

SANYO Semiconductors

DATA SHEET

LC75857E LC75857W

CMOSIC — 1/3, 1/4 Duty LCD Display Drivers with Key Input Function

Overview

The LC75857E and LC75857W are 1/3 duty and 1/4 duty LCD display drivers that can directly drive up to 164 segments and can control up to four general-purpose output ports. These products also incorporate a key scan circuit that accepts input from up to 30 keys to reduce printed circuit board wiring.

Features

- Key input function for up to 30 keys (A key scan is performed only when a key is pressed.)
- 1/3 duty and 1/4 duty drive schemes can be controlled from serial data.
- 1/2 bias and 1/3 bias drive schemes can be controlled from serial data.
- Capable of driving up to 126 segments using 1/3 duty and up to 164 segments using 1/4 duty.
- Sleep mode and all segments off functions that are controlled from serial data.
- Switching between key scan output and segment output can be controlled from the serial data.
- The key scan operation enabled/disabled state can be controlled from the serial data.
- Switching between segment output port and general-purpose output port can be controlled from serial data.
- The common and segment output waveform frame frequency can be controlled from the serial data.
- Switching between RC oscillator mode and external clock mode can be controlled from the serial data.
- Serial data I/O supports CCB format communication with the system controller.
- Direct display of display data without the use of a decoder provides high generality.
- Independent V_{LCD} for the LCD driver block. (When the logic block supply voltage V_{DD} is in the range 3.6 to 6.0 V, V_{LCD} can be set to a voltage in the range $0.75 \times V_{DD}$

to 6.0 V, and when V_{DD} is in the range 2.7 to 3.6 V, V_{LCD} can be set to a voltage in the range 2.7 to 6.0 V.)

• Provision of an on-chip voltage-detection type reset circuit prevents incorrect displays.

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications Absolute Maximum Ratings at Ta=25°C, V_{SS} =0V

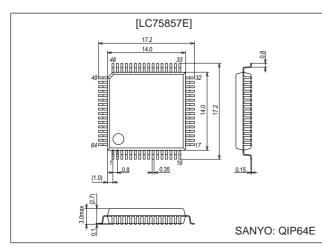
Parameter	Symbol	Conditions	Ratings	Unit	
NA	V _{DD} max	V _{DD}	-0.3 to +7.0	V	
Maximum supply voltage	V _{LCD} max	V _{LCD}	-0.3 to +7.0		
	V _{IN} 1	CE, CL, DI	-0.3 to +7.0	1	
Input voltage	V _{IN} 2	OSC,TEST	-0.3 to V _{DD} +0.3	V	
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2, KI1 to KI5	-0.3 to V _{LCD} +0.3	1	
	V _{OUT} 1	DO	-0.3 to +7.0		
Output voltage	V _{OUT} 2	OSC	-0.3 to V _{DD} +0.3	V	
	V _{OUT} 3	S1 to S42, COM1 to COM4, KS1 to KS6, P1 to P4	-0.3 to V _{LCD} +0.3	1	
	I _{OUT} 1	S1 to S42	300	μA	
Output comment	I _{OUT} 2	COM1 to COM4	3		
Output current	I _{OUT} 3	KS1 to KS6	1	mA	
	I _{OUT} 4	P1 to P4	5		
Allowable power dissipation	Pd max	Ta = 85°C	200	mW	
Operating temperature	Topr		-40 to +85	°C	
Storage temperature	Tstg		-55 to +125	°C	

Allowable Operating Ranges at Ta = -40 to $+85^{\circ}C$, $V_{SS}=0V$

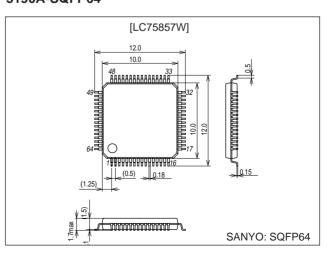
Parameter	Symbol	Conditions		Ratings			- Unit
Parameter	Symbol	Conditions		min	typ	max	Unit
	V _{DD}	V _{DD}		2.7		6.0	
Supply voltage	V	V_{LCD} : V_{DD} = 3.6 V to 6.0 V		0.75 V _{DD}		6.0	V
	V _{LCD}	V _{LCD} : V _{DD} = 2.7 V to 3.6 V		2.7		6.0	
Input voltage	V _{LCD} 1	V _{LCD} 1			2/3 V _{LCD}	V _{LCD}	V
Input voltage	V _{LCD} 2	V _{LCD} 2			1/3 V _{LCD}	V _{LCD}	v
	V _{IH} 1	CE, CL, DI		0.8 V _{DD}		6.0	
Input high level voltage	V _{IH} 2	KI1 to KI5		0.6 V _{LCD}		V _{LCD}	V
	V _{IH} 3	OSC: External clock mode		0.7 V _{DD}		V _{DD}	
	V _{IL} 1	CE, CL, DI		0		0.2 V _{DD}	
Input low level voltage	V _{IL} 2	KI1 to KI5		0		0.2 V _{LCD}	V
	V _{IL} 3	OSC: External clock mode		0		0.3 V _{DD}	
Recommended RC oscillator external resistor	R _{OSC}	OSC: RC oscillator mode			39		kΩ
Recommended RC oscillator external capacitor	C _{OSC}	OSC: RC oscillator mode			1000		pF
Guaranteed RC oscillator operating range	fosc	OSC: RC oscillator mode		19	38	76	kHz
External clock frequency	f _{CK}	OSC: External clock mode	:Figure 4	19	38	76	kHz
External clock duty	D _{CK}	OSC: External clock mode	:Figure 4	30	50	70	%
Data setup time	t _{ds}	CL, DI	:Figures 2,3	160			ns
Data hold time	t _{dh}	CL, DI	:Figures 2,3	160			ns
CE wait time	t _{cp}	CE, CL	:Figures 2,3	160			ns
CE setup time	t _{cs}	CE, CL	:Figures 2,3	160			ns
CE hold time	t _{ch}	CE, CL	:Figures 2,3	160			ns
High level clock pulse width	tø _H	CL	:Figures 2,3	160			ns
Low level clock pulse width	tøL	CL	:Figures 2,3	160			ns
Rise time	t _r	CE, CL, DI	:Figures 2,3		160		ns
Fall time	t _f	CE, CL, DI	:Figures 2,3		160		ns
DO output delay time	t _{dc}	DO R _{PU} =4.7 kΩ, C _L =10pF *1	:Figures 2,3			1.5	μs
DO rise time	t _{dr}	DO R _{PU} =4.7 kΩ, C _L =10pF *1	:Figures 2,3			1.5	μs

Note: *1. Since DO is an open-drain output, these values depend on the resistance of the pull-up resistor R_{PU} and the load capacitance C_L.

