 to 33 | V0 to V3 | - | LCD controller /driver reference power supply pins. |
| 56,66 | 58,68 | DVcc | - | High current output buffer with dedicated power supply input pins (pin numbers 54-57, 59-62, 64-67, 69-72) . |
| 51, 61, 71 | 53, 63, 73 | DVss | - | High current output buffer with dedicated power supply GND pins (pin numbers 54-57, 59-62, 64-67, 69-72) . |
| 32 | 34 | AVcc | - | A/D converter dedicated power supply input pin. |
| 35 | 37 | AVss | - | A/D converter dedicated GND supply pin. |
| 33 | 35 | AVRH | - | A/D converter Vref + input pin. Vref - AVss. |

(Continued)

## MB90420G/425G Series

(Continued)

| Pin no. |  | Symbol | Circuit <br> type | Description |
| :---: | :---: | :---: | :---: | :--- |
| LQFP | QFP |  |  |  |
| 47 | 49 | MD0 | C | Test mode input pins. Connect to Vcc. |
| 48 | 50 | MD1 |  |  |
| 49 | 51 | MD2 | C/D *2 | Text mode input pin. Connect to Vss. |
| 25 | 27 | C | - | External capacitor pin. Connect an $0.1 \mu$ F capacitor between this <br> pin and Vss. |
| 21,82 | 23,84 | Vcc | - | Power supply input pins. |
| $9,40,79$ | $11,42,81$ | Vss | - | GND power supply pins. |

*1: MB90420G series only.
*2 : Type $C$ in the flash ROM models, type $D$ in the mask ROM models.

## MB90420G/425G Series

## I/O CIRCUIT TYPE

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | - Oscillation feedback resistance : approx. $1 \mathrm{M} \Omega$ (X0, X1: MAIN) <br> - Oscillation feedback resistance : approx. $10 \mathrm{M} \Omega$ (X0A, X1A : SUB) |
| B |  | - Pull-up resistance attached : approx. $50 \mathrm{k} \Omega$, hysteresis input |
| C |  | - Hysteresis input |
| D |  | - Pull-down resistance attached : approx. $50 \mathrm{k} \Omega$, hysteresis input |
| E |  | - CMOS output <br> - LCDC output <br> - Hysteresis input |

(Continued)

## MB90420G/425G Series

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| F |  | - CMOS output <br> - Hysteresis input <br> - Analog input |
| G |  | - CMOS output <br> - Hysteresis input |
| H |  | - CMOS high current output <br> - Hysteresis input |
| 1 |  | - LCDC output |

## MB90420G/425G Series

## - HANDLING DEVICES

## Precautions for Handling Semiconductor Devices

## - Strictly observe maximum rated voltages (prevent latchup)

When CMOS integrated circuit devices are subjected to applied voltages higher than Vcc at input and output pins other than medium- and high-withstand voltage pins, or to voltages lower than Vss, or when voltages in excess of rated levels are applied between $\mathrm{V}_{\mathrm{cc}}$ and V ss, a phenomenon known as latchup can occur. In a latchup condition, supply current can increase dramatically and may destroy semiconductor elements. In using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.
Also care must be taken when power to analog systems is switched on or off, to ensure that the analog power supply ( $\mathrm{AVcc}, \mathrm{AVRH}$ ) , analog input and dedicated power supply for the high current output buffer pins ( DV cc ) do not exceed the digital power supply ( $\mathrm{V}_{\mathrm{cc}}$ ) .
Once the digital power supply $(\mathrm{V} c \mathrm{cc})$ is switched on, the analog power ( $\mathrm{AV} \mathrm{cc}, \mathrm{AVRH}$ ) and dedicated power supply for the high current output buffer pins ( DV cc) may be turned on in any sequence.

## - Stable supply voltage

Even within the warranted operating range of $\mathrm{V}_{c c}$ supply voltage, sudden fluctuations in supply voltage can cause abnormal operation. The recommended stability for ripple fluctuations ( $\mathrm{P}-\mathrm{P}$ values) at commercial frequencies $(50 \mathrm{~Hz}$ to 60 Hz ) should be within $10 \%$ of the standard Vcc value, and voltage fluctuations that occur during switching of power supplies etc. should be limited to transient fluctuation rates of $0.1 \mathrm{~V} / \mathrm{ms}$ or less.

## - Power-on procedures

In order to prevent abnormal operation of the internal built-in step-down circuits, voltage rise time during poweron should be attained within $50 \mu \mathrm{~s}$ ( 0.2 V to 2.7 V ) .

## - Treatment of unused pins

If unused input pins are left open, they may cause abnormal operation or latchup which may lead to permanent damage to the semiconductor. Any such pins should be pulled up or pulled down through resistance of at least $2 \mathrm{k} \Omega$.

Any unused input/output pins should be left open in output status, or if found set to input status, they should be treated in the same way as input pins.

Any unused output pins should be left open.

## - Treatment of A/D converter power supply pins

Even if the $\mathrm{A} / \mathrm{D}$ converter is not used, pins should be connected so that $\mathrm{AV} \mathrm{cc}=\mathrm{V} c \mathrm{c}$, and AV ss $=\mathrm{AVRH}=\mathrm{Vss}$.

## - Use of external clock signals

Even when an external clock is used, a stabilization period is required following a power-on reset or release from sub clock mode or stop mode. Also, when an external clock is used it should drive only the X0 pin and the X 1 pin should be left open, as shown in Figure 3.


Sample external clock connection

## MB90420G/425G Series

## - Power supply pins

Devices are designed to prevent problems such as latchup when multiple $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\text {ss s supply pins are used, by }}$ providing internal connections between pins having the same potential. However, in order to reduce unwanted radiation, and to prevent abnormal operation of strobe signals due to rise in ground level, and to maintain total output current ratings, all such pins should always be connected externally to power supplies and ground.
As shown in figure below, all $\mathrm{V}_{\mathrm{cc}}$ power supply pins must have the same potential. All $\mathrm{V}_{\text {ss }}$ power supply pins should be handled in the same way. If there are multiple $\mathrm{V}_{\mathrm{cc}}$ or $\mathrm{V}_{\mathrm{ss}}$ systems, the device will not operate properly even within the warranted operating range.


In addition, care must be given to connecting the $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins of this device to a current source with as little impedance as possible. It is recommended that a bypass capacitor of $1.0 \mu \mathrm{~F}$ be connected between $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\text {ss }}$ as close to the pins as possible.

## - Proper sequence of $A / D$ converter power supply analog input

A/D converter power (AVcc, AVRH) and analog input (ANO-AN7) must be applied after the digital power supply ( V cc) is switched on. When power is shut off, the A/D converter power supply and analog input must be cut off before the digital power supply is switched on $\left(\mathrm{V}_{\mathrm{cc}}\right)$. In both power-on and shut-off, care should be taken that AVRH does not exceed AV cc. Even when pins which double as analog input pins are used as input ports, be sure that the input voltage does not exceed AV cc. (There is no problem if analog power supplies and digital power supplies are turned off and on at the same time.)

- Handling the power supply for high-current output buffer pins (DVcc, DVss)

Always apply power to high-current output buffer pins ( $\mathrm{DV} \mathrm{Vc}, \mathrm{DVss}$ ) after the digital power supply $\left(\mathrm{V}_{c c}\right)$ is turned on. Also when switching power off, always shut off the power supply to the high-current output buffer pins (DVcc, DV ss) before switching off the digital power supply ( Vcc ) . (There will be no problem if high-current output buffer pins and digital power supplies are turned off and on at the same time.)

Even when high-current output buffer pins are used as general purpose ports, the power for high current output buffer pins ( $\mathrm{DV} \mathrm{cc}, \mathrm{DV}$ ss) should be applied to these pins.

## - Pull-up/pull-down resistance

The MB90420G/425G series does not support internal pull-up/pull-down resistance. If necessary, use external components.

## MB90420G/425G Series

- Precautions for when not using a sub clock signal.

If the X0A and X1A pins are not connected to an oscillator, apply pull-down treatment to the X0A pin and leave the X1A pin open.

- Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

## MB90420G/425G Series

## BLOCK DIAGRAM



Note:MB90420G series is equipped with 2-channel CAN interface and MB90425G series is equipped with 1-channel CAN interface. MB90F423GA, MB90423GA, MB90F428GA, MB90427GA and MB90428GA have low voltage/CPU operation detection reset. MB90F423GC, MB90423GC, MB90F428GC, MB90427GC, MB90428GC and MB90V420G do not have low voltage/CPU operation detection reset.
See "■ Product Lineup" for detail.

## MB90420G/425G Series

## MEMORY MAP



Note : To select models without the ROM mirror function, see the "ROM Mirror Function Selection Module." The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16 -bit address for the FF bank will be assigned to the same address, so that tables in ROM can be referenced without declaring a "far" indication with the pointer. For example when accessing the address 00 COOO н, the actual access is to address FFC000н in ROM. Here the FF bank ROM area exceeds 48 KB , so that it is not possible to see the entire area in the 00 bank image. Therefore because the ROM data from FF4000н to FFFFFFн will appear in the image from 004000н to 00FFFFF, it is recommended that the ROM data table be stored in the area from FF4000н to FFFFFFн.

## MB90420G/425G Series

## - I/O MAP

- Other than CAN Interface

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00н | Port 0 data register | PDR0 | R/W | Port 0 | XXXXXXXX |
| 01н | Port 1 data register | PDR1 | R/W | Port 1 | -- XXXXXX |
| 02н | (Disabled) |  |  |  |  |
| 03н | Port 3 data register | PDR3 | R/W | Port 3 | XX - |
| 04н | Port 4 data register | PDR4 | R/W | Port 4 | XXXXXXXX |
| 05 | Port 5 data register | PDR5 | R/W | Port 5 | XXXXXXXX |
| 06н | Port 6 data register | PDR6 | R/W | Port 6 | XXXXXXXX |
| 07\% | Port 7 data register | PDR7 | R/W | Port 7 | XXXXXXXX |
| 08н | Port 8 data register | PDR8 | R/W | Port 8 | XXXXXXXX |
| 09н | Port 9 data register | PDR9 | R/W | Port 9 | $\cdots$ |
| $\begin{aligned} & \hline \mathrm{OA}_{\boldsymbol{H}} \text { to } \\ & \mathrm{OF}_{\mathrm{H}} \end{aligned}$ | (Disabled) |  |  |  |  |
| 10н | Port 0 direction register | DDR0 | R/W | Port 0 | 0000000 |
| 11н | Port 1 direction register | DDR1 | R/W | Port 1 | - 000000 |
| 12н | (Disabled) |  |  |  |  |
| 13н | Port 3 direction register | DDR3 | R/W | Port 3 | 00----- |
| 14 ${ }^{\text {}}$ | Port 4 direction register | DDR4 | R/W | Port 4 | 0000000 |
| 15 н | Port 5 direction register | DDR5 | R/W | Port 5 | 00000000 |
| 16 н | Port 6 direction register | DDR6 | R/W | Port 6 | 00000000 |
| 17\% | Port 7 direction register | DDR7 | R/W | Port 7 | 00000000 |
| 18н | Port 8 direction register | DDR8 | R/W | Port 8 | 00000000 |
| 19н | Port 9 direction register | DDR9 | R/W | Port 9 | --- -- 00 |
| 1 Ан $^{\text {}}$ | Analog input enable | ADER | R/W | Port 6, A/D | 11111111 |
| $\begin{aligned} & \hline \text { 1B to } \\ & 1 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | (Disabled) |  |  |  |  |
| 20 H | A/D control status register lower | ADCSL | R/W | A/D converter | 00000000 |
| 21H | A/D control status register higher | ADCSH | R/W |  | 00000000 |
| 22н | A/D data register lower | ADCRL | R |  | XXXXXXXX |
| 23н | A/D data register higher | ADCRH | R/W |  | 00101 XXX |
| 24 | Compare clear register | CPCLR | R/W | 16-bit free-run timer | XXXXXXXX |
| 25 н |  |  | R/W |  | XXXXXXXX |
| 26н | Timer data register | TCDT | R/W |  | 00000000 |
| 27 H |  |  | R/W |  | 0000000 |
| 28н | Timer control status register lower | TCCSL | R/W |  | 0000000 |
| 29н | Timer control status register higher | TCCSH | R/W |  | 0--00000 |

(Continued)

