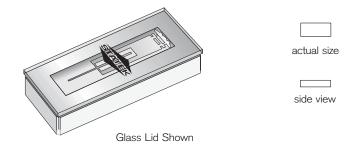


CX1SM CRYSTAL


530 kHz to 2.1 MHz

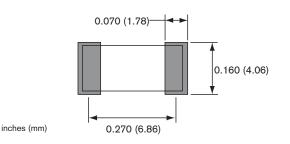
T

Low Profile, Miniature Surface Mount Quartz Crystal

DESCRIPTION

The CX1SM quartz crystals are leadless devices designed for surface mounting on printed circuit boards or hybrid substrates. They are hermetically sealed in a rugged, miniature ceramic package. The CX1SM crystal is manufactured using the STATEK-developed photolithographic process, and was designed utilizing the experience acquired by producing millions of crystals for industrial, commercial, military and medical applications. Maximum process temperature should not exceed 260°C.

PACKAGE DIMENSIONS


FEATURES

- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Compatible with hybrid or PC board packaging
- Low aging
- Full military testing available
- Ideal for battery operated applications
- Designed and manufactured in the USA

EQUIVALENT CIRCUIT C_0 $1 \leftarrow L_1$ C_1 R_1

 R_1 Motional Resistance L_1 Motional Inductance C_1 Motional Capacitance C_2 Shunt Capacitance

SUGGESTED LAND PATTERN

1			
A 	ТОР	_ 	воттом
	≁ B≁	↑ <u> </u>	→ E

	TY	TYP.		λX.	
DIM	inches	mm	inches	mm	
А	0.315	8.00	0.330	8.38	
В	0.140	3.56	0.155	3.94	
С	-	-	see below		
D	0.045	1.14	0.055	1.40	
E	0.060	1.52	0.070	1.78	

	DIM "C"	GLAS	S LID	CERAN	IIC LID	
	MAX	inches	mm	inches	mm	
	SM1	0.065	1.65	0.070	1.78	
	SM2	0.067	1.70	0.072	1.83	
	SM3	0.070	1.78	0.075	1.90	
_						

10129 - Rev B

2

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted.
Specifications are subject to change without notice.

opeemeations are subject to change without notice.							
Parameters		Fundamental				Overtone	
Frequency Range, (Hz)	555 k	614 k	1.0 M	1.4 M	1.8432 M	2.1M	
Motional Resistance,R ₁ (Ω)	600	275	500	775	300	475	
Motional Resistance,R1 MAX			З	kΩ			
Motional Capacitance,C1 (fF)	2.5	3.6	2.0	1.5	2.8	2.6	
Quality Factor, Q (k)	170	260	190	100	110	70	
Shunt Capacitance,C ₀ (pF)	1.2	1.3	1.1	1.0	1.3	1.3	
Calibration Tolerance*	± 500	ppm	(0.0	5%)			
	± 100	0 ррі	m (0.	1%)			
	± 100	00 p	pm (1	1.0%)		
Drive Level	3μW	MAX	,				
Load Capacitance**	7 pF						
Turning Point (T ₀)**	35°C						
Temperature Coefficient (k)	-0.03	5 ppn	n/°C²	2			

Note: Frequency f at temperature T is related to frequency f_0 at turning point temperature T_0 by: $\frac{f-f_0}{f_0} = k(T-T_0)^2$

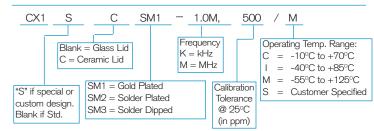
Function Mode	Extensional		
Aging, first year	5 ppm MAX		
Shock, survival	750 g peak, 0.3 ms, $1/_2$ sine		
Vibration, survival	10 g RMS, 20-1,000 Hz random		
Operating Temp. Range	-10°C to +70°C (Commercial) -40°C to +85°C (Industrial)		
	-55°C to +125°C (Military)		
Storage Temp. Range	-55°C to +125°C		
Max Process Temperature	260°C for 20 sec.		

*Tighter tolerances available.

** Other values available.

TERMINATIONS

Designation	<u>Termination</u>
SM1	Gold Plated
SM2	Solder Plated
SM3	Solder Dipped


PACKAGING OPTIONS

CX1SM	- Tray	Pack
-------	--------	------

- Tape and Reel

(Reference tape and reel data sheet 10109)

HOW TO ORDER CX1SM CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature surface mount crystal is ideal for small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 15 to 250 ppm above the crystal's series resonant frequency (f_S).

Drive Level

 R_{A} is used to limit the crystal's drive level by forming a voltage divider between R_{A} and $\mathsf{C}_{\mathsf{D}}.$ R_{A} also stabilizes the oscillator against changes in the amplifiers output resistance (R_{0}). R_{A} should be increased for higher voltage operation.

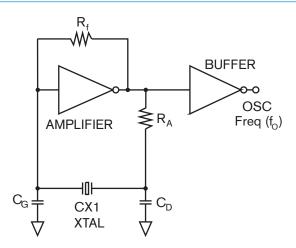
Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
(1)

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_L will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:


$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right] \quad (2)$$

Where fs =

 f_S = Series resonant frequency of the crystal C_1 = Motional Capacitance

 C_0 = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

STORE STORE