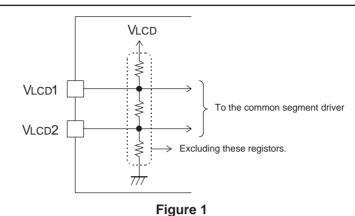
Electrical Characteristics for the Allowable Operating Ranges


Parameter	Symbol	Conditions		Ratings			
Falanielei	Symbol	Conditions	min typ		max	Unit	
Lhusteresia	V _{H1}	CE, CL, DI		0.1 V _{DD}		V	
Hysteresis	V _{H2}	KI1 to KI5		0.1 V _{LCD}			
Power-down detection voltage	V _{DET}		2.0	2.2	2.4	V	
Innut high loval ourrent	I _{IH} 1	CE, CL, DI: V _I = 6.0 V			5.0		
Input high level current	I _{IH} 2	OSC: V _I = V _{DD} External clock mode			5.0	μA	
	I _{IL} 1	$CE, CL, DI: V_{I} = 0 V$					
Input low level current	I _{IL} 2	OSC: V _I = 0 V External clock mode	-5.0			μA	
Input floating voltage	VIF	KI1 to KI5			0.05 V _{LCD}	V	
Pull-down resistance	P	KI1 to KI5: V _{LCD} = 5.0 V	50	100	250	kΩ	
Puil-down resistance	R _{PD}	KI1 to KI5: V _{LCD} = 3.0 V	100	200	500	K52	
Output off leakage current	I _{OFFH}	DO: VO = 6.0 V			6.0	μA	
	V 4	KS1 to KS6: $I_0 = -500 \ \mu A \ V_{LCD} = 3.6 \ to \ 6.0 \ V$	V _{LCD} – 1.0	V _{LCD} - 0.5	V _{LCD} – 0.2		
	V _{OH} 1	KS1 to KS6: $I_0 = -250 \ \mu A \ V_{LCD} = 2.7 \ to \ 3.6 \ V$	V _{LCD} – 0.8	V _{LCD} - 0.4	V _{LCD} – 0.1		
Output high level voltage	V _{OH} 2	P1 to P4: $I_0 = -1 \text{ mA}$	V _{LCD} – 0.9			V	
	V _{OH} 3	S1 to S42: I _O = -20 μA	V _{LCD} – 0.9				
	V _{OH} 4	COM1 to COM4: $I_0 = -100 \mu A$	V _{LCD} – 0.9			1	
	V 1	KS1 to KS6: $I_0 = 25 \ \mu A \ V_{LCD} = 3.6 \ to \ 6.0 \ V$	0.2	0.5	1.5		
	V _{OL} 1	KS1 to KS6: $I_0 = 12.5 \ \mu A \ V_{LCD} = 2.7 \ to \ 3.6 \ V$	0.1	0.4	1.2		
Output low lovel voltage	V _{OL} 2	V _{OL} 2 P1 to P4: I _O = 1 mA			0.9	V	
Output low level voltage	V _{OL} 3	S1 to S42: Ι _O = 20 μA			0.9	v	
	V _{OL} 4	COM1 to COM4: $I_0 = 100 \ \mu A$			0.9		
	V _{OL} 5	DO: I _O = 1 mA		0.1	0.5		
	V _{MID} 1	COM1 to COM4: 1/2 bias, $I_0 = \pm 100 \ \mu A$	1/2 V _{LCD} - 0.9		1/2 V _{LCD} + 0.9		
	V _{MID} 2	S1 to S42: 1/3 bias,I _O = ±20 μA	2/3 V _{LCD} - 0.9		2/3 V _{LCD} + 0.9		
Output middle level voltage *2	V _{MID} 3	S1 to S42: 1/3 bias, $I_0 = \pm 20 \ \mu A$	1/3 V _{LCD} - 0.9		1/3 V _{LCD} + 0.9	V	
	V _{MID} 4	COM1 to COM4: $1/3 \text{ bias}, I_0 = \pm 100 \mu\text{A}$	2/3 V _{LCD} - 0.9		2/3 V _{LCD} + 0.9		
	V _{MID} 5	COM1 to COM4: $1/3 \text{ bias}, I_0 = \pm 100 \mu\text{A}$	1/3 V _{LCD} - 0.9		1/3 V _{LCD} + 0.9	1	
Oscillator frequency	fosc	OSC: $R_{OSC} = 39 \text{ k}\Omega$, $C_{OSC} = 1000 \text{ pF}$	30.4	38	45.6	kHz	
	I _{DD} 1	V _{DD} :Sleep mode			100		
	I _{DD} 2	V_{DD} : V_{DD} = 6.0 V, output open,fosc = 38 kHz		300	600		
	I _{LCD} 1	V _{LCD} : Sleep mode			5		
Current drain	I _{LCD} 2	V_{LCD} : V_{LCD} = 6.0 V, output open, 1/2 bias, fosc = 38 kHz		100	200	μA	
	I _{LCD} 3	V_{LCD} : V_{LCD} = 6.0 V, output open, 1/3 bias, fosc = 38 kHz		60	120		

Nete: *2. Excluding the bias voltage generation divider resistor built into $V_{LCD}1$ and $V_{LCD}2$. (See Figure 1.)


Package Dimensions

unit: mm


3159A-QIP64E

unit: mm **3190A-SQFP64**

LC75857E, LC75857W

1. Serial data I/O timing when CL is stopped at the low level

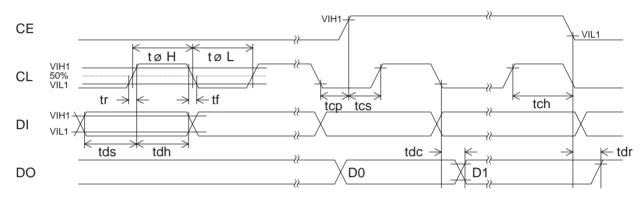


Figure 2

2. Serial data I/O timing when CL is stopped at the high level

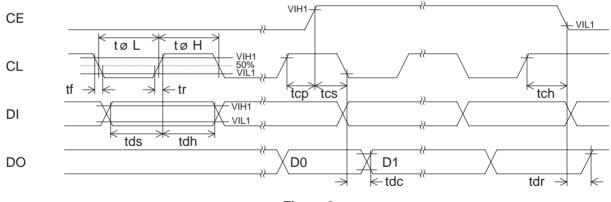
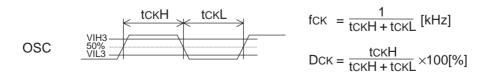
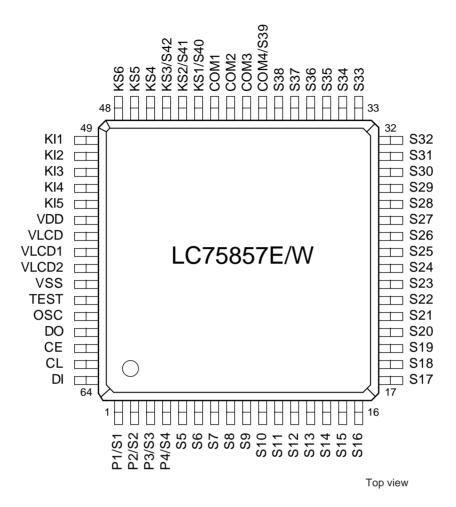
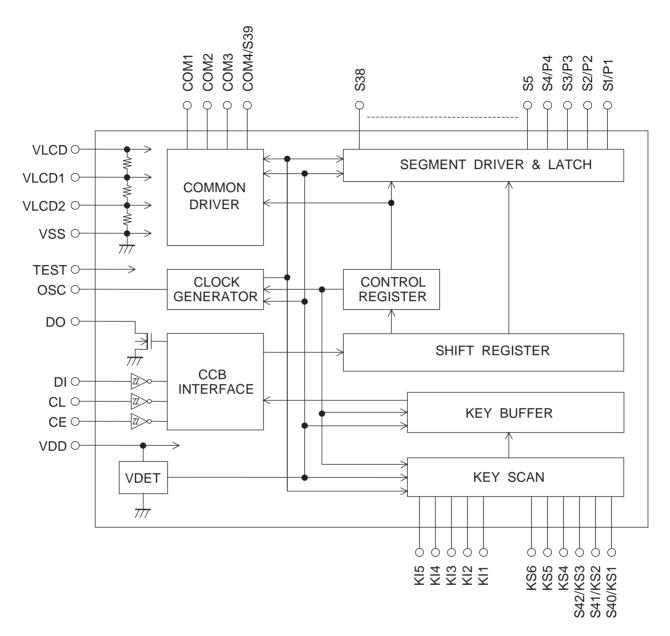
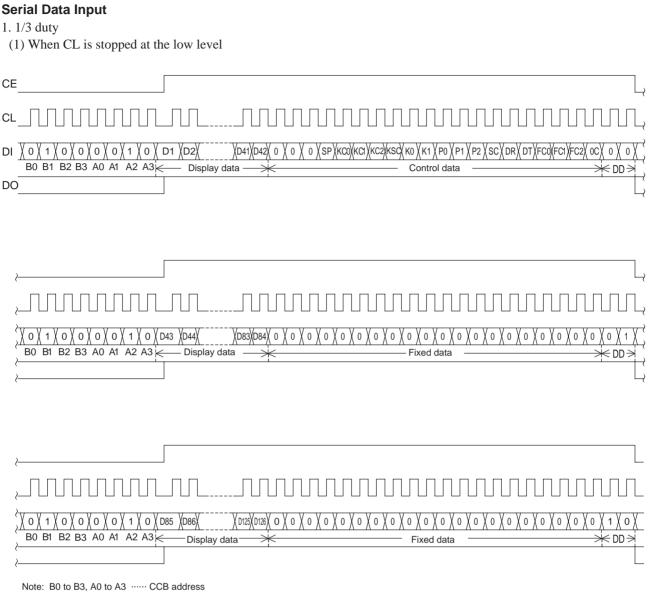