## MB90420G/425G Series

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 Aн $^{\text {r }}$ | PPG0 control status register lower | PCNTLO | R/W | 16-bit PPG0 | 00000000 |
| 2Вн | PPG0 control status register higher | PCNTH0 | R/W |  | 0000000 - |
| 2 CH | PPG1 control status register lower | PCNTL1 | R/W | 16-bit PPG1 | 00000000 |
| 2Dн | PPG1 control status register higher | PCNTH1 | R/W |  | 0000000 - |
| 2Ен | PPG2 control status register lower | PCNTL2 | R/W | 16-bit PPG2 | 00000000 |
| $2 \mathrm{~F}_{\mathrm{H}}$ | PPG2 control status register higher | PCNTH2 | R/W |  | 0000000 - |
| 30 | External interrupt enable | ENIR | R/W | External interrupt | 00000000 |
| 31н | External interrupt request | EIRR | R/W |  | 00000000 |
| 32н | External interrupt level lower | ELVRL | R/W |  | 00000000 |
| 33н | External interrupt level higher | ELVRH | R/W |  | 00000000 |
| 34 | Serial mode register 0 | SMR0 | R/W | UART 0 | 00000-00 |
| 35 | Serial control register 0 | SCR0 | R/W |  | 00000100 |
| 36 | Input data register 0/ Output data register 0 | $\begin{aligned} & \hline \text { SIDR0/ } \\ & \text { SODRO } \end{aligned}$ | R/W |  | XXXXXXXX |
| 37 | Serial status register 0 | SSR0 | R/W |  | 00001000 |
| 38н | Serial mode register 1 | SMR1 | R/W | UART1 | 00000-00 |
| 39н | Serial control register 1 | SCR1 | R/W |  | 00000100 |
| ЗАн | Input data register 1/ Output data register 1 | $\begin{aligned} & \hline \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$ | R/W |  | XXXXXXXX |
| 3Вн | Serial status register 1 | SSR1 | R/W |  | 00001000 |
| $3 \mathrm{CH}_{4}$ | (Disabled) |  |  |  |  |
| 3D | Clock division control register 0 | CDCR0 | R/W | Prescaler | 0---0000 |
| ЗЕн | CAN wake-up control register | CWUCR | R/W | CAN | -----0 |
| 3Fн | Clock division control register 1 | CDCR1 | R/W | Prescaler | 0---0000 |
| 40н to 4F\% | Area reserved for CAN interface 0 |  |  |  |  |
| 50н | Timer control status register 0 lower | TMCSROL | R/W | 16-bit reload timer 0 | 00000000 |
| 51н | Timer control status register 0 higher | TMCSROH | R/W |  | --00000 |
| 52н | Timer register 0/ Reload register 0 | TMR0/ <br> TMRLR0 | R/W |  | XXXXXXXX |
| 53н |  |  |  |  | XXXXXXXX |
| 54 | Timer control status register 1 lower | TMCSR1L | R/W | 16-bit reload timer 1 | 00000000 |
| 55 | Timer control status register 1 higher | TMCSR1H | R/W |  | --00000 |
| 56н | Timer register 1/ Reload register 1 | TMR1/ <br> TMRLR1 | R/W |  | XXXXXXXX |
| 57 |  |  |  |  | XXXXXXXX |
| 58н | Watch timer control register lower | WTCRL | R/W | Real-time watch timer | 000-000 |
| 59н | Watch timer control register higher | WTCRH | R/W |  | 00000000 |

(Continued)

## MB90420G/425G Series

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sound control register lower | SGCRL | R/W | Sound generator | 00000000 |
| 5Вн | Sound control register higher | SGCRH | R/W |  | 0----00 |
| 5 CH | Frequency data register | SGFR | R/W |  | XXXXXXXX |
| 5D | Amplitude data register | SGAR | R/W |  | 00000000 |
| 5 Ен $^{\text {¢ }}$ | Decrement grade register | SGDR | R/W |  | XXXXXXXX |
| $5 \mathrm{~F}_{\mathrm{H}}$ | Tone count register | SGTR | R/W |  | XXXXXXXX |
| 60н | Input capture register 0 | IPCP0 | R | Input capture 0/1 | XXXXXXXX |
| 61н |  |  |  |  | XXXXXXXX |
| 62н | Input capture register 1 | IPCP1 | R |  | XXXXXXXX |
| 63н |  |  |  |  | XXXXXXXX |
| 64 | Input capture register 2 | IPCP2 | R | Input capture 2/3 | XXXXXXXX |
| 65 |  |  |  |  | XXXXXXXX |
| 66н | Input capture register 3 | IPCP3 | R |  | XXXXXXXX |
| 67\% |  |  |  |  | XXXXXXXX |
| 68н | Input capture control status 0/1 | ICS01 | R/W | Input capture 0/1 | 00000000 |
| 69н | (Disabled) |  |  |  |  |
| 6Ан | Input capture control status 2/3 | ICS23 | R/W | Input capture 2/3 | 0000000 |
| 6Вн | (Disabled) |  |  |  |  |
| 6С | LCD control register lower | LCRL | R/W | LCD controller/ driver | 00010000 |
| 6D | LCD control register higher | LCRH | R/W |  | 00000000 |
| 6Ен | Low voltage/CPU operation detection reset control register | LVRC | R/W | Low voltage/CPU operation detection reset | 10111000 |
| 6F | ROM mirror | ROMM | W | ROM mirror | XXXXXXX1 |
| 70, to 7FH | Area reserved for CAN interface 1 |  |  |  |  |
| 80н | PWM control register 0 | PWC0 | R/W | Stepping motor controller0 | 00000-0 |
| 81н | (Disabled) |  |  |  |  |
| 82н | PWM control register 1 | PWC1 | R/W | Stepping motor controller1 | 00000-0 |
| 83н | (Disabled) |  |  |  |  |
| 84н | PWM control register 2 | PWC2 | R/W | Stepping motor controller2 | 00000--0 |
| 85н | (Disabled) |  |  |  |  |
| 86н | PWM control register 3 | PWC3 | R/W | Stepping motor controller3 | 00000--0 |
| $\begin{gathered} \hline 87 \mathrm{H} \text { to } \\ 9 \mathrm{DH}_{\mathrm{H}} \end{gathered}$ | (Disabled) |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9Ен | ROM correction control register | PACSR | R/W | Address match detection function | ----0-0 |
| 9F\% | Delay interrupt/release | DIRR | R/W | Delayed interrupt | ----- 0 |
| $\mathrm{AOH}^{\text {H}}$ | Power saving mode | LPMCR | R/W | Power saving | 00011000 |
| A1н | Clock select | CKSCR | R/W | control circuit | 11111100 |
| $\begin{aligned} & \text { A2H to } \\ & \text { A7H } \end{aligned}$ | (Disabled) |  |  |  |  |
| A8H | Watchdog control | WDTC | R/W | Watchdog timer | XXXXX 111 |
| А9н | Time base timer control register | TBTC | R/W | Time base timer | 1--00100 |
| ААн | Watch timer control register | WTC | R/W | Watch timer (sub-clock) | 1X000000 |
| $\begin{aligned} & \text { ABн to } \\ & \text { ADH } \end{aligned}$ | (Disabled) |  |  |  |  |
| АЕн | Flash control register | FMCS | R/W | Flash interface | 000×0XX 0 |
| $\mathrm{AFH}^{\text {H }}$ | (Disabled) |  |  |  |  |
| В0н | Interrupt control register 00 | ICR00 | R/W | Interrupt controller | 00000111 |
| B1н | Interrupt control register 01 | ICR01 | R/W |  | 00000111 |
| B2н | Interrupt control register 02 | ICR02 | R/W |  | 00000111 |
| В3н | Interrupt control register 03 | ICR03 | R/W |  | 00000111 |
| B4 ${ }^{\text {}}$ | Interrupt control register 04 | ICR04 | R/W |  | 00000111 |
| B5 | Interrupt control register 05 | ICR05 | R/W |  | 00000111 |
| B6н | Interrupt control register 06 | ICR06 | R/W |  | 00000111 |
| B7 ${ }^{\text {f }}$ | Interrupt control register 07 | ICR07 | R/W |  | 00000111 |
| В8н | Interrupt control register 08 | ICR08 | R/W |  | 00000111 |
| В9н | Interrupt control register 09 | ICR09 | R/W |  | 00000111 |
| ВАн | Interrupt control register 10 | ICR10 | R/W |  | 00000111 |
| ВВн | Interrupt control register 11 | ICR11 | R/W |  | 00000111 |
| $\mathrm{BC}_{\mathrm{H}}$ | Interrupt control register 12 | ICR12 | R/W |  | 00000111 |
| BD | Interrupt control register 13 | ICR13 | R/W |  | 00000111 |
| ВЕн | Interrupt control register 14 | ICR14 | R/W |  | 00000111 |
| $\mathrm{BF}_{\mathrm{H}}$ | Interrupt control register 15 | ICR15 | R/W |  | 00000111 |
| $\begin{gathered} \hline \mathrm{COH}_{\mathrm{H}} \text { o } \\ \mathrm{FF}_{\mathrm{H}} \end{gathered}$ | (Disabled) |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1FFOH | ROM correction address 0 | PADR0 | R/W | Address match detection function | XXXXXXXX |
| 1FF1н | ROM correction address 1 | PADR0 | R/W |  | XXXXXXXX |
| 1FF2н | ROM correction address 2 | PADR0 | R/W |  | XXXXXXXX |
| 1FF3н | ROM correction address 3 | PADR1 | R/W |  | XXXXXXXX |
| 1FF4 | ROM correction address 4 | PADR1 | R/W |  | XXXXXXXX |
| 1FF5 ${ }_{\text {н }}$ | ROM correction address 5 | PADR1 | R/W |  | XXXXXXXX |
| $\begin{gathered} \text { 3900н to } \\ 391 \mathrm{FH}_{\mathrm{H}} \end{gathered}$ | (Disabled) |  |  |  |  |
| 3920н | PPG0 down counter register | PDCR0 | R | 16-bit PPG 0 | 11111111 |
| 3921H |  |  |  |  | 11111111 |
| 3922н | PPG0 cycle setting register | PCSR0 | W |  | XXXXXXXX |
| 3923н |  |  |  |  | XXXXXXXX |
| 3924н | PPG0 duty setting register | PDUTO | W |  | XXXXXXXX |
| 3925 |  |  |  |  | XXXXXXXX |
| $\begin{aligned} & \hline \text { 3926н to } \\ & 3927_{\mathrm{H}} \end{aligned}$ | (Disabled) |  |  |  |  |
| 3928н | PPG1 down counter register | PDCR1 | R | 16-bit PPG 1 | 11111111 |
| 3929н |  |  |  |  | 11111111 |
| 392Ан | PPG1 cycle setting register | PCSR1 | W |  | XXXXXXXX |
| 392Вн |  |  |  |  | XXXXXXXX |
| 392CH | PPG1 duty setting register | PDUT1 | W |  | XXXXXXXX |
| 392D |  |  |  |  | XXXXXXXX |
| $\begin{array}{\|c\|} \hline 3^{392 E_{H}} \text { to } \\ 3^{292 F_{H}} \end{array}$ | (Disabled) |  |  |  |  |
| 3930н | PPG2 down counter register | PDCR2 | R | 16 bit PPG 2 | 11111111 |
| 3931H |  |  |  |  | 11111111 |
| 3932н | PPG2 cycle setting register | PCSR2 | W |  | XXXXXXXX |
| 3933н |  |  |  |  | XXXXXXXX |
| 3934н | PPG2 duty setting register | PDUT2 | W |  | XXXXXXXX |
| 3935н |  |  |  |  | XXXXXXXX |
| $\begin{gathered} \hline 3936 \mathrm{H} \text { to } \\ 3959_{\mathrm{H}} \end{gathered}$ | (Disabled) |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 395Aн | Sub second data register | WTBR | R/W | Real time watch timer | XXXXXXXX |
| 395Вн |  |  |  |  | XXXXXXXX |
| 395C ${ }_{\text {H }}$ |  |  |  |  | $\cdots$ |
| 395D | Second data register | WTSR | R/W |  | $--X X X X X X$ |
| 395Ен | Minute data register | WTMR | R/W |  | $--X X X X X X$ |
| 395Fн | Hour data register | WTHR | R/W |  | ---XXXXX |
| $\begin{gathered} \hline \text { 3960н to } \\ 396 \text { вн } \end{gathered}$ | LCD display RAM | VRAM | R/W | LCD controller/ driver | XXXXXXXX |
| $\begin{aligned} & \text { 396Cн to } \\ & 397 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | (Disabled) |  |  |  |  |
| 3980н | PWM1 compare register 0 | PWC10 | R/W | Stepping motor controller 0 | XXXXXXXX |
| 3981н |  |  |  |  | ----- $x$ x |
| 3982н | PWM2 compare register 0 | PWC20 | R/W |  | XXXXXXXX |
| 3983н |  |  |  |  | -----XX |
| 3984н | PWM1 select register 0 | PWS10 | R/W |  | $--00000$ |
| 3985н | PWM2 select register 0 | PWS20 | R/W |  | - 0000000 |
| $\begin{gathered} \hline 3986 \mathrm{H} \text { to } \\ 3987 \mathrm{H} \end{gathered}$ | (Disabled) |  |  |  |  |
| 3988н | PWM1 compare register 1 | PWC11 | R/W | Stepping motor controller 1 | XXXXXXXX |
| 3989н |  |  |  |  | ----- ${ }^{\prime \prime}$ |
| 398Ан | PWM2 compare register 1 | PWC21 | R/W |  | XXXXXXXX |
| 398Вн |  |  |  |  | ----- XX |
| 398Сн | PWM1 select register 1 | PWS11 | R/W |  | $--00000$ |
| 398D | PWM2 select register 1 | PWS21 | R/W |  | -0000000 |
| $\begin{aligned} & \text { 398麑 to } \\ & 398 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | (Disabled) |  |  |  |  |
| 3990н | PWM1 compare register 2 | PWC12 | R/W | Stepping motor controller 2 | XXXXXXXX |
| 3991н |  |  |  |  | ---- ${ }^{\prime \prime}$ |
| 3992н | PWM2 compare register 2 | PWC22 | R/W |  | XXXXXXXX |
| 3993н |  |  |  |  | ---- - XX |
| 3994н | PWM1 select register 2 | PWS12 | R/W |  | $--00000$ |
| 3995н | PWM2 select register 2 | PWS22 | R/W |  | -0000000 |
| $\begin{gathered} \text { 3996н to } \\ 3997 \mathrm{H} \end{gathered}$ | (Disabled) |  |  |  |  |

(Continued)

## MB90420G/425G Series

(Continued)

| Address | Register name | Symbol | Read/write | Peripheral function | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3998н | PWM1 compare register 3 | PWC13 | R/W | Stepping motor controller 3 | XXXXXXXX |
| 3999н |  |  |  |  | ---- ${ }^{\prime \prime}$ |
| 399Ан | PWM2 compare register 3 | PWC23 | R/W |  | XXXXXXXX |
| 399Вн |  |  |  |  | ---- - XX |
| 399CH | PWM1 select register 3 | PWS13 | R/W |  | $--000000$ |
| 399D | PWM2 select register 3 | PWS23 | R/W |  | - 0000000 |
| $\begin{aligned} & \hline \text { 399Eн to } \\ & 39 \text { FFH } \end{aligned}$ | (Disabled) |  |  |  |  |
| $\begin{aligned} & \text { 3AOOH to } \\ & 3 \text { AFFH } \end{aligned}$ | Area reserved for CAN interface 0 |  |  |  |  |
| $\begin{gathered} \text { 3BOOH to } \\ \text { 3BFFH } \end{gathered}$ | Area reserved for CAN interface 1 |  |  |  |  |
| $\begin{gathered} \text { 3COOH to } \\ 3 \mathrm{CFFF}_{\mathrm{H}} \end{gathered}$ | Area reserved for CAN interface 0 |  |  |  |  |
| $\begin{gathered} \hline \text { 3DOOH to } \\ \text { 3DFFH } \end{gathered}$ | Area reserved for CAN interface 1 |  |  |  |  |
| $\begin{aligned} & \text { 3EOOH to } \\ & \text { 3EFFH } \end{aligned}$ | (Disabled) |  |  |  |  |

- Initial value symbols :
" 0 " initial value 0 .
"1" initial value 1 .
" X " initial value undetermined
"-" initial value undetermined (none)
- Write/read symbols :
"R/W" read/write enabled
" $R$ " read only
"W" write only
- Addresses in the area 0000 н to 00FFh are reserved for the principal functions of the MCU. Read access attempts to reserved areas will result in an " X " value. Also, write access to reserved areas is prohibited.
- I/O Map for CAN Interface

| Address |  | Register name | Symbol | Read/ write | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CANO | CAN1 |  |  |  |  |
| 000040 ${ }^{\text {H }}$ | 000070н | Message buffer valid area | BVALR | (R/W) | 0000000000000000 |
| 000041н | 000071н |  |  |  |  |
| 000042н | 000072н | Transmission request register | TREQR | (R/W) | 0000000000000000 |
| 000043н | 000073н |  |  |  |  |
| 000044н | 000074н | Transmission cancel register | TCANR | (W) | 0000000000000000 |
| 000045 | 000075 |  |  |  |  |
| 000046н | 000076н | Transmission completed register | TCR | (R/W) | 000000000000000 |
| 000047 | 000077н |  |  |  |  |
| 000048н | 000078н | Receiving completed register | RCR | (R/W) | 000000000000000 |
| 000049н | 000079н |  |  |  |  |
| 00004Ан | 00007Ан | Remote request receiving register | RRTRR | (R/W) | 0000000000000000 |
| 00004Вн | 00007Вн |  |  |  |  |
| 00004CH | 00007Сн | Receiving overrun register | ROVRR | (R/W) | 0000000000000000 |
| 00004Dн | 00007D |  |  |  |  |
| 00004Ен | 00007Ен | Receiving interrupt enable register | RIER | (R/W) | 0000000000000000 |
| 00004Fн | 00007F |  |  |  |  |
| 003C00н | 003D00н | Control status register | CSR | (R/W, R) | 00---000 |
| 003C01н | 003D01н |  |  |  |  |
| 003C02н | 003D02н | Last event indicator register | LEIR | (R/W) | -------000-0000 |
| 003C03н | 003D03н |  |  |  |  |
| 003C04н | 003D04н | RX/TX error counter | RTEC | (R) | 0000000000000000 |
| 003C05н | 003D05н |  |  |  |  |
| 003C06н | 003D06н | Bit timing register | BTR | (R/W) | -111111111111111 |
| 003C07 ${ }_{\text {H }}$ | 003D07н |  |  |  |  |
| 003C08н | 003D08н | IDE register | IDER | (R/W) | XXXXXXXX |
| 003C09н | 003D09н |  |  |  |  |
| 003C0Aн | 003D0A ${ }_{\text {H }}$ | Transmission RTR register | TRTRR | (R/W) | 0000000000000000 |
| 003C0B | 003D0Bн |  |  |  |  |
| 003 COCH | 003D0CH | Remote frame receiving wait register | RFWTR | (R/W) | XXXXXXXX |
| 003C0D | 003D0Dн |  |  |  |  |
| 003C0Ен | 003D0Eн | Transmission interrupt enable register | TIER | (R/W) | 000000000000000 |
| 003C0FH | 003D0F\% |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address |  | Register name | Symbol | Read/ write | Initial value |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CANO | CAN1 |  |  |  |  |  |
| 003C10н | 003D10н | Acceptance mask select register | AMSR | (R/W) | XXXXXXXX | XXXXXXXX |
| 003C11н | 003D11н |  |  |  |  |  |
| 003C12н | 003D12н |  |  |  | XXXXXXXX | XXXXXXXX |
| 003C13н | 003D13н |  |  |  |  |  |
| 003C14н | 003D14н | Acceptance mask register 0 | AMRO | (R/W) | XXXXXXXX | XXXXXXXX |
| 003C15н | 003D15н |  |  |  |  |  |
| 003C16н | 003D16н |  |  |  | XXXXX-- | XXXXXXXX |
| 003C17H | 003D17н |  |  |  |  |  |
| 003C18н | 003D18н | Acceptance mask register 1 | AMR1 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003C19н | 003D19н |  |  |  |  |  |
| 003C1Aн | 003D1Aн |  |  |  | XXXXX--- | XXXXXXXX |
| 003C1Bн | 003D1Bн |  |  |  |  |  |
| $\begin{array}{\|c\|} \hline \text { 003A00н } \\ \text { to } \\ \text { 003A1FH } \end{array}$ | $\begin{aligned} & \text { 003B00н } \\ & \text { to } \\ & 003 \mathrm{~B} 1 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | General purpose RAM | - | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A20н | 003B20н | ID register 0 | IDR0 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A21н | 003B21н |  |  |  |  |  |
| 003A22н | 003B22н |  |  |  | XXXXX | XXXXXXXX |
| 003A23н | 003В23н |  |  |  | XXXXX | XXXXXXXX |
| 003A24н | 003B24н | ID register 1 | IDR1 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A25H | 003B25н |  |  |  |  |  |
| 003A26н | 003B26н |  |  |  | XXXXX | YXXXXXXX |
| 003A27н | 003B27н |  |  |  | XXXXX--- | XXXXXXXX |
| 003A28н | 003B28н | ID register 2 | IDR2 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A29н | 003B29н |  |  |  |  |  |
| 003A2Aн | 003B2Ан |  |  |  | XXXXX--- | XXXXXXXX |
| 003A2Bн | 003B2Bн |  |  |  | XXXXX | XXXXXXXX |
| 003A2CH | 003B2Сн | ID register 3 | IDR3 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A2D | 003B2Dн |  |  |  |  |  |
| 003A2Eн | 003B2Eн |  |  |  | XXXXX | XXXXXXX |
| 003A2FH | 003B2Fн |  |  |  | XXXXX--- | XXXXXXXX |
| 003A30н | 003B30н | ID register 4 | IDR4 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A31н | 003B31н |  |  |  |  |  |
| 003АЗ2н | 003B32н |  |  |  | XXXXX--- | XXXXXXXX |
| 003A33н | 003В33н |  |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address |  | Register name | Symbol | Read/ write | Initial value |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CANO | CAN1 |  |  |  |  |  |
| 003A34н | 003B34 | ID register 5 | IDR5 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A35н | 003B35н |  |  |  |  |  |
| 003A36н | 003B36н |  |  |  |  |  |
| 003A37н | 003B37 |  |  |  | XXXXX | ( |
| 003A38н | 003B38н | ID register 6 | IDR6 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A39н | 003B39н |  |  |  |  |  |
| 003АЗАн | 003ВЗАн |  |  |  | XXXXX |  |
| 003A3Вн | 003В3Вн |  |  |  | XXXX | XXXXXXXX |
| 003A3Сн | 003B3Сн | ID register 7 | IDR7 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A3D | 003B3D |  |  |  |  |  |
| 003A3Eн | 003В3Ен |  |  |  | XXXXX | XXXXXXXX |
| 003A3FH | 003B3Fн |  |  |  | XXXXX-- | XXXXXXXX |
| 003A40н | 003B40н | ID register 8 | IDR8 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A41н | 003B41н |  |  |  |  |  |
| 003A42н | 003B42н |  |  |  | XXX | XXXXXXXX |
| 003A43н | 003B43н |  |  |  | XXXXX-- | XXXXXXXX |
| 003A44 ${ }^{\text {¢ }}$ | 003B44н | ID register 9 | IDR9 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A45 | 003B45н |  |  |  |  |  |
| 003A46H | 003B46н |  |  |  | XXXXX | XXXXXXXX |
| 003A47 ${ }^{\text {H }}$ | 003B47н |  |  |  | XXXXX-- | XXXXXXXX |
| 003A48H | 003B48н | ID register 10 | IDR10 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A49н | 003B49н |  |  |  |  |  |
| 003A4Ан | 003В4Ан |  |  |  | XX | XXXXXXX |
| 003A4Bн | 003B4Вн |  |  |  | XXXXX-- | X $\times$ XXXXXX |
| 003A4CH | 003B4С ${ }_{\text {н }}$ | ID register 11 | IDR11 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A4D | 003B4D |  |  |  |  |  |
| 003A4Eн | 003B4Eн |  |  |  | XXXXX- | XXXXXXXX |
| 003A4FH | 003B4Fн |  |  |  | XXXXX- | XXXXXXXX |
| 003A50н | 003B50н | ID register 12 | IDR12 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A51н | 003B51н |  |  |  |  |  |
| 003A52н | 003B52н |  |  |  | XXXXX--- | XXXXXXXX |
| 003A53н | 003B53н |  |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address |  | Register name | Symbol | Read/ write | Initial value |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CANO | CAN1 |  |  |  |  |  |
| 003A54н | 003B54н | ID register 13 | IDR13 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A55н | 003B55н |  |  |  |  |  |
| 003A56н | 003B56н |  |  |  | XXXXX-- | XXXXXXXX |
| 003A57H | 003B57н |  |  |  |  |  |
| 003A58н | 003В58н | ID register 14 | IDR14 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A59н | 003B59н |  |  |  |  |  |
| 003A5Ан | 003B5Ан |  |  |  | XXXXX | XXXXXXXX |
| 003A5Вн | 003B5Вн |  |  |  | XXXXX- | XXXXXXXX |
| 003A5Сн | 003B5Cн | ID register 15 | IDR15 | (R/W) | XXXXXXXX | XXXXXXXX |
| 003A5Dн | 003B5D |  |  |  |  |  |
| 003A5Ен | 003B5Eн |  |  |  | XXXXX | XXXXXXX |
| 003A5Fн | 003B5Fн |  |  |  | XXXXX | XXXXXXXX |
| 003A60н | 003B60н | DLC register 0 | DLCR0 | (R/W) | ----XXXX | ----XXXX |
| 003A61н | 003B61н |  |  |  |  |  |
| 003A62н | 003В62н | DLC register 1 | DLCR1 | (R/W) | ----XXXX | ----XXXX |
| 003A63н | 003B63н |  |  |  |  |  |
| 003A64H | 003B64н | DLC register 2 | DLCR2 | (R/W) | ----XXXX | ----XXXX |
| 003A65 | 003B65н |  |  |  |  |  |
| 003A66н | 003B66н | DLC register 3 | DLCR3 | (R/W) | ----XXXX | ----XXXX |
| 003A67H | 003B67н |  |  |  |  |  |
| 003A68н | 003B68н | DLC register 4 | DLCR4 | (R/W) | ----XXXX | ----XXXX |
| 003A69н | 003B69н |  |  |  |  |  |
| 003А6Ан | 003В6Ан | DLC register 5 | DLCR5 | (R/W) | ----XXXX | -- --XXXX |
| 003A6Bн | 003B6B |  |  |  |  |  |
| 003A6CH | 003B6C | DLC register 6 | DLCR6 | (R/W) | ----XXXX | ----XXXX |
| 003A6Dн | 003B6D |  |  |  |  |  |
| 003A6Ен | 003B6Ен | DLC register 7 | DLCR7 | (R/W) | ----XXXX | ----XXXX |
| 003A6F | 003B6Fн |  |  |  |  |  |
| 003A70н | 003B70н | DLC register 8 | DLCR8 | (R/W) | ----XXXX | ----XXXX |
| 003A71H | 003B71н |  |  |  |  |  |
| 003A72н | 003B72н | DLC register 9 | DLCR9 | (R/W) | ----XXXX | ----XXXX |
| 003A73н | 003B73н |  |  |  |  |  |
| 003A74H | 003B74 | DLC register 10 | DLCR10 | (R/W) | ----XXXX | ----XXXX |
| 003A75 | 003B75 |  |  |  |  |  |