Figure 3


3. OSC pin clock timing in external clock mode

Pin Assignments



Block Diagram

Pin Functions


Pin	Pin No.	Function	Active	I/O	Handling when unused
S1/P1 to S4/P4 S5 to S38	1 to 4 5 to 38	Segment outputs for displaying the display data transferred by serial data input. The S1/P1 to S4/P4 pins can be used as general-purpose output ports under serial data control.	_	0	OPEN
COM1 to COM3 COM4/S39	42 to 40 39	Common driver outputs The frame frequency is fo [Hz] The COM4/S39 pin can be used as a segment output in 1/3 duty.		0	OPEN
KS1/S40 KS2/S41 KS3/S42 KS4 to KS6	43 44 45 46 to 48	Key scan outputs Although normal key scan timing lines require diodes to be inserted in the timing lines to prevent shorts, since these outputs are unbalanced CMOS transistor outputs, these outputs will not be damaged by shorting when these outputs are used to form a key matrix. The KS1/S40 to KS3/S42 pins can be used as segment outputs when so specified by the control data.		0	OPEN
KI1 to KI5	49 to 53	Key scan inputs These pins have built-in pull-down resistors.		I	GND
OSC	60	The OSC pin can be used to form an oscillator circuit with an external resistor and an external capacitor. If external clock mode is selected with the control data, this pin is used to input an external clock signal.		I/O	V _{DD}
CE	62	Serial data interface connections to the controller. Note that DO, being an open-drain	н	I	
CL	63	output, requires a pull-up resistor. CE :Chip enable		I	GND
DI	64	CL :Synchronization clock		I	
DO	61	DI :Transfer data DO :Output data	_	0	OPEN
TEST	59	This pin must be connected to ground.	_	1	_
V _{LCD} 1	56	Used for applying the LCD drive $2/3$ bias voltage externally. Must be connected to $V_{LCD}2$ when a 1/2 bias drive scheme is used.	_	I	OPEN
V _{LCD} 2	57	Used for applying the LCD drive 1/3 bias voltage externally. Must be connected to V_{LCD} 1 when a 1/2 bias drive scheme is used.		I	OPEN
V _{DD}	54	Logic block power supply connection. Provide a voltage of between 2.7 and 6.0V.	_	_	_
V _{LCD}	55	LCD driver block power supply connection. A voltage in the range $0.75 \times VDD$ to 6.0 V must be provided when VDD is in the range 3.6 to 6.0 V, and a voltage in the range 2.7 V to 6.0 V must be provided when VDD is in the range 2.7 to 3.6 V.	_	_	_
V _{SS}	58	Power supply connection. Connect to ground.	_	_	_

DD..... Direction data

LC75857E, LC75857W

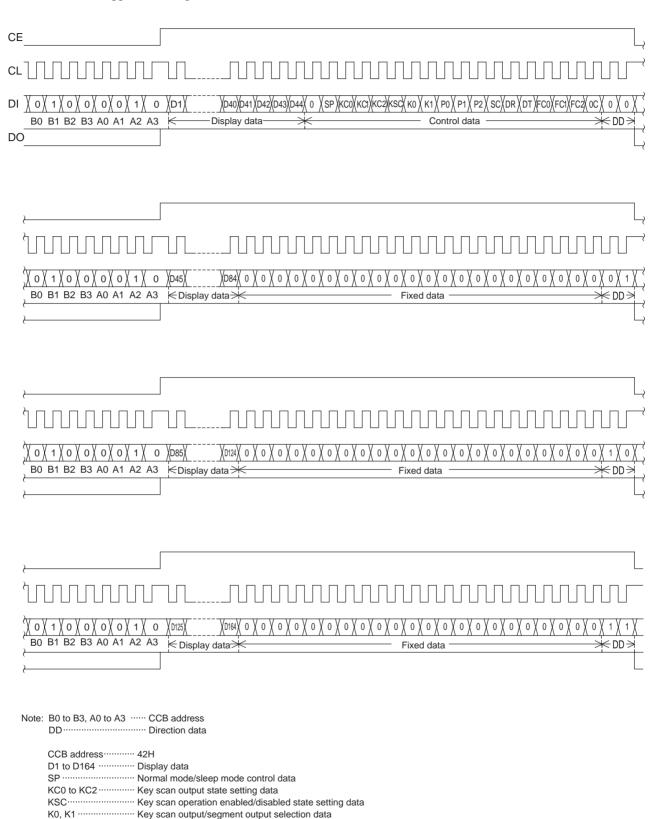
(2) When CL is stopped at the high level

P0 to P2 Segment output port/general-purpose output port selection data

SC ······ Segment on/off control data

- DR 1/2 bias or 1/3 bias drive selection data
- DT 1/3 duty or 1/4 duty drive selection data
- FC0 to FC2 Common and segment output waveform frame frequency setting data
- OC------ RC oscillator mode/external clock mode switching selection data

2. 1/4duty


(1) When CL is stopped at the low level

DD...... Direction data

LC75857E, LC75857W

(2) When CL is stopped at the high level

P0 to P2 Segment output port/general-purpose output port selection data

FC0 to FC2 Common and segment output waveform frame frequency setting data RC oscillator mode/external clock mode switching selection data

DR 1/2 bias or 1/3 bias drive selection data DT 1/3 duty or 1/4 duty drive selection data

SC

OC.

Control Data Functions

1. SP: Normal mode/sleep mode control data

This control data bit switches the IC between normal mode and sleep mode.