(Continued)

## MB90420G/425G Series

| Address |  | Register name | Symbol | Read/ write | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CANO | CAN1 |  |  |  |  |
| 003A76н | 003B76н | DLC register 11 | DLCR11 | (R/W) | ----XXXX ----XXXX |
| 003A77\% | 003B774 |  |  |  |  |
| 003A78н | 003B78н | DLC register 12 | DLCR12 | (R/W) | ----XXXX |
| 003A79н | 003B79н |  |  |  |  |
| 003A7Ан | 003В7Ан | DLC register 13 | DLCR13 | (R/W) | ----XXXX |
| 003A7Bн | 003В7Вн |  |  |  |  |
| 003A7CH | 003B7С ${ }_{\text {¢ }}$ | DLC register 14 | DLCR14 | (R/W) | ----XXXX |
| 003A7Dн | 003B7D |  |  |  |  |
| 003A7Eн | 003B7Ен | DLC register 15 | DLCR15 | (R/W) | ----XXXX ----XXXX |
| 003A7F | 003B7Fн |  |  |  |  |
|  | $\begin{array}{\|c\|} \hline \text { 003B80н } \\ \text { to } \\ 003 \mathrm{~B} 87_{\mathrm{H}} \end{array}$ | Data register 0 (8 bytes) | DTR0 | (R/W) | XXXXXXXX to XXXXXXXX |
| $\begin{array}{\|c\|} \hline 003 \text { to } \\ \text { to } \\ 003 \text { A8F } \end{array}$ | $\begin{array}{\|c\|} \hline 003 \mathrm{B88} \\ \text { to } \\ 003 \mathrm{~B} 8 \mathrm{~F}_{\mathrm{H}} \end{array}$ | Data register 1 (8 bytes) | DTR1 | (R/W) | XXXXXXXX to XXXXXXXX |
| 003A90н <br> to 003A87 | $\begin{array}{\|c\|} \hline 003 \mathrm{B90н} \\ \text { to } \\ 003 \mathrm{~B} 97 \mathrm{H} \end{array}$ | Data register 2 (8 bytes) | DTR2 | (R/W) | XXXXXXXX to XXXXXXXX |
| $\begin{array}{\|c\|} \hline \text { 003A98н } \\ \text { to } \\ \text { 003A9Fн } \end{array}$ | $\begin{array}{\|c\|} \hline \text { 003B98н } \\ \text { to } \\ \text { 003B9Fн } \end{array}$ | Data register 3 (8 bytes) | DTR3 | (R/W) | XXXXXXXX to XXXXXXXX |
| 003AAOн to 003AA7н | 003ВАОн to 003BA7н | Data register 4 (8 bytes) | DTR4 | (R/W) | XXXXXXXX to XXXXXXXX |
|  | $\begin{array}{\|c\|} \hline \text { 003ВА8н } \\ \text { to } \\ 003 \text { ВАFн } \end{array}$ | Data register 5 (8 bytes) | DTR5 | (R/W) | XXXXXXXX to XXXXXXXX |
| $\begin{array}{\|c\|} \hline 003 A B O_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{AB} 7 \mathrm{H} \end{array}$ | $\begin{array}{\|c\|} \hline 003 \mathrm{BB} 0_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{BB} 7 \boldsymbol{H} \end{array}$ | Data register 6 (8 bytes) | DTR6 | (R/W) | XXXXXXXX to XXXXXXXX |
|  | $\begin{array}{\|c\|} \hline 003 \text { to } \\ \text { to } \\ 003 \text { ВВFн } \end{array}$ | Data register 7 (8 bytes) | DTR7 | (R/W) | XXXXXXXX to XXXXXXXX |
| 003ACOH to 003AC7н | $\begin{array}{\|c\|} \hline 003 \mathrm{BCO} \\ \text { to } \\ 003 \mathrm{BC} 7_{\mathrm{H}} \end{array}$ | Data register 8 (8 bytes) | DTR8 | (R/W) | XXXXXXXX to XXXXXXXX |
| $\begin{array}{\|c\|} \hline 003 А С 8 н \\ \text { to } \\ 003 А С F н \end{array}$ | $\begin{gathered} \hline 003 \mathrm{BC} \text { to }^{\text {to }} \\ 003 \mathrm{BCFH}_{\mathrm{H}} \end{gathered}$ | Data register 9 (8 bytes) | DTR9 | (R/W) | XXXXXXXX to XXXXXXXX |

(Continued)

## MB90420G/425G Series

(Continued)

| Address |  | Register name | Symbol | Read/ write | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CANO | CAN1 |  |  |  |  |
| 003ADOH to 003AD7H | $\begin{gathered} \hline 003 \mathrm{BDOH} \\ \text { to } \\ \text { 003BD7н } \end{gathered}$ | Data register 10 (8 bytes) | DTR10 | (R/W) | XXXXXXXX to XXXXXXXX |
| 003AD8н to 003ADFH | $\begin{array}{\|c\|} \hline \text { 003BD8н } \\ \text { to } \\ \text { 003BDF } \end{array}$ | Data register 11 (8 bytes) | DTR11 | (R/W) | XXXXXXXX to XXXXXXXX |
| 003AEOH <br> to 003AE7H | $\begin{gathered} \hline \text { 003BEOн } \\ \text { to } \\ \text { 003BE7н } \end{gathered}$ | Data register 12 (8 bytes) | DTR12 | (R/W) | XXXXXXXX to XXXXXXXX |
| 003AE8н to 003AEF | $\begin{array}{\|c\|} \hline \text { 003BE8н } \\ \text { to } \\ \text { 003BEFH } \end{array}$ | Data register 13 (8 bytes) | DTR13 | (R/W) | XXXXXXXX to XXXXXXXX |
| $\begin{array}{\|c\|} \hline \text { 003AFOH } \\ \text { to } \\ 003 A F 7 H \\ \hline \end{array}$ | $\begin{gathered} \hline 003 \mathrm{BFOH} \\ \text { to } \\ 003 \mathrm{BF} 7 \mathrm{H} \end{gathered}$ | Data register 14 (8 bytes) | DTR14 | (R/W) | XXXXXXXX to XXXXXXXX |
| $\begin{array}{\|c\|} \hline \text { 003AF8н } \\ \text { to } \\ 003 A F F_{H} \end{array}$ | $\begin{aligned} & \hline 003 \mathrm{BF} 8 \mathrm{H} \\ & \text { to } \\ & 003 \mathrm{BFF}_{\mathrm{H}} \end{aligned}$ | Data register 15 (8 bytes) | DTR15 | (R/W) | XXXXXXXX to XXXXXXXX |

## MB90420G/425G Series

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

| Interrupt source | $\mathrm{El}^{2} \mathrm{OS}$ compatible | Interrupt vector |  |  | Interrupt control register |  | Priority <br> *2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Num | mber | Address | ICR | Address |  |
| Reset | $\times$ | \#08 | 08н | FFFFDCH | - | - | High |
| INT9 instruction | $\times$ | \#09 | 09н | FFFFD8н | - | - | $\Delta$ |
| Exception processing | $\times$ | \#10 | ОАн | FFFFD4 ${ }_{\text {¢ }}$ | - | - |  |
| CAN0 RX | $\times$ | \#11 | 0Вн | FFFFD0н | ICR00 | 0000B0 ${ }^{* 1}$ |  |
| CAN0 TX/NS | $\times$ | \#12 | ОС | FFFFCCH |  |  |  |
| CAN1 RX | $\times$ | \#13 | ODH | FFFFC8 | ICR01 | 0000B1н*1 |  |
| CAN1 TX/NS | $\times$ | \#14 | 0Ен | FFFFC4 ${ }_{\text {¢ }}$ |  |  |  |
| Input capture 0 | $\triangle$ | \#15 | OFH | FFFFCOH | ICR02 | 0000B2 * *1 |  |
| DTP/external interrupt - ch 0 detected | $\triangle$ | \#16 | 10H | FFFFBCH |  |  |  |
| Reload timer 0 | $\triangle$ | \#17 | 11н | FFFFB8 ${ }_{\text {н }}$ | ICR03 | 0000B3 ** |  |
| DTP/external interrupt - ch 1 detected | $\triangle$ | \#18 | 12н | FFFFB4 |  |  |  |
| Input capture 1 | $\triangle$ | \#19 | 13н | FFFFB0н | ICR04 | 0000B4 ${ }^{* 1}$ |  |
| DTP/external interrupt - ch 2 detected | $\triangle$ | \#20 | 14H | FFFFACH |  |  |  |
| Input capture 2 | $\triangle$ | \#21 | 15 H | FFFFA8н | ICR05 | 0000B5 * ${ }^{\text {* }}$ |  |
| DTP/external interrupt - ch 3 detected | $\triangle$ | \#22 | 16H | FFFFA4 |  |  |  |
| Input capture 3 | $\triangle$ | \#23 | 17\% | FFFFA0н | ICR06 | 0000B6 ${ }^{* 1}$ |  |
| DTP/external interrupt - ch 4/5 detected | $\triangle$ | \#24 | 18н | FFFF9CH |  |  |  |
| PPG timer 0 | $\triangle$ | \#25 | 19н | FFFF98 | ICR07 | 0000B7 ${ }^{*}$ |  |
| DTP/external interrupt - ch 6/7 detected | $\triangle$ | \#26 | $1 \mathrm{~A}_{\boldsymbol{H}}$ | FFFF94н |  |  |  |
| PPG timer 1 | $\triangle$ | \#27 | 1Вн | FFFF90н | ICR08 | 0000B8 * * |  |
| Reload timer 1 | $\triangle$ | \#28 | $1 \mathrm{CH}^{\text {}}$ | FFFF8C ${ }_{\text {H }}$ |  |  |  |
| PPG timer 2 | $\bigcirc$ | \#29 | 1Dн | FFFF88 | ICR09 | 0000B9 * ${ }^{\text {* }}$ |  |
| Real time watch timer | $\times$ | \#30 | 1Ен | FFFF84н |  |  |  |
| Free-run timer over flow | $\times$ | \#31 | 1FH | FFFF80н | ICR10 | 0000ВАн*1 |  |
| A/D converter conversion end | $\bigcirc$ | \#32 | 20н | FFFF7CH |  |  |  |
| Free-run timer clear | $\times$ | \#33 | 21н | FFFF78 | ICR11 | $0000 \mathrm{BB}^{*}{ }^{*}$ |  |
| Sound generator | $\times$ | \#34 | 22H | FFFF74 |  |  |  |
| Time base timer | $\times$ | \#35 | 23н | FFFF70 ${ }_{\text {H }}$ | ICR12 | $0000 \mathrm{BCH}_{H^{* 1}}$ |  |
| Watch timer (sub-clock) | $\times$ | \#36 | 24н | FFFF6CH |  |  |  |
| UART 1 RX | $\bigcirc$ | \#37 | 25H | FFFF68 ${ }_{\text {н }}$ | ICR13 | 0000BD ${ }^{* 1}$ |  |
| UART 1 TX | $\triangle$ | \#38 | 26- | FFFF64н |  |  |  |
| UART 0 RX | © | \#39 | 27H | FFFF60н | ICR14 | 0000BEн*1 |  |
| UART 0 TX | $\triangle$ | \#40 | 28н | FFFF5CH |  |  |  |
| Flash memory status | $\times$ | \#41 | 29H | FFFF58 | ICR15 | 0000BFH*1 | $\nabla$ |
| Delayed interrupt generator module | $\times$ | \#42 | 2 Ан | FFFF54 |  |  | Low |

## MB90420G/425G Series

© : Compatible, with $\mathrm{El}^{2} \mathrm{OS}$ stop function

- : Compatible
$\triangle$ : Compatible when interrupt sources sharing ICR are not in use
$\times$ : Not compatible
*1 : • Peripheral functions sharing the ICR register have the same interrupt level.
- If peripheral functions sharing the ICR register are using expanded intelligent I/O services, one or the other cannot be used.
- When peripheral functions are sharing the ICR register and one specifies expanded intelligent I/O services, the interrupt from the other function cannot be used.
*2 : Priority applies when interrupts of the same level are generated.


## MB90420G/425G Series

## ■ PERIPHERAL FUNCTIONS

## 1. I/O Ports

The I/O ports function is to send data from the CPU to be output from I/O pins and load input signals at the I/O pins into the CPU, according to the port data register (PDR) . Port input/output at I/O pins can be controlled in bit units by the port direction register (DDR) as required. The following list shows each of the functions as well as the shared peripheral function for each port.

- Port 0 : General purpose I/O port, shared with peripheral functions (external interrupt/UART/PPG)
- Port 1 : General purpose I/O port, shared with peripheral functions (PPG/reload timer/clock timer/ICU)
- Port 3 : General purpose I/O port, shared with peripheral functions (LCD)
- Port 4 : General purpose I/O port, shared with peripheral functions (LCD)
- Port 5 : General purpose I/O port, shared with peripheral functions (External interrupt/CAN/SG)
- Port 6 : General purpose I/O port, shared with peripheral functions (A/D converter)
- Port 7 : General purpose I/O port, shared with peripheral functions (Stepping motor controller)
- Port 8 : General purpose I/O port, shared with peripheral functions (Stepping motor controller)
- Port 9 : General purpose I/O port, shared with peripheral functions (LCD)


## (1) List of Functions

| Port | Pin name | Input format | Output format | Function |
| :---: | :---: | :---: | :---: | :---: |
| Port 0 | P00/SINO/INT4 to | CMOS (hysteresis) (Automotive level*) | CMOS | General purpose I/O port |
|  | P07/PPG1 |  |  | Peripheral function |
| Port 1 | P10/PPG2 to |  |  | General purpose I/O port |
| Port 1 | P15/IN0 |  |  | Peripheral function |
| Port 3 | P36/SEG12 to |  |  | General purpose I/O port |
|  | P37/SEG13 |  |  | Peripheral function |
| Port 4 | P40/SEG14 to |  |  | General purpose I/O port |
| Port 4 | P47/SEG21 |  |  | Peripheral function |
| Port 5 | P50/INT0 to |  |  | General purpose I/O port |
| Port 5 | P57/SGA |  |  | Peripheral function |
|  |  | Analog |  | General purpose I/O port |
| Port 6 | P67/AN7 | (hysteresis) <br> (Automotive level*) |  | Peripheral function |
| Port 7 | P70/PWM1P0 to | CMOS (hysteresis) (Automotive level*) |  | General purpose I/O port |
| Port 7 | P77/PWM2M1 |  |  | Peripheral function |
| Port 8 | P80/PWM1P2 to |  |  | General purpose I/O port |
|  | P87/PWM2M3 |  |  | Peripheral function |
| Port 9 | $\begin{aligned} & \text { P90/SEG22 to } \\ & \text { P91/SEG23 } \end{aligned}$ |  |  | General purpose I/O port |
|  |  |  |  | Peripheral function |

(Continued)

## MB90420G/425G Series

(Continued)

| Port | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Port 0 | P07 | P06 | P05 | P04 | P03 | P02 | P01 | P00 |
|  | PPG1 | PPG0 | SCK1 | SOT1 | SIN1 | SCK0 | SOT0 | SIN0 |
|  | TIN1 | TOT1 | - | - | INT7 | INT6 | INT5 | INT4 |
| Port 1 | - | - | P15 | P14 | P13 | P12 | P11 | P10 |
|  | - | - | IN0 | IN1 | IN2 | IN3 | WOT | PPG2 |
|  | - | - | - | - | - | TIN0 | TOT0 | - |
| Port 3 | P37 | P36 | - | - | - | - | - | - |
|  | SEG13 | SEG12 | - | - | - | - | - | - |
| Port 4 | P47 | P46 | P45 | P44 | P43 | P42 | P41 | P40 |
|  | SEG21 | SEG20 | SEG19 | SEG18 | SEG17 | SEG16 | SEG15 | SEG14 |
| Port 5 | P57 | P56 | P55 | P54 | P53 | P52 | P51 | P50 |
|  | SGA | SGO | RX0 | TX0 | INT3 | INT2 | INT1 | INT0 |
|  | - | FRCK | - | - | - | TX1 | RX1 | - |
| Port 6 | P67 | P66 | P65 | P64 | P63 | P62 | P61 | P60 |
|  | AN7 | AN6 | AN5 | AN4 | AN3 | AN2 | AN1 | AN0 |
| Port 7 | P77 | P76 | P75 | P74 | P73 | P72 | P71 | P70 |
|  | PWM2M1 | PWM2P1 | PWM1M1 | PWM1P1 | PWM2M0 | PWM2P0 | PWM1M0 | PWM1P0 |
| Port 8 | P87 | P86 | P85 | P84 | P83 | P82 | P81 | P80 |
|  | PWM2M3 | PWM2P3 | PWM1M3 | PWM1P3 | PWM2M2 | PWM2P2 | PWM1M2 | PWM1P2 |
| Port 9 | - | - | - | - | - | - | P91 | P90 |
|  | - | - | - | - | - | - | SEG23 | SEG22 |

*: Range of input voltage.
For ratings see "3. DC Characteristics" in "■ ELECTRICAL CHARACTERISTICS".
Note : Port 6 also functions as an analog input pin. When using this port as a general purpose port, always write " 0 " to the corresponding analog input enable register (ADER) bit. The ADER bit is initialized to " 1 " at reset.

## MB90420G/425G Series

## (2) Block Diagrams

Ports 0, 1, 3, 4, 5, 7, 8, 9


Port 6


## MB90420G/425G Series

## 2. Watchdog Timer/Time Base Timer/Watch Timer

The watchdog timer, timer base timer, and watch timer have the following circuit configuration.

- Watchdog timer : Watchdog counter, control register, watchdog reset circuit
- Time base timer : 18-bit timer, interval interrupt control circuit
- Watch timer : 15-bit timer, interval interrupt control circuit


## (1) Watchdog timer function

The watchdog timer is composed of a 2 -bit watchdog counter that uses the carry signal from the 18 -bit time base timer or 15 -bit watch timer as a clock source, plus a control register and watchdog reset control circuit.
After startup, this function will reset the CPU if not cleared within a given time.

## (2) Time base timer function

The time base timer is an 18 -bit free-run counter (time base counter) synchronized with the internal count clock (base oscillator divided by 2), with an interval timer function providing a selection of four interval times. Other functions include a timer output for an oscillator stabilization wait time and clock feed to the watchdog timer or other operating clocks. Note that the time base timer uses the main clock regardless of the setting of the MCS bit or SCS bit in the CKSCR register.

## (3) Watch timer function

The watch timer provides functions including a clock source for the watchdog timer, a sub clock base oscillator stabilization wait timer, and an interval timer to generate an interrupt at fixed intervals. Note that the watch timer uses the sub clock regardless of the setting of the MCS bit or SCS bit in the CKSCR register.

## MB90420G/425G Series

## - Block Diagram



## MB90420G/425G Series

## 3. Input Capture

This circuit is composed of a 16-bit free-run timer and four 16-bit input capture circuits.

## (1) Input capture ( $\times 4$ )

The input capture circuits consist of four independent external input pins and corresponding capture registers and control registers. When the specified edge of the external signal input (at the input pin) is detected, the value of the 16 -bit free-run timer is saved in the capture register, and at the same time an interrupt can also be generated.

- The valid edge (rising edge, falling edge, both edges) of the external signal can be selected.
- The four input capture circuits can operate independently.
- The interrupt can be generated from the valid edge of the external input signal.


## (2) 16-bit free-run timer ( $\times 1$ )

The 16-bit free-run timer is composed of a 16-bit up-counter, control register, 16-bit compare register, and prescaler. The output values from this counter are used as the base time for the input capture circuits.

- The counter clock operation can be selected from 8 options. The eight internal clock settings are $\phi, \phi / 2, \phi / 4$, $\phi / 8, \phi / 16, \phi / 32, \phi / 64, \phi / 128$ where $\phi$ represents the machine clock cycle.
- Interrupts can be generated from overflow events, or from compare match events with the compare register. (Compare match operation requires a mode setting.)
- The counter value can be initialized to " 0000 H " by a reset, soft clear, or a compare match with the compare register.
(3) Block diagram



## MB90420G/425G Series

## 4. 16-bit Reload Timer

The 16-bit reload timer can either count down in synchronization with three types of internal clock signals in internal clock mode, or count down at the detection of the designated edge of an external signal. The user may select either function. This timer defines a transition from 0000 н to $\operatorname{FFFF}$ н as an underflow event. Thus an underflow occurs when counting from the value [Reload register setting +1].
A selection of two counter operating modes are available. In reload mode, the counter is reset to the count value and continues counting after an underflow, and in one-shot mode the count stops after an underflow. The counter can generate an interrupt when an underflow occurs, and is compatible with the expanded intelligent $\mathrm{I} / \mathrm{O}$ services (EI2OS) .
(1) 16-bit Reload timer operating modes

| Clock mode | Counter mode | 16-bit reload timer operation |
| :---: | :---: | :---: |
| Internal clock mode | Reload mode | Soft trigger operation <br> External trigger operation <br> External gate input operation |
|  | One-shot mode | Soft trigger operation |
| Event count mode <br> (external clock mode) | Reload mode |  |
|  | One-shot mode |  |

## (2) Internal clock mode

One of three input clocks is selected as the count clock, and can be used in one of the following operations.

- Soft trigger operation

When " 1 " is written to the TRG bit in the timer control status register (TMCSR0/1), the count operation starts. Trigger input at the TRG bit is normally valid with an external trigger input, as well as an external gate input.

- External trigger operation

Count operation starts when a selected edge (rising, falling, both edges) is input at the TIN0/1 pin.

- External gate input operation

Counting continues as long as the selected signal level ("L" or " H ") is input at the TINO/1 pin.

## (3) Event count mode (External clock mode)

In this mode a down count event occurs when a selected valid edge (rising, falling, both edges) is input at the TINO/1 pin. This function can also be used as an interval timer when an external clock with a fixed period is used.

## (4) Counter operation

- Reload mode

In down count operation, when an underflow event (transition from "0000н" to "FFFFh") occurs, the set count value is reloaded and count operation continues. The function can be used as an interval timer by generating an interrupt request at each underflow event. Also, a toggle waveform that inverts at each underflow can be output from the TOT0/1 pin.

| Counter clock | Counter clock period | Interval time |
| :---: | :---: | :---: |
| Internal clock | $2^{1 / \phi}(0.125 \mu \mathrm{~s})$ | $0.125 \mu \mathrm{~s}$ to 8.192 ms |
|  | $2^{3 / \phi}(0.5 \mu \mathrm{~s})$ | $0.5 \mu \mathrm{~s}$ to 32.768 ms |
|  | $2^{5 /} / \phi(2.0 \mu \mathrm{~s})$ | $2.0 \mu \mathrm{~s}$ to 131.1 ms |
| External clock | $2^{3} / \phi$ or greater $(0.5 \mu \mathrm{~s})$ | $0.5 \mu \mathrm{~s}$ or greater |

[^0]
## MB90420G/425G Series

## (5) One-shot mode

In down count operation, the count stops when an underflow event (transition from "0000н" to "FFFFh") occurs. This function can generate an interrupt at each underflow. While the counter is operating, a rectangular wave form indicating that the count is in progress can be output form the TOT0 and TOT1 pins.