SP	Mode	OSC	OSC pin state		Key scan	General-purpose
01	Mode	RC oscillator mode	External clock mode	pin output states	operating state	output port states
0	Normal	Oscillator operating	External clock signal accepted	LCD drive waveforms		
				are output		
1	sleep	Oscillator stopped	Acceptance of the external		The state can be set	The state can be get
		(The oscillator operates	clock signal is disabled.		The state can be set	The state can be set
		during key scan operations.)	(The external clock signal is accepted	L (VSS)		
			during key scan operations)			

Note: See the descriptions of the KC- to KC2, KSC, K0, K1, and P0 to P2 bits in the control data for details on setting the key scan operating state and setting the general-purpose output port state.

2. KC0 to KC2 : Key scan output state setting data

These control data bits set the states of the key scan output pins KS1 to KS6.

	Control dat	a		Output pi	n states du	ring key sc	an standby	
KC0	KC1	KC2	KS1	KS2	KS3	KS4	KS5	KS6
0	0	0	н	н	Н	Н	Н	Н
0	0	1	L	н	Н	Н	Н	Н
0	1	0	L	L	Н	Н	Н	Н
0	1	1	L	L	L	Н	Н	Н
1	0	0	L	L	L	L	Н	Н
1	0	1	L	L	L	L	L	Н
1	1	0	L	L	L	L	L	L

Note: This assumes that the KS1/S40 to KS3/S42 output pins are selected for key scan output. Also note that key scan output signals are not output from output pins that are set to the low level.

3. KSC : Key scan operation enabled/disabled state setting data This control data bit enables or disables key scan operation.

KSC	Key scan operating state
0	Key scan operation enabled (A key scan operation is performed if any key on the lines corresponding to KS1 to KS6 pin which is set high is pressed .)
1	Key scan operation disabled (No key scan operation is performed, even if any of the keys in the key matrix are pressed. If this state is set up, the key data is forcibly reset to 0 and the key data read request is also cleared. (DO is set high.))

4. K0, K1 : Key scan output /segment output selection data

These control data bits switch the functions of the KS1/S40 to KS3/S42 output pins between key scan output and segment output.

Contr	ol data	Output pin state			Maximum number of
K0	K1	KS1/S40	KS2/S41	KS3/S42	input keys
0	0	KS1	KS2	KS3	30
0	1	S40	KS2	KS3	25
1	0	S40	S41	KS3	20
1	1	S40	S41	S42	15

Note: KSn(n = 1 to 3) : Key scan output

5. P0 to P2 : Segment output port/general-purpose output port selection data These control data bits switch the functions of the S1/P1 to S4/P4 output pins between the segment output port and the general-purpose output port.

(Control data			Output	pin state	
P0	P1	P2	S1/P1	S2/P2	S3/P3	S4/P4
0	0	0	S1	S2	S3	S4
0	0	1	P1	S2	S3	S4
0	1	0	P1	P2	S3	S4
0	1	1	P1	P2	P3	S4
1	0	0	P1	P2	P3	P4

Note: Sn(n=1 to 4): Segment output port

Pn(n=1 to 4): General-purpose output port

The table below lists the correspondence between the display data and the output pins when these pins are selected to be general-purpose output ports.

Output pin	Corresponding display data			
	1/3 duty	1/4 duty		
S1/P1	D1	D1		
S2/P2	D4	D5		
S3/P3	D7	D9		
S4/P4	D10	D13		

For example, if the circuit is operated in 1/4 duty and the S4/P4 output pin is selected to be a general-purpose output port, the S4/P4 output pin will output a high level (V_{LCD}) when the display data D13 is 1, and will output a low level (Vss) when D13 is 0.

6. SC : Segment on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	on
1	off

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

7. DR : 1/2 bias or 1/3 bias drive selection data

This control data bit switches between LCD 1/2 bias or 1/3 bias drive.

DR	Bias drive scheme
0	1/3 bias drive
1	1/2 bias drive

 DT : 1/3 duty or 1/4 duty drive selection data This control data bit switches between LCD 1/3 duty or 1/4 duty drive.

DT	Duty drive scheme	Output pin state (COM4/S39)
0	1/4 duty drive	COM4
1	1/3 duty drive	S39

Note: COM4: Common output

S39 : Segment output

9. FC0 to FC2 : Common and segment output waveform frame frequency setting data These control data bits set the common and segment output waveform frequency.

Control data		a	
FC0	FC1	FC2	Frame frequency, fo (Hz)
0	0	0	f _{OSC} /768, f _{CK} /768
0	0	1	f _{OSC} /576, f _{CK} /576
0	1	0	f _{OSC} /384, f _{CK} /384
0	1	1	f _{OSC} /288, f _{CK} /288
1	0	0	f _{OSC} /192, f _{CK} /192

10. OC : RC oscillator mode/external clock mode switching selection data

This control data bit selects the OSC pin function (RC oscillator mode or external clock mode).

OC	OSC pin function
0	RC oscillator mode
1	External clock mode

Note: If RC oscillator mode is selected, connect an external resistor Rosc and an external capacitor Cosc to the OSC pin.

Display Data and Output Pin Correspondence

1. 1/3 duty

Output pin	COM1	COM2	COM3	Output pin	COM1	COM2	COM3
S1/P1	D1	D2	D3	S22	D64	D65	D66
S2/P2	D4	D5	D6	S23	D67	D68	D69
S3/P3	D7	D8	D9	S24	D70	D71	D72
S4/P4	D10	D11	D12	S25	D73	D74	D75
S5	D13	D14	D15	S26	D76	D77	D78
S6	D16	D17	D18	S27	D79	D80	D81
S7	D19	D20	D21	S28	D82	D83	D84
S8	D22	D23	D24	S29	D85	D86	D87
S9	D25	D26	D27	S30	D88	D89	D90
S10	D28	D29	D30	S31	D91	D92	D93
S11	D31	D32	D33	\$32	D94	D95	D96
S12	D34	D35	D36	S33	D97	D98	D99
S13	D37	D38	D39	S34	D100	D101	D102
S14	D40	D41	D42	S35	D103	D104	D105
S15	D43	D44	D45	S36	D106	D107	D108
S16	D46	D47	D48	S37	D109	D110	D111
S17	D49	D50	D51	S38	D112	D113	D114
S18	D52	D53	D54	COM4/S39	D115	D116	D117
S19	D55	D56	D57	KS1/S40	D118	D119	D120
S20	D58	D59	D60	KS2/S41	D121	D122	D123
S21	D61	D62	D63	KS3/S42	D124	D125	D126

Note: This is for the case where the output pins S1/P1 to S4/P4, COM4/S74, KS1/S40 to KS3/S42 are selected for use as segment outputs.

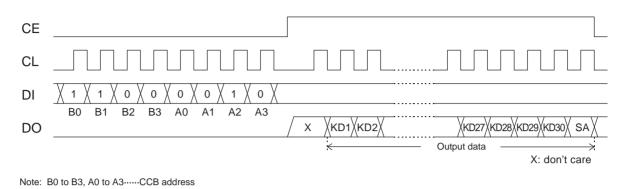
For example, the table below lists the segment output states for the S11 output pin.

Display data		a	Output his state (C(4))
D31	D32	D33	Output pin state (S11)
0	0	0	The LCD segments for COM1, COM2 and COM3 are off.
0	0	1	The LCD segment for COM3 is on.
0	1	0	The LCD segment for COM2 is on.
0	1	1	The LCD segments for COM2 and COM3 are on.
1	0	0	The LCD segment for COM1 is on.
1	0	1	The LCD segments for COM1 and COM3 are on.
1	1	0	The LCD segments for COM1 and COM2 are on.
1	1	1	The LCD segments for COM1, COM2 and COM3 are on.

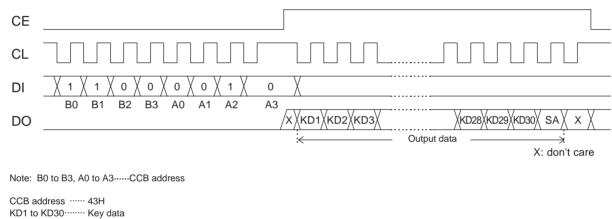
2. 1/4 duty

Output pin	COM1	COM2	COM3	COM4
S1/P1	D1	D2	D3	D4
S2/P2	D5	D6	D7	D8
S3/P3	D9	D10	D11	D12
S4/P4	D13	D14	D15	D16
S5	D17	D18	D19	D20
S6	D21	D22	D23	D24
S7	D25	D26	D27	D28
S8	D29	D30	D31	D32
S9	D33	D34	D35	D36
S10	D37	D38	D39	D40
S11	D41	D42	D43	D44
S12	D45	D46	D47	D48
S13	D49	D50	D51	D52
S14	D53	D54	D55	D56
S15	D57	D58	D59	D60
S16	D61	D62	D63	D64
S17	D65	D66	D67	D68
S18	D69	D70	D71	D72
S19	D73	D74	D75	D76
S20	D77	D78	D79	D80
S21	D81	D82	D83	D84

Output pin	COM1	COM2	COM3	COM4
S22	D85	D86	D87	D88
S23	D89	D90	D91	D92
S24	D93	D94	D95	D96
S25	D97	D98	D99	D100
S26	D101	D102	D103	D104
S27	D105	D106	D107	D108
S28	D109	D110	D111	D112
S29	D113	D114	D115	D116
S30	D117	D118	D119	D120
S31	D121	D122	D123	D124
\$32	D125	D126	D127	D128
S33	D129	D130	D131	D132
S34	D133	D134	D135	D136
S35	D137	D138	D139	D140
S36	D141	D142	D143	D144
S37	D145	D146	D147	D148
S38	D149	D150	D151	D152
KS1/S40	D153	D154	D155	D156
KS2/S41	D157	D158	D159	D160
KS3/S42	D161	D162	D163	D164


Note: This is for the case where the output pins S1/P1 to S4/P4, KS1/S40 to KS3/S42 are selected for use as segment outputs.

For example, the table below lists the segment output states for the S11 output pin.


Display data				
D41	D42	D43	D44	Output pin state (S11)
0	0	0	0	The LCD segments for COM1,COM2,COM3 and COM4 are off.
0	0	0	1	The LCD segment for COM4 is on.
0	0	1	0	The LCD segment for COM3 is on.
0	0	1	1	The LCD segments for COM3 and COM4 are on.
0	1	0	0	The LCD segment for COM2 is on.
0	1	0	1	The LCD segments for COM2 and COM4 are on.
0	1	1	0	The LCD segments for COM2 and COM3 are on.
0	1	1	1	The LCD segments for COM2,COM3 and COM4 are on.
1	0	0	0	The LCD segment for COM1 is on.
1	0	0	1	The LCD segments for COM1 and COM4 are on.
1	0	1	0	The LCD segments for COM1 and COM3 are on.
1	0	1	1	The LCD segments for COM1,COM3 and COM4 are on.
1	1	0	0	The LCD segments for COM1 and COM2 are on.
1	1	0	1	The LCD segments for COM1,COM2 and COM4 are on.
1	1	1	0	The LCD segments for COM1,COM2 and COM3 are on.
1	1	1	1	The LCD segments for COM1,COM2,COM3 and COM4 are on.

Serial Data Output

1. When CL is stopped at the low level

2. When CL is stopped at the high level

SA...... Sleep acknowledge data

Note: If a key data read operation is executed when DO is high, the read key data (KD1 to KD30) and sleep acknowledge data(SA) will be invalid.

Output Data

1. KD1 to KD30 : Key data

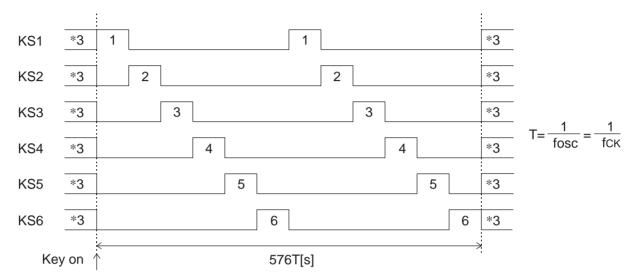
When a key matrix of up to 30 keys is formed from the KS1 to KS6 output pins and the KI1 to KI5 input pins and one of those keys is pressed, the key output data corresponding to that key will be set to 1. The table shows the relationship between those pins and the key data bits.

	KI1	KI2	KI3	KI4	KI5
KS1/S40	KD1	KD2	KD3	KD4	KD5
KS2/S41	KD6	KD7	KD8	KD9	KD10
KS3/S42	KD11	KD12	KD13	KD14	KD15
KS4	KD16	KD17	KD18	KD19	KD20
KS5	KD21	KD22	KD23	KD24	KD25
KS6	KD26	KD27	KD28	KD29	KD30

When the KS1/S40 and KS2/S41 output pins are selected to be segment outputs by control data bits K0 and K1 and a key matrix of up to 20 keys is formed using the KS3/S42,KS4 to KS6 output pins and the KI1 to KI5 input pins, the KD1 to KD10 key data bits will be set to 0.

2. SA : Sleep acknowledge data

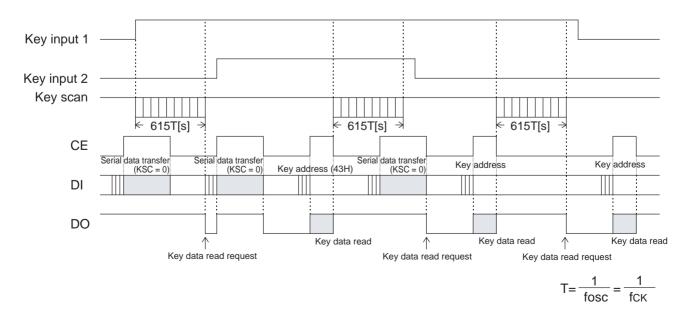
This output data bit is set to the state when the key was pressed. Also, while DO will be low in this case, if serial data is input and the mode is set (to normal or sleep mode) during this period, that mode will be set. SA will be 1 in sleep mode and 0 in normal mode.


Sleep Mode Functions

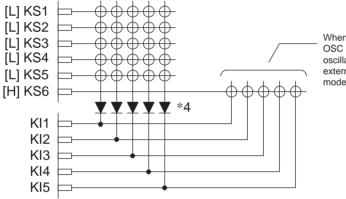
Sleep mode is set up by setting SP in the control data to 1. When sleep mode is set up, both the segment and the common outputs will go to the low level. In RC oscillator mode (OC = 0), the oscillator on the OSC pin will stop (although it will operate during key scan operations), and in external clock mode (OC = 1), the external clock signal reception on the OSC pin will stop (although the clock signal will be received during key scan operations). Thus this mode reduces power consumption. However, the S1/P1 to S4/P4 output pins can be used as general-purpose output ports under control of the P0 to P2 bits in the control data even in sleep mode. Sleep mode is cancelled by setting SP in the control data to 0.