## (6) Block diagram



## MB90420G/425G Series

## 5. Real Time Watch Timer

The real time watch timer is composed of a real time watch timer control register, sub second data register, second/minute/hour data registers, $1 / 2$ clock divider, 21-bit prescaler and second/minute/hour counters. Because the MCU oscillation frequency operates on a given real time watch timer operation, a 4 MHz frequency is assumed. The real time watch timer operates as a real world timer and provides real world time information.

- Block diagram



## MB90420G/425G Series

## 6. PPG Timer

The PPG timer consists of a prescaler, one 16-bit down-counter, 16-bit data register with buffer for period setting, and 16-bit compare register with buffer for duty setting, plus pin control circuits.
The timer can output pulses synchronized with an externally input soft trigger. The period and duty of the output pulse can be adjusted by rewriting the values in the two 16-bit registers.

## (1) PWM function

Programmable to output a pulse, synchronized with a trigger.
Can also be used as a D/A converter with an external circuit.

## (2) One-shot function

Detects the edge of a trigger input, and outputs a single pulse.

## (3) Pin control

- Set to "1" at a duty match (priority) .
- Reset to "0" at a counter borrow event
- Has a fixed output mode to output a simple all "L" ( or "H") signal.
- Polarity can be specified


## (4) 16-bit down counter

- Select from four types of counter operation clocks. Four internal clocks ( $\phi, \phi / 4, \phi / 16, \phi / 64$ ) $\quad \phi$ : Machine clock cycles.
- The counter value can be initialized to "FFFFн" at a reset or counter borrow event.


## (5) Interrupt requests

- Timer startup
- Counter borrow event (period match)
- Duty match event
- Counter borrow event (period match) or duty match event
(6) Multiple channels can be set to start up at an external trigger, or to restart during operation.


## MB90420G/425G Series

(7) Block diagram


## MB90420G/425G Series

## 7. Delayed Interrupt Generator Module

The delayed interrupt generator module is a module that generates interrupts for task switching. This module makes it possible to use software to generate/cancel interrupt requests to the $\mathrm{F}^{2}$ MC-16LX CPU.

- Block diagram



## MB90420G/425G Series

## 8. DTP/External Interrupt Circuit

The DTP (Data transfer peripheral) /external interrupt circuit is located between an externally connected peripheral device and the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU and sends interrupt requests or data transfer requests generated from the peripheral device to the CPU, thereby generating external interrupt requests or starting the expanded intelligent I/O services (EIOS).

## (1) DTP/external interrupt function

The DTP/external interrupt function uses a signal input from the DTP/external interrupt pin as a startup source. And it is accepted by the CPU by the same procedure as a normal hardware interrupt, and can generate an external interrupt or start the expanded intelligent I/O service (EI²OS).
When the interrupt is accepted by the CPU, if the corresponding expanded intelligent I/O service (EI2OS) is prohibited the interrupt operates as an external interrupt function and branches to an interrupt routine. If the $\mathrm{El}^{2} \mathrm{OS}$ is permitted the interrupt functions as a DTP function, using $\mathrm{El}^{2} \mathrm{OS}$ for automatic data transfer, then branching to an interrupt routine after the completion of the specified number of data transfers.

|  | External interrupt | DTP function |
| :---: | :---: | :---: |
| Input pins | 8 pins (P50/INT0/ADTG to P53/INT3, P00/SIN0/INT4 to P03/INT7) |  |
|  | Request level setting register (ELVR) sets the detection level, or selected edge for each pin |  |
| In | "H" level/ "L" level/ rising edge/falling edge input | "H" level/ "L" level input |
| Interrupt numbers | \#16 (10н) , \#18 (12н) , \#20 (14н) , \#22 (16н) , \#24 (18Н) , \#26 (1Ан) |  |
| Interrupt control | DTP/interrupt enable register (ENIR) permits/prohibits interrupt request output |  |
| Interrupt flags | DTP/interrupt enable register (EIRR) stores interrupt sources |  |
| Process selection | When EIOS prohibited (ICR : ISE = 0) | When EI2OS is enabled (ICR : ISE = 1) |
| Processing | Branch to external interrupt processing routine | EI2OS performs automatic data transfer, then after a specified number of cycles, branches to an interrupt routine |

ICR : Interrupt control register

## MB90420G/425G Series

(2) Block diagram


## MB90420G/425G Series

## 9. 8/10-bit A/D Converter

The 8/10-bit A/D converter has functions for using RC sequential comparator conversion format to convert analog input voltage into 10 -bit or 8 -bit digital values. The input signal is selected from 8 -channel analog input pins, and the conversion start can be selected from three types : by software, 16 -bit reload timer 1 or a trigger input from an external signal pin.

## (1) 8/10-bit A/D converter functions

The A/D converter takes analog voltage signals (input voltage) input at analog input pins, and converts these to digital values, providing the following features.

- Minimum conversion time is $6.13 \mu \mathrm{~s}$ (at machine clock frequency of 16 MHz , including sampling time) .
- Minimum sampling time is $3.75 \mu \mathrm{~s}$ (at machine clock 16 MHz )
- The conversion method is an RC sequential conversion in comparison with a sample hold circuit.
- Either 10-bit or 8-bit resolution can be selected.
- The analog input pin can select from 8 channels by a program setting.
- At completion of $\mathrm{A} / \mathrm{D}$ conversion, an interrupt request can be generated, or $\mathrm{El}^{2} \mathrm{OS}$ can be started.
- Because the conversion data protection function operates in an interrupt enabled state, no data is lost even in continuous conversion.
- The conversion start source may be selected from : software, 16 -bit reload timer 1 (rising edge) , or external trigger input (falling edge).

Three conversion modes are available

| Conversion mode | Single conversion operation | Scan conversion operation |
| :---: | :--- | :--- |
| Single conversion mode | Converts the specified channel (1 channel <br> only) one time, then stops. | Converts multiple consecutive channels (up <br> to 8 channels may be specified) one time, <br> then stops. |
| Continuous conversion <br> mode | Converts the specified channel (1 channel <br> only) repeatedly. | Converts multiple consecutive channels (up <br> to 8 channels may be specified) repeatedly. |
| Stop conversion mode | Converts the specified channel (1 channel <br> only) one time, then pauses, waits until <br> the next start is applied. | Converts multiple consecutive channels (up <br> to 8 channels may be specified), however <br> pauses after conversion of each channel, <br> waits until the next start is applied. |

## MB90420G/425G Series

(2) Block diagram


## MB90420G/425G Series

## 10. UART

The UART is a general purpose serial data communication interface for synchronous communication, or asynchronous (start-stop synchronized) communication with external devices. Functions include normal bi-directional functions, as well as master/slave type communication functions (multi-processor mode : master side only supported).
(1) UART Functions

The UART is a general purpose serial data communication interface for sending and receiving of serial data with other CPU's or peripheral devices, and provides the following functions.

|  | Functions |
| :---: | :---: |
| Data buffer | Full duplex double buffer |
| Transfer modes | - Clock synchronous (no start/stop bits) <br> - Clock asynchronous (start-stop synchronized) |
| Baud rate | - Exclusive baud rate generator provides a selection of 8 rates <br> - External clock input enabled <br> - Internal clock (can use internal clock feed from 16-bit reload timer) |
| Data length | - 7-bit (asynchronous normal mode only) <br> - 8-bit |
| Signal type | NRZ (Non return to zero) |
| Receiving error detection | - Framing errors <br> - Overrun errors <br> - Parity errors (not enabled in multiprocessor mode) |
| Interrupt request | - Receiving interrupt (receiving completed, receiving error detection) <br> - Sending interrupt (sending completed) <br> - Sending/receiving both compatible with expanded intelligent I/O services (EI2OS) |
| Master/slave type communication function (multi-processor mode) | 1 (master) -to-n (slave) communication enabled (only master side supported) . |

Note : The UART in clock synchronous transfer does not add start bits or stop bits, but transfers data only.

| Operating mode |  | Data length |  | Synchronization | Stop bit length |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Parity |  |  |  |
| 0 | Normal mode | 7 -bit or 8-bit |  | Asynchronous | 1-bit or 2-bit *2 |
| 1 | Multi-processor mode | $8+1^{* 1}$ | - | Asynchronous |  |
| 2 | Normal mode | 8 | - | Synchronous | None |

- : Setting not available
*1 : "+" indicates an address/data selection bit (A/D) for communication control.
*2 : In receiving only one stop bit is detected.


## MB90420G/425G Series

(2) Block diagram


## MB90420G/425G Series

## 11. CAN Controller

The CAN controller is a self-contained module within a 16-bit microcomputer (F²MC-16LX) . The CAN (controller area network) controller is the standard protocol for serial transmissions among automotive controllers and is widely used in the industry.

## (1) CAN controller features

The CAN controller has the following features.

- Conforms to CAN specifications version 2.0 A and B .

Supports sending and receiving in standard frame and expanded frame format.

- Supports data frame sending by means of remote frame receiving.
- 16 sending/receiving message buffers

29-bit ID and 8-byte data
Multi-level message buffer configuration

- Supports full bit compare, full bit mask as well as partial bet mask filtering. Provides two receiving mask registers for either standard frame or expanded frame format.
- Bit speed programmable from $10 \mathrm{~KB} / \mathrm{s}$ to $1 \mathrm{MB} / \mathrm{s}$ (at machine clock 16 MHz )
- CAN WAKE UP function
- The MB90420G series has a two-channel built-in CAN controller. The MB90425G series has a 1 -channel builtin CAN controller.


## MB90420G/425G Series

(2) Block diagram


## MB90420G/425G Series

## 12. LCD Controller/Driver

The LCD controller/driver has a built-in $16 \times 8$-bit display data memory, and controls the LCD display by means of four common outputs and 24 segment outputs. A selection of three duty outputs are available. This block can drive an LCD (liquid crystal display) panel directly.

## (1) LCD controller/driver functions

The LCD controller/driver provides functions for directly displaying the contents of display data memory (display RAM) on the LCD panel by means of segment output and common output.

- LCD drive voltage divider resistance is built-in. External divider resistance can also be connected.
- Up to 4 common outputs (COM0 to COM3) and 24 segment outputs (SEG0 to SEG23) can be used.
- 16-byte display data memory (display RAM) is built-in.
- The duty can be selected at $1 / 2,1 / 3,1 / 4$ (limited by bias setting) .
- Drives the LCD directly.

| Bias | $\mathbf{1 / 2}$ duty | $\mathbf{1 / 3}$ duty | $\mathbf{1 / 4}$ duty |
| :---: | :---: | :---: | :---: |
| $1 / 2$ bias | $\circ$ | $\times$ | $\times$ |
| $1 / 3$ bias | $\times$ | $\circ$ | $\circ$ |

$\bigcirc$ : Recommended mode
$\times$ : Use prohibited

Note : When the SEG12 to SEG23 pins have been selected as general purpose ports by the LCRH setting, they cannot be used for segment output.

## MB90420G/425G Series

(2) Block diagram


## MB90420G/425G Series

## 13. Low voltage/Program Looping Detection Reset Circuit

The Low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.
The Program Looping detection reset circuit is a count clock with a 20 -bit counter that generates an internal reset signal if not cleared within a given time after startup.
(1) Low voltage detection reset circuit

| Detection voltage |
| :---: |
| $4.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |

When a low voltage condition is detected, the low voltage detection flag (LVRC : LVRF) is set to " 1 " and an internal reset signal is output.

Because the low voltage detection circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.
During an internal RAM write cycle, an internal reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection circuit is suppressed.

## (2) Program Looping detection reset circuit

The Program Looping detection reset circuit is a counter that prevents program looping. The counter starts automatically after a power-on reset, and must be continually cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated form the Program Looping detection circuit has a width of 5 machine cycles.

| Interval duration |
| :---: |
| $2^{20} / \mathrm{Fc}$ (Approx. $262 \mathrm{~ms}^{*}$ ) |

*: This value assumes an oscillation clock waveform of 4 MHz .
During recovery from standby mode the detection period is the maximum interval plus $20 \mu \mathrm{~s}$.
This circuit does not operate in modes where CPU operation is stopped.
The Program Looping detection reset circuit counter is cleared under any of the following conditions.

1. Writing " 0 " to the LVRC register CL bit
2. Internal reset
3. Main oscillation clock stop
4. Transition to sleep mode
5. Transition to time base timer mode or clock mode

## MB90420G/425G Series

(3) Block diagram


## MB90420G/425G Series

## 14. Stepping Motor Controller

The stepping motor controller is composed of two PWM pulse generators, four motor drivers and selector logic circuits.
The four motor drivers have a high output drive capacity and can be directly connected to the four ends of two motor coils. They are designed to operate together with the PWM pulse generators and selector logic circuits to control motor rotation. A synchronization mechanism assures synchronization of the two PWM pulse generators.