Key Scan Operation Functions

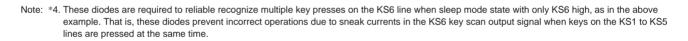
1. Key scan timing

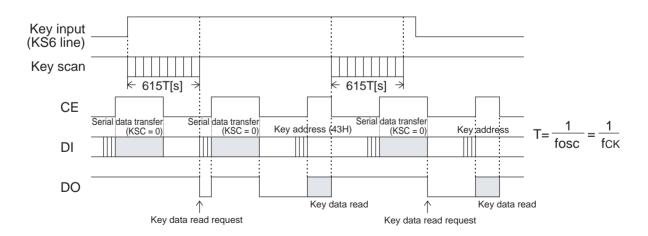

The key scan period is 288T(s). To reliably determine the on/off state of the keys, the LC75857E/W scans the keys twice and determines that a key has been pressed when the key data agrees. It outputs a key data read request (a low level on DO) 615T(s) after starting a key scan. If the key data dose not agree and a key was pressed at that point, it scans the keys again. Thus the LC75857E/W cannot detect a key press shorter than 615T(s).

Note: *3. These are set to the high or low level by the KC0 to KC2 bits in the control data. Key scan output signals are not output from pins that are set to the low level.

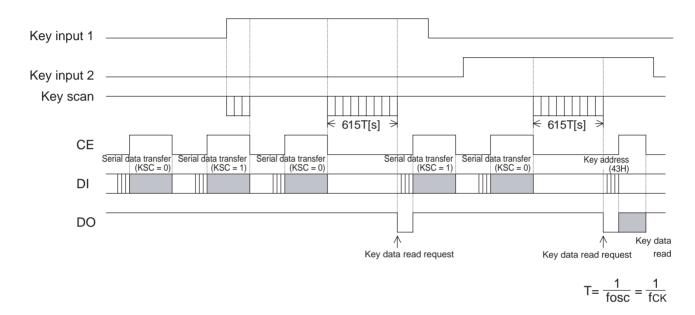

2. Normal mode, when key scan operations are enabled

- The KS1 to KS6 pins are set to the high or low level by the KC0 to KC2 bits in the control data. (See the description of the control data.)
- When any key on the lines corresponding to KS1 to KS6 pin which is set high is pressed, a key scan is performed. Keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.
- If a key is pressed for longer than 615 T (s) (Where $T = \frac{1}{fosc} = \frac{1}{fCK}$) the LC75857E/W outputs a key data read request (a low level on DO) to the controller. The controller acknowledges this request and reads the key data. However, if CE is high during a serial data transfer, DO will be set high.
- After the controller reads the key data, the key data read request is cleared (DO is set high) and the LC75857E/W performes another key scan. Also note that DO, being an open-drain output, requires a pull-up resistor (between 1 to 10 kΩ).

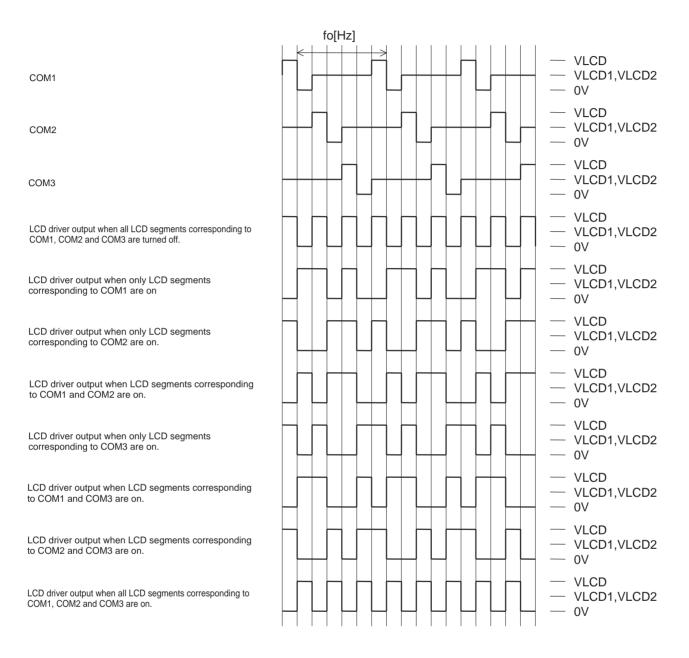



- 3. Sleep mode, when key scan operations are enabled
 - The KS1 to KS6 pins are set to the high or low level by the KC0 to KC2 bits in the control data. (See the description of the control data.)
 - When any key on the lines corresponding to KS1 to KS6 pin which is set high is pressed, either the OSC pin oscillator starts (if the IC is in RC oscillator mode) or the IC starts accepting the external clock signal (if the IC is in external clock mode), a key scan is performed. Keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.
 - If a key is pressed for longer than 615T(s)(Where $T = \frac{1}{fosc} = \frac{1}{fCK}$) the LC75857E/W outputs a key data read request (a low level on DO) to the controller. The controller acknowledges this request and reads the key data. However, if CE is high during a serial data transfer, DO will be set high.
 - After the controller reads the key data, the key data read request is cleared (DO is set high) and the LC75857E/W performs another key scan. However, this dose not clear sleep mode. Also note that DO, being an open-drain output, requires a pull-up resistor (between 1 and 10 kΩ).
 - Sleep mode key scan example

Example: KC0 = 1, KC1 = 0, KC2 = 1, (sleep with only KS6 high)

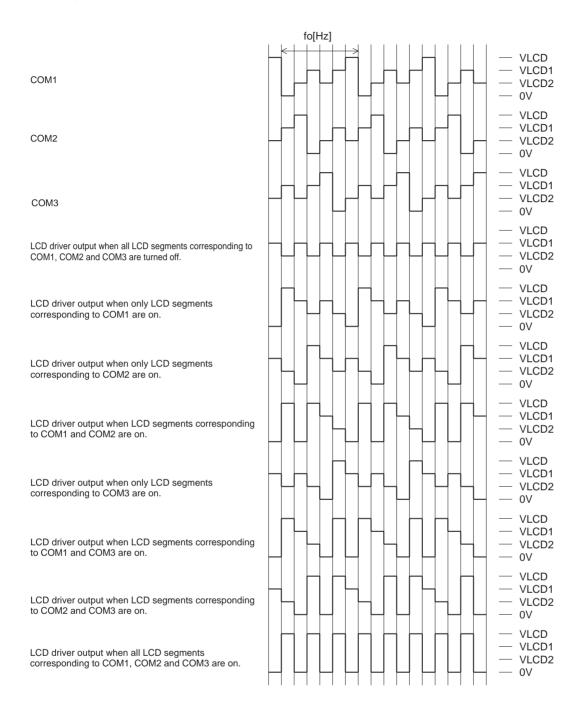


When any one of these keys is pressed, either the OSC pin oscillator starts (if the IC is in RC oscillator mode) or the IC starts accepting the external clock signal (if the IC is in external clock mode) and a key scan operation is performed.


- 4. Normal/sleep mode, when key scan operations are disabled
 - The KS1 to KS6 pins are set to the high or low level by the KC0 to KC2 bits in the control data.
 - No key scan operation is performed, whichever key is pressed.
 - If the key scan disabled state (KSC = 1 in the control data) is set during a key scan, the key scan is stopped.
 - If the key scan disabled state (KSC = 1 in the control data) is set when a key data read request (a low level on DO) is output to the controller, all the key data is set to 0 and the key data read request is cleared (DO is set high). Note that DO, being an open-drain output, requires a pull-up resister (between 1 to 10 k Ω).
 - The key scan disabled state is cleared by setting KSC in the control data to 0.

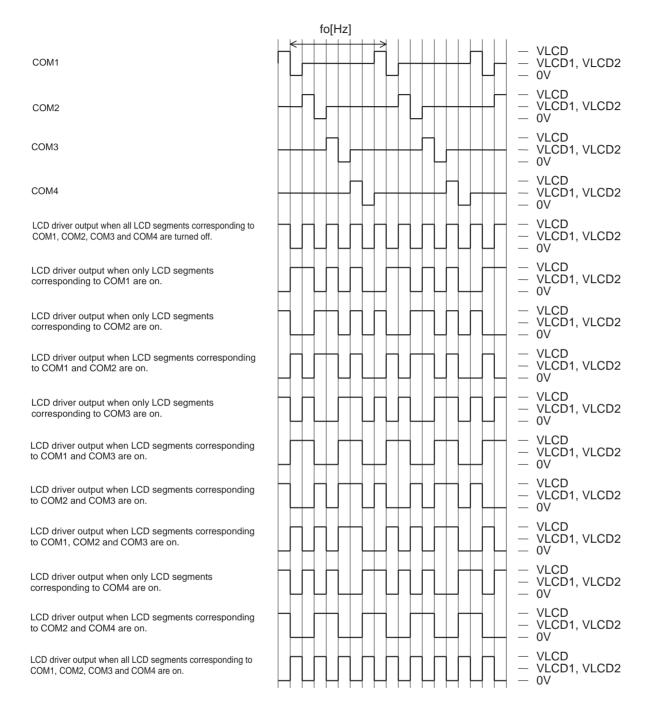
Multiple Key Presses

Although the LC75857E/W is capable of key scanning without inserting diodes for dual key presses, triple key presses on the KI1 to KI5 input pin lines, or multiple key presses on the KS1 to KS6 output pin lines, multiple presses other than these cases may result in keys that were not pressed recognized as having been pressed. Therefore, a diode must be inserted in series with each key. Applications that do not recognize multiple key presses of three or more keys should check the key data for three or more 1 bits and ignore such data.


1/3 Duty, 1/2 Bias Drive Technique

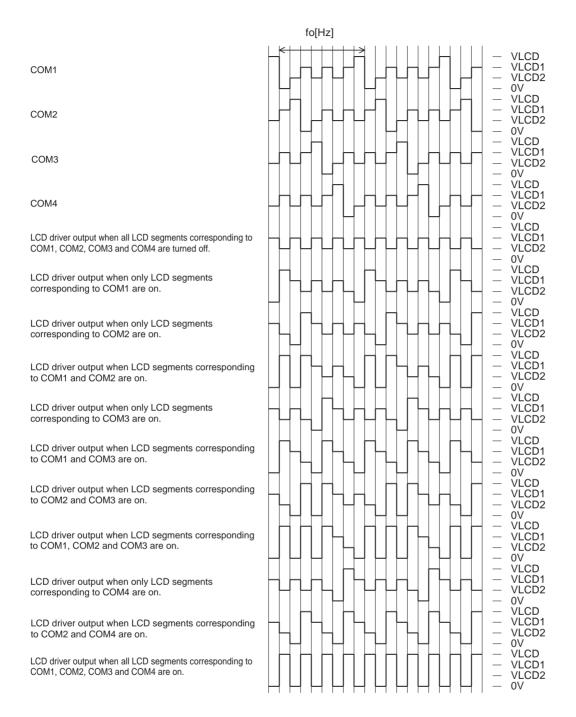
1/3 Duty, 1/2 Bias Waveforms

Note: When $FC0 = 0$, $FC1 = 0$, and $FC2 = 0$ in the control data	768 768
When $FC0 = 0$, $FC1 = 0$, and $FC2 = 1$ in the control data	$f0 = \frac{fosc}{576} = \frac{fCK}{576}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{384} = \frac{fCK}{384}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 1$ in the control data	$f0 = \frac{fosc}{288} = \frac{fCK}{288}$
When $FC0 = 1$, $FC1 = 0$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{192} = \frac{fCK}{192}$


1/3 Duty, 1/3 Bias Drive Technique

1/3 Duty, 1/3 Bias Waveforms

Note: When $FC0 = 0$, $FC1 = 0$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{768} = \frac{fCK}{768}$
When $FC0 = 0$, $FC1 = 0$, and $FC2 = 1$ in the control data	$f0 = \frac{fosc}{576} = \frac{fCK}{576}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{384} = \frac{fCK}{384}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 1$ in the control data	$f0 = \frac{fosc}{288} = \frac{fCK}{288}$
When $FC0 = 1$, $FC1 = 0$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{192} = \frac{fCK}{192}$


1/4 Duty, 1/2 Bias Drive Technique

1/4 Duty, 1/2 Bias Waveforms

Note: When $FC0 = 0$, $FC1 = 0$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{768} = \frac{fCK}{768}$
When $FC0 = 0$, $FC1 = 0$, and $FC2 = 1$ in the control data	$f0 = \frac{fosc}{576} = \frac{fCK}{576}$
When FC0 = 0, FC1 = 1, and FC2 = 0 in the control data	$f0 = \frac{fosc}{384} = \frac{fCK}{384}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 1$ in the control data	$f0 = \frac{f_{OSC}}{288} = \frac{f_{CK}}{288}$
When $FC0 = 1$, $FC1 = 0$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{192} = \frac{fCK}{192}$

1/4 Duty, 1/3 Bias Drive Technique

1/4 Duty, 1/3 Bias Waveforms

Note: When $FC0 = 0$, $FC1 = 0$, and $FC2 = 0$ in the control data	/68 /68
When FC0 = 0, FC1 = 0, and FC2 = 1 in the control data	$f0 = \frac{fosc}{576} = \frac{fCK}{576}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{384} = \frac{fCK}{384}$
When $FC0 = 0$, $FC1 = 1$, and $FC2 = 1$ in the control data	$f0 = \frac{fosc}{288} = \frac{fCK}{288}$
When $FC0 = 1$, $FC1 = 0$, and $FC2 = 0$ in the control data	$f0 = \frac{fosc}{192} = \frac{fCK}{192}$

Voltage Detection Type Reset Circuit (VDET)

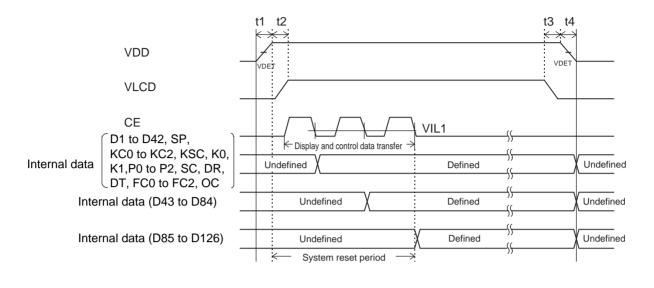
This circuit generates an output signal and resets the system when logic block power is first applied and when the voltage drops, i.e., when the logic block power supply voltage is less than or equal to the power down detection voltage VDET, which is 2.2V, typical. To assure that this function operates reliably, a capacitor must be added to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when the logic block power is first applied and the logic block power supply voltage V_{DD} rise time when the logic block power is first applied and the logic block power supply voltage V_{DD} fall time when the voltage drops are both at least 1 ms. (See Figure 5 and Figure 6.)