- Block diagram



## MB90420G/425G Series

## 15. Sound Generator

The sound generator is composed of a sound control register, frequency data register, amplitude data register, decrement grade register, tone count register, PWM pulse generator, frequency counter, decrement counter, and tone pulse counter.

- Block diagram



## MB90420G/425G Series

## 16. Address Match Detect Function

If the address setting is the same as the address detection register, an INT9 instruction is executed. The integrated address match detection function can be implemented by processing the INT9 interrupt service routine.
Two address registers are used, each with its own compare enable bit. When there is a match between the address register and program counter, and the compare enable bit is set to " 1 ", the INT9 instruction is forcibly executed by the CPU.

- Block diagram



## MB90420G/425G Series

## 17. ROM Mirror Function Select Module

The ROM mirror function select module uses a select register setting to enable the contents of ROM allocated to the FF bank to be viewed in the 00 bank.

- Block diagram



## MB90420G/425G Series

## ■ ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| Parameter | Symbol | Rating |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Power supply voltage*1 | Vcc | Vss - 0.3 | Vss +6.0 | V |  |
|  | AVcc | Vss - 0.3 | Vss +6.0 | V | AV cc $=\mathrm{Vcc}^{*} 2$ |
|  | AVRH | Vss - 0.3 | Vss +6.0 | V | AV cc $\geq \mathrm{AVRH}{ }^{*}$ |
|  | DVcc | Vss - 0.3 | Vss +6.0 | V | $\mathrm{DV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}{ }^{* 2}$ |
| Input voltage*1 | V | Vss - 0.3 | $\mathrm{Vcc}+0.3$ | V | *3 |
| Output voltage*1 | Vo | Vss - 0.3 | $\mathrm{Vcc}+0.3$ | V |  |
| Maximum clamp current | Iclamp | -400 | $+400$ | $\mu \mathrm{A}$ | *7 |
| Total maximum clamp current | $\Sigma \mid$ Iclamp \| | - | 4 | mA | *7 |
| "L"level maximum output current*4 | lol1 | - | 15 | mA | Other than P70 to P77, and P80 to P87 |
|  | lol2 | - | 40 | mA | P70 to 77, P80 to87 |
| "L"level average output current*5 | lolav1 | - | 4 | mA | Other than P70 to P77, and P80 to P87 |
|  | lolav2 | - | 30 | mA | P70 to 77, P80 to 87 |
| "L"level maximum total output current | EloL1 | - | 100 | mA | Other than P70 to P77, and P80 to P87 |
|  | Elol2 | - | 330 | mA | P70 to 77, P80 to 87 |
| "L"level average total output current | Elolav1 | - | 50 | mA | Other than P70 to P77, and P80 to P87 |
|  | Elolav2 | - | 250 | mA | P70 to 77, P80 to 87 |
| " H "level maximum output current | Іон1* ${ }^{\text {* }}$ | - | -15 | mA | Other than P70 to P77, and P80 to P87 |
|  | Іон2*4 | - | -40 | mA | P70 to 77, P80 to 87 |
| " H "level average output current | lohav1*5 | - | -4 | mA | Other than P70 to P77, and P80 to P87 |
|  | lohav2*5 | - | -30 | mA | P70 to 77, P80 to 87 |
| " H "level maximum total output current | Eloh1 | - | -100 | mA | Other than P70 to P77, and P80 to P87 |
|  | ऽloh2 | - | -330 | mA | P70 to 77, and P80 to 87 |
| " H "level average total output current | $\Sigma$ lohav1 $^{* 6}$ | - | -50 | mA | Other than P70 to P77, and P80 to P87 |
|  | Elohav2*6 | - | -250 | mA | P70 to 77, P80 to 87 |
| Power consumption | Pd | - | 500 | mW |  |
| Operating temperature | $\mathrm{T}_{\text {A }}$ | -40 | +105 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |

*1 : The parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=\mathrm{DV}_{\mathrm{ss}}=0.0 \mathrm{~V}$.
*2 : AVcc, AVRH and DVcc shall never exceed Vcc.
Also, AVRH shall never exceed $A V$ cc.
*3 : The maximum current to/from and input is limited by some means with extenal components, the ICLAMP rating supersedes the $V$, rating.
*4 : Maximum output current is defined as the peak value of the current of any one of the corresponding pins.
*5 : Average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins. The "average value" can be calculated from the formula of "operating current" times "operating factor".

## MB90420G/425G Series

## (Continued)

*6 : Average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins. The "average value" can be calculated from the formula of "operating current" times " operating factor".
*7 : • Applicable to pins : P00 to P07, P10 to P15, P50 to P57, P70 to P77, P80 to P87

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a B B signal is input when the microcontroller current is off (not fixed at 0 V ), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :


## - Input/Output equivalent circuits



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

## MB90420G/425G Series

## 2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{DV} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

| Parameter | Symbol | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Power supply voltage | Vcc <br> AVcc <br> DVcc | 3.7 | 5.5 | V | (MB90F428GA, MB90F423GA, MB90428GA, MB90427GA, MB90423GA) <br> Low voltage detection reset starts to work when power supply voltage is $4.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$. |
|  |  | 3.0 | 5.5 | V | (MB90F428GC, MB90F423GC, MB90428GC, MB90427GC, MB90423GC) |
|  |  | 4.3 | 5.5 | V | Holding stop operation status (MB90F428GA, MB90F423GA, MB90428GA, MB90427GA, MB90423GA) |
|  |  | 3.0 | 5.5 | V | Holding stop operation status (MB90F428GC, MB90F423GC, MB90428GC, MB90427GC, MB90423GC) |
| Smoothing capacitor* | Cs | 0.1 | 1.0 | $\mu \mathrm{F}$ | Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. A bypass capacitor on the V cc pin should have a capacitance greater than Cs. |
| Operating temperature | TA | -40 | +105 | ${ }^{\circ} \mathrm{C}$ |  |

*: For smoothing capacitor Cs connections, see the illustration below.

- C pin connection


WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

## MB90420G/425G Series

## 3. DC Characteristics

$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{ss}=\mathrm{DV}\right.$ ss $=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | $\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$ | Conditions | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| "H"level input voltage | Vihs | - | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V | CMOS hysteresis Automotive level input pin* ${ }^{* 1}$ |
|  | Vінм | - | - | $\mathrm{V} \mathrm{cc}-0.3$ | - | $\mathrm{V} \mathrm{cc}+0.3$ | V | MD pin*2 |
| "L"level input voltage | Vıss | - | - | Vss - 0.3 | - | 0.5 Vcc | V | CMOS hysteresis Automotive level input pin*1 |
|  | VILM | - | - | $\mathrm{V}_{\text {ss }}-0.3$ | - | $\mathrm{V}_{\text {ss }}+0.3$ | V | MD pin*2 |
| Power supply current ${ }^{* 3}$ | Icc | Vcc | Operating frequency $\mathrm{F}_{\mathrm{cP}}=16 \mathrm{MHz}$, normal operation | - | 45 | 72 | mA | $\begin{aligned} & \text { MB90F428GA/GC } \\ & \text { MB90F423GA/GC } \end{aligned}$ |
|  |  |  |  | - | 38 | 61 | mA | $\begin{aligned} & \text { MB90428GA/GC } \\ & \text { MB90427GA/GC } \\ & \text { MB90423GA/GC } \end{aligned}$ |
|  | Iccs |  | Operating frequency <br> $\mathrm{F}_{\mathrm{CP}}=16 \mathrm{MHz}$, <br> sleep mode | - | 15 | 24 | mA | $\begin{aligned} & \text { MB90F428GA/GC } \\ & \text { MB90F423GA/GC } \end{aligned}$ |
|  |  |  |  | - | 13 | 21 | mA | $\begin{aligned} & \text { MB90428GA/GC } \\ & \text { MB90427GA/GC } \\ & \text { MB90423GA/GC } \end{aligned}$ |
|  | Icts |  | Operating frequency $\mathrm{F}_{\mathrm{cP}}=2 \mathrm{MHz}$, time base timer mode | - | 0.75 | 1.0 | mA |  |
|  | Iccl |  | Operating frequency Fcp $=8 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, subclock operation | - | 0.35 | 0.7 | mA |  |
|  | Iccıs |  | Operating frequency <br> $\mathrm{F} \mathrm{CP}=8 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, <br> sub sleep operation | - | 10 | 30 | $\mu \mathrm{A}$ | MB90F428GC MB90F423GC MB90428GC MB90427GC MB90423GC |
|  | Icct |  | Operating frequency <br> $\mathrm{F}_{\mathrm{CP}}=8 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, <br> clock mode | - | 40 | 100 | $\mu \mathrm{A}$ | MB90F428GA <br> MB90F423GA <br> MB90428GA <br> MB90427GA <br> MB90423GA |
|  | Ісch |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \text { stop mode } \end{aligned}$ | - | 5 | 20 | $\mu \mathrm{A}$ | MB90F428GC MB90F423GC MB90428GC MB90427GC MB90423GC |
|  |  |  |  | - | 40 | 100 | $\mu \mathrm{A}$ | MB90F428GA <br> MB90F423GA <br> MB90428GA <br> MB90427GA <br> MB90423GA |

(Continued)

## MB90420G/425G Series

(Continued)

## MB90420G/425G Series

(Continued)
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DV}\right.$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Conditions | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| COM0 to COM3 output impedance | Rvcom | $\begin{aligned} & \text { COMn } \\ & \text { (n=0 to 3) } \end{aligned}$ | - | - | - | 2.5 | k $\Omega$ |  |
| SEGO to SEG3 output impedance | Rvseg | $\begin{array}{\|l} \text { SEGn } \\ (\mathrm{n}=00 \text { to } 23) \end{array}$ | - | - | - | 15 | k $\Omega$ |  |
| LCD leakage current | ILcoc | V0 to V3 COMm $\begin{aligned} & (m=00 \text { to } 23) \\ & \text { SEGn } \\ & (n=00 \text { to } 23) \end{aligned}$ | - | -5.0 | - | +5.0 | $\mu \mathrm{A}$ |  |

*1 : All input pins except X0, X0A, MD0, MD1, MD2 pins.
*2 : MD0, MD1, MD2 pins.
*3 : Supply current values assume external clock feed from the X1 pin and X1A pin. Users must be aware that supply current levels differ depending on whether an external clock or oscillator is used.
*4 : Defined as maximum variation in Vонг/Vol2 with all channel 0 PWM1P0/PWM1M0/PWM2P0/PWM2M0 simultaneously ON. Similarly for other channels.

## MB90420G/425G Series

## 4. AC Characteristics

(1) Clock timing ( $\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DV}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vss}^{2}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Conditions | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Base oscillation clock frequency | Fc | $\mathrm{X} 0, \mathrm{X} 1$ | - | - | 4 | - | MHz |  |
|  | Fıc | X0A, X1A |  | - | 32.768 | - | kHz |  |
| Base oscillation clock cycle time | toyl | $\mathrm{X} 0, \mathrm{X} 1$ |  | - | 250 | - | ns |  |
|  | tLCYL | X0A, X1A |  | - | 30.5 | - | $\mu \mathrm{s}$ |  |
| Input clock pulse width | Pwh, PwL | X0 |  | 10 | - | - | ns | Use duty ratio of 40 to $60 \%$ as a guideline |
|  | Pwle, Pwlı | XOA |  | - | 15.2 | - | $\mu \mathrm{S}$ |  |
| Input clock rise, fall time | tcr, tcf | XO, X0A |  | - | - | 5 | ns | With external clock signal |
| Input operating | Fcp | - |  | 2 | - | 16 | MHz | Using main clock, PLL clock |
| clock frequency | FLCP | - |  | - | 8.192 | - | kHz | Using sub clock |
| Input operating clock cycle time | tcp | - |  | 62.5 | - | 500 | ns | Using main clock, PLL clock |
|  | tıcp | - |  | - | 122.1 | - | $\mu \mathrm{s}$ | Using sub clock |

- X0 clock timing

- XOA clock timing



## MB90420G/425G Series

- Range of warranted operation

Relation between internal operating clock frequency and supply voltage


The MB90F428GA, MB90F423GA, MB90428GA, MB90427GA, and MB90423GA enter reset mode at supply voltage below $4 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

Relation between oscillator clock frequency and internal operating clock frequency

|  | Internal operating clock frequency |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Main clock | PLL clock |  |  |  |
|  | Multiplier <br> $\times \mathbf{1}$ | Multiplier <br> $\times \mathbf{2}$ | Multiplier <br> $\times \mathbf{3}$ | Multiplier <br> $\times \mathbf{4}$ |  |  |
| Oscillation clock <br> frequency | 4 MHz | 2 MHz | - | 8 MHz | 12 MHz | 16 MHz |

- Sample oscillator circuit

| Oscillator element <br> manufacturer | Oscillator | Frequency | C1 | C2 |
| :---: | :---: | :---: | :---: | :---: |
| Murata Manufacturing Co., Ltd. | CSTCR4M00G15 ( ) A-R0 | 4 MHz | $39[\mathrm{pF}]$ (Typ) | $39[\mathrm{pF}]$ (Typ) |



## MB90420G/425G Series

AC ratings are defined for the following measurement reference voltage values:

- Input signal waveform

Hysteresis input pin


- Output signal waveform

Output pin


## MB90420G/425G Series

(2) Reset input

| Parameter | Symbol | Pin name | Conditions | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
|  |  |  |  | 16 tcp | - | ns | In normal operation |
| Reset input time | trstL | RST | - | Oscillator oscillation time* +16 tcp | - | ms | In stop mode, sub clock mode, sub sleep mode, watch mode |

*: Oscillator oscillation time is the time to reach $90 \%$ amplitude. For a crystal oscillator, this is a few to several hundred ms ; for a FAR/ceramic oscillator, this is several hundred ms to a few ms , and for an external clock this is $100 \mu \mathrm{~s}$.
Note : tcp : See " (1) Clock input timing".

- Under normal operation

- In stop mode, sub clock mode, sub sleep mode, watch mode



## MB90420G/425G Series

(3) Power-on reset, power on conditions

| (Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Pin name | Conditions | Value |  | Unit | Remarks |
|  |  |  |  | Min | Max |  |  |
| Power supply rise time | tr | Vcc | - | 0.05 | 30 | ms |  |
| Power supply start voltage | Voff |  |  | - | 0.2 | V |  |
| Power supply attained voltage | Von |  |  | 2.7 | - | V |  |
| Power supply cutoff time | toff |  |  | 50 | - | ms | For repeat operation |

Vcc


Extreme variations in voltage supply may activate a power-on reset.
As the illustration below shows, when varying supply voltage during operation the use of a smooth voltage rise with suppressed fluctuation is recommended. Also in this situation, the PLL clock on the device should not be used, however it is permissible to use the PLL clock during a voltage drop of $1 \mathrm{~V} / \mathrm{s}$ or less.


## MB90420G/425G Series

(4) UARTO, UART1 timing
$\left(\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Conditions | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Serial clock cycle time | tscrc | SCK0, SCK1 | - | 8 tcp | - | ns | Internal shift clock mode output pin $\mathrm{C}=$ $80 \mathrm{pF}+1 \cdot \mathrm{TTL}$ |
| SCK fall to SOT delay time | tstov | $\begin{aligned} & \text { SCKO, SCK1 } \\ & \text { SOT0, SOT1 } \end{aligned}$ |  | -80 | 80 | ns |  |
| Valid SIN to SCK rise | tivsh | SCKO, SCK1 SINO, SIN1 |  | 100 | - | ns |  |
| SCK rise to valid SIN hold time | tshix |  |  | 60 | - | ns |  |
| Serial clock "H" pulse width | tshsL | SCK0, SCK1 | - | 4 tcp | - | ns | External shift clock mode output pin $\mathrm{C}=$ $80 \mathrm{pF}+1 \cdot \mathrm{TTL}$ |
| Serial clock "L" pulse width | tslsh |  |  | 4 tcp | - | ns |  |
| SCK fall to SOT delay time | tslov | $\begin{aligned} & \hline \text { SCKO, SCK1 } \\ & \text { SOT0, SOT1 } \end{aligned}$ |  | - | 150 | ns |  |
| Valid SIN to SCK rise | tivsh | $\begin{aligned} & \text { SCKO, SCK1 } \\ & \text { SINO, SIN1 } \end{aligned}$ |  | 60 | - | ns |  |
| SCK rise to valid SIN hold time | tshix |  |  | 60 | - | ns |  |

Notes: - AC ratings are for CLK synchronous mode.

- $\mathrm{C}_{\mathrm{L}}$ is load capacitance connected to pin during testing.
- tcp : See " (1) Clock timing".
- Internal shift clock mode

- External shift clock mode



## MB90420G/425G Series

(5) Timer input timing

| Parameter | Symbol | Pin name | Conditions | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Input pulse width | ttiwn ttwn | $\begin{aligned} & \hline \text { TIN0, TIN1, } \\ & \text { IN0, IN1, } \\ & \text { IN2, IN3, } \end{aligned}$ | - | 4 tcp | - | ns |  |

Note : tcp : See " (1) Clock timing".

- Timer input timing

(6) Trigger input timing

$$
\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

| Parameter | Symbol | Pin name | Conditions | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Max |  |  |  |
| Input pulse width | tTRGH, <br> tTRGL | INTO to INT7 | - | 5 tcp | - | ns | Under normal operation |
|  |  |  | - | $\mu \mathrm{s}$ | In stop mode |  |  |

Note : tcp : See " (1) Clock timing".

- Trigger input timing

INTO ~ INT7


## MB90420G/425G Series

(7) Low voltage detection

| Parameter | Symbol | Pin name | Conditions | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Detection voltage | VdL | Vcc | - | 3.7 | 4.0 | 4.3 | V | During voltage drop |
| Hysteresis width | Vhys | Vcc | - | 0.1 | - | - | V | During voltage rise |
| Power supply voltage fluctuation ratio | dV/dt | Vcc | - | -0.1 | - | 0.02 | V/us |  |
| Detection delay time | td | - | - | - | - | 35 | $\mu \mathrm{s}$ |  |



## MB90420G/425G Series

## 5. A/D Conversion Block

(1) Electrical Characteristics

$$
\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

| Parameter | Symbol | Pin name | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Resolution | - | - | - | - | 10 | bit |  |
| Total error | - | - | - | - | $\pm 5.0$ | LSB |  |
| Non-linear error | - | - | - | - | $\pm 2.5$ | LSB |  |
| Differential linear error | - | - | - | - | $\pm 1.9$ | LSB |  |
| Zero transition voltage | Vот | AN0 to AN7 | $\begin{gathered} \mathrm{AV} \text { ss } \\ -3.5 \mathrm{LSB} \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathrm{A} V_{\mathrm{ss}} \\ +0.5 \mathrm{LSB} \end{array}$ | $\begin{array}{\|c\|} \hline \mathrm{A} \mathrm{Vss}_{\mathrm{ss}} \\ +4.5 \mathrm{LSB} \end{array}$ | V | $\begin{aligned} & 1 \text { LSB }= \\ & \left(\begin{array}{c} \text { AVRH }- \text { AVss }) \\ / 1024 \end{array}\right. \end{aligned}$ |
| Full scale transition voltage | $V_{\text {fst }}$ | AN0 to AN7 | $\begin{gathered} \hline \text { AVRH } \\ -6.5 \mathrm{LSB} \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { AVRH } \\ -1.5 \mathrm{LSB} \end{array}$ | $\begin{array}{\|c\|} \hline \text { AVRH } \\ +1.5 \mathrm{LSB} \end{array}$ | V |  |
| Sampling time | tsmp | - | 2.000 | - | - | $\mu \mathrm{s}$ | *1 |
| Compare time | tcmp | - | 4.125 | - | - | $\mu \mathrm{S}$ | *2 |
| A/D conversion time | tenv | - | 6.125 | - | - | $\mu \mathrm{s}$ | *3 |
| Analog port input current | IAIN | AN0 to AN7 | - | - | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {avss }}=\mathrm{V}_{\text {AIN }}=\mathrm{V}_{\text {avcc }}$ |
| Analog input current | $V_{\text {AIN }}$ | AN0 to AN7 | 0 | - | AVRH | V |  |
| Reference voltage | AVR+ | AVRH | 3.0 | - | AVcc | V |  |
| Power supply current | IA | AVcc | - | 2.3 | 6.0 | mA |  |
|  | ІАн |  | - | - | 5 | $\mu \mathrm{A}$ | * 4 |
| Reference voltage feed current | IR | AVRH | 50 | 180 | 260 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {AVRH }}=5.0 \mathrm{~V}$ |
|  | Іri | AVRH | - | - | 5 | $\mu \mathrm{A}$ | * 4 |
| Inter-channel variation | - | AN0 to AN7 | - | - | 4 | LSB |  |

*1 : At Fcp $=16 \mathrm{MHz}$, tsMP $=32 \times$ tcp $=2.000(\mu \mathrm{~s})$.
*2 : At Fcp $=16 \mathrm{MHz}$, tcmp $=66 \times$ tcp $=4.125(\mu \mathrm{~s})$.
*3 : Equivalent to conversion time per channel at $\mathrm{F}_{\mathrm{cp}}=16 \mathrm{MHz}$, and selection of tsmp $=32 \times$ tcp and tcmp $=32 \times$ tcp.
*4 : Defined as supply current (when $\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=5.0 \mathrm{~V}$ ) with $\mathrm{A} / \mathrm{D}$ converter not operating, and CPU in stop mode.

## MB90420G/425G Series

## - Notes of the external impedance of the analog input and its sampling time

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion presicion.
- Analog input circuit model


Note : The values are reference values.

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between the external impedance and minimum sampling time

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- About errors

As |AVRH| becomes smaller, values of relative errors grow larger.

## MB90420G/425G Series

## (2) Definition of terms

- Resolution

Indicates the ability of the A/D converter to discriminate in analog conversion.
10-bit resolution indicates that analog voltage can be resolved into $2^{10}=1024$ levels.

- Total error

Expresses the difference between actual and logical values. It is the total value of errors that can come from offset error, gain error, non-linearity error and noise.

- Linearity error

Expresses the deviation between actual conversion characteristics and a straight line connecting the device's zero transition point ( $0000000000 \longleftrightarrow \rightarrow 0000000001$ ) and full scale transition point (11 $11111110 \longleftrightarrow \rightarrow 11$ 1111 1111).

- Differential linearity error

Expresses the deviation of the logical value of input voltage required to create a variation of 1 SLB in output code.

- 10 -bit A/D converter conversion characteristics



## MB90420G/425G Series

6. Flash Memory Program and Erase Performances

| Parameter | Conditions | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Sector erase time | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V} \mathrm{cc}=5.0 \mathrm{~V} \end{aligned}$ | - | 1 | 15 | s | Excludes 00 н programming prior erasure |
| Chip erase time |  | - | 5 | - | s | Excludes 00 н programming prior erasure |
| Word (16 bit width) programming time |  | - | 16 | 3,600 | $\mu \mathrm{S}$ | Excludes system-level overhead |
| Erase/Program cycle | - | 10,000 | - | - | cycle |  |
| Flash data retention time | Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ | 10 | - | - | year | * |

*: This value comes from the technology qualification. (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$ )

## MB90420G/425G Series

## EXAMPLE CHARACTERISTICS



## MB90420G/425G Series

(Continued)



## MB90420G/425G Series

## ORDERING INFORMATION

| Part number | Package | Remarks |
| :--- | :---: | :---: |
| MB90F423GAPF |  |  |
| MB90F423GCPF |  |  |
| MB90F428GAPF | Plastic QFP, 100-pin |  |
| MB90F428GCPF | (FPT-100P-M06) |  |
| MB90423GAPF |  |  |
| MB90423GCPF |  |  |
| MB90427GAPF |  |  |
| MB90427GCPF |  |  |
| MB90428GAPF |  |  |
| MB90428GCPF |  |  |
| MB90F423GAPFV |  |  |
| MB90F423GCPFV |  |  |
| MB90F428GPFV | Plastic LQFP, 100-pin |  |
| MB90423GAPFV | (FPT-100P-M05) |  |
| MB90423GCPFV |  |  |
| MB90427GAPFV |  |  |
| MB90427GCPFV |  |  |
| MB90428GAPFV |  |  |

## MB90420G/425G Series

## PACKAGE DIMENSIONS

| Plastic QFP, 100-pin | Note 1) *: These dimensions do not include resin protrusion. |
| :---: | :--- |
| (FPT-100P-M06) | Note 2) Pins width and pins thickness include plating thickness. |
|  | Note 3) Pins width do not include tie bar cutting remainder. |


© 2002 FUJITSU LIMITED F100008S-c-5-5
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

## MB90420G/425G Series

(Continued)

Plastic LQFP, 100-pin
(FPT-100P-M05)

Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIITED F1000075-C.4.6
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

## MB90420G/425G Series

## FUJITSU LIMITED


#### Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.


Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.


[^0]:    $\phi$ : Machine clock cycle. Figures in ( ) are values at machine clock frequency 16 MHz .