Power Supply Sequence

The following sequences must be observed when power is turned on and off. (See Figure 5 and Figure 6.)

- Power on :Logic block power supply(V_{DD}) on \rightarrow LCD driver block power supply(V_{LCD}) on
- Power off:LCD driver block power supply(V_{LCD}) off \rightarrow Logic block power supply(V_{DD}) off

However, if the logic and LCD driver block use a shared power supply, then the power supplies can be turned on and off at the same time.

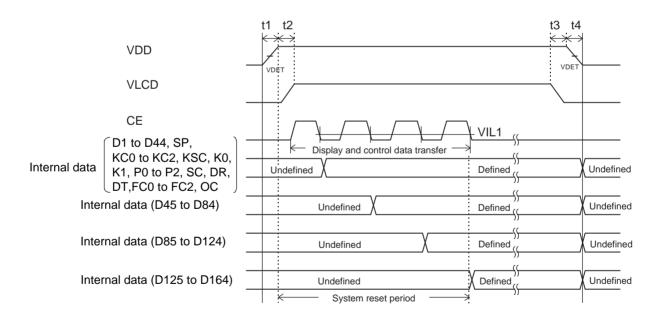

System Reset

The LC75857E/W supports the reset methods described below. When a system reset is applied, display is turned off, key scanning is stopped, and all the key data is reset to low. When the reset is cleared, display is turned on and key scanning become possible.

1. Reset methods

If at least 1 ms is assured as the logic block supply voltage V_{DD} rise time when logic block power is applied, a system reset will be applied by the VDET output signal when the logic block supply voltage is brought up. If at least 1 ms is assured as the logic block supply voltage V_{DD} fall time when logic block power drops, a system reset will be applied in the same manner by the VDET output signal when the supply voltage is lowered. Note that the reset is cleared at the point when all the serial data (1/3 duty: the display data D1 to D126 and the control data, 1/4 duty: the display data D1 to D164 and the control data) has been transferred, i.e., on the fall of the CE signal on the transfer of the last direction data, after all the direction data has been transferred. (See Figure 5 and Figure 6.)

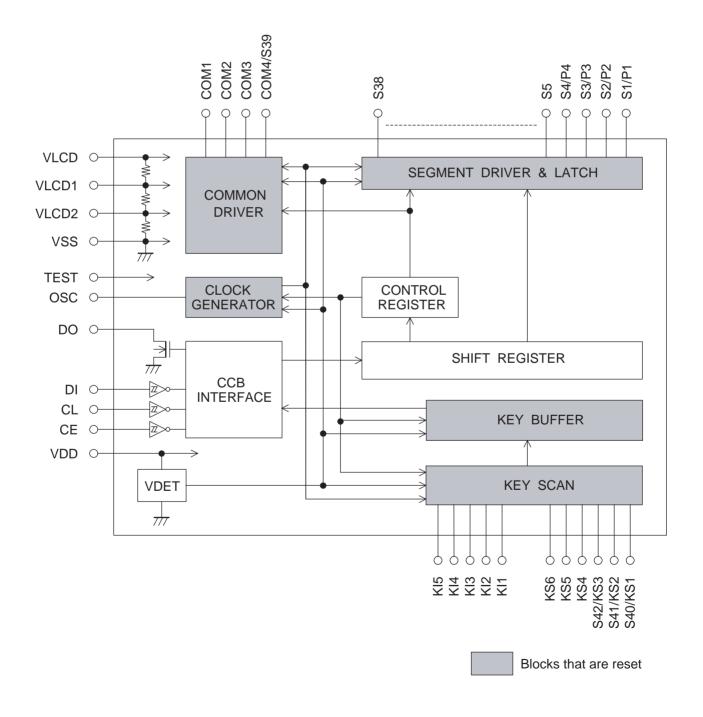
• 1/3 duty



Note: t1 \geq 1 [ms] (Logic block power supply voltage V_{DD} rise time) t2 \geq 0 t3 \geq 0

 $t4 \geq 1 \text{ [ms]}$ (Logic block power supply voltage V_{DD} fall time)

• 1/4 duty



Note: t1 \geq 1 [ms] (Logic block power supply voltage V_{DD} rise time) t2 \geq 0 t3 \geq 0

 $t4 \ge 1$ [ms] (Logic block power supply voltage V_{DD} fall time)

Figure 6

- 2. LC75857E/W internal block states during the reset period
 - CLOCK GENERATOR A reset is applied and either the OSC pin oscillator is stopped or external clock input is stopped.
 - COMMON DRIVER, SEGMENT DRIVER & LATCH Reset is applied and the display is turned off. However, display data can be input to the latch circuit in this state.
 - KEY SCAN Reset is applied, the circuit is set to the initial state, and at the same time the key scan operation is disabled.
 - KEY BUFFER Reset is applied and all the key data is set to low.
 - CCB INTERFACE, CONTROL REGISTER, SHIFT REGISTER Since serial data transfer is possible, these circuits are not reset.

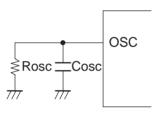
3. Pin states during the reset period

pin	State during reset
S1/P1 to S4/P4	L *5
S5 to S38	L
COM1 to COM3	L
COM4/S39	L *6
KS1/S40 to KS3/S42	L *5
KS4 to KS6	L *7
OSC	Z *8
DO	H *9

Notes:*5. These output pins are forcibly set to the segment output function and held low.

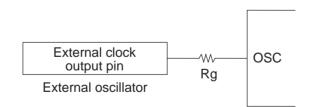
*6. When power is first applied, this output pin is forcibly set to the common output function and held low. However, when the DT control data bit is transferred, either the common output or the segment output function is selected.

*7. This output pin is forcibly held fixed at the low level.

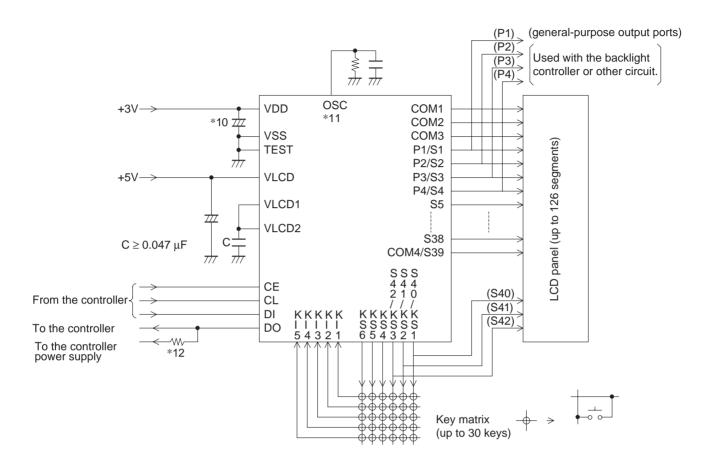

*8. This I/O pin is forcibly set to the high-impedance state.

*9. Since this output pin is an open-drain output, a pull-up resistor of between 1 and 10 kΩ is required. This pin remains high during the reset period even if a key data read operation is performed.

Notes on the OSC Pin Peripheral Circuit


1. RC oscillator mode (control data bit OC = 0)

When RC oscillator mode is selected, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground.


2. External clock mode (control data bit OC = 1)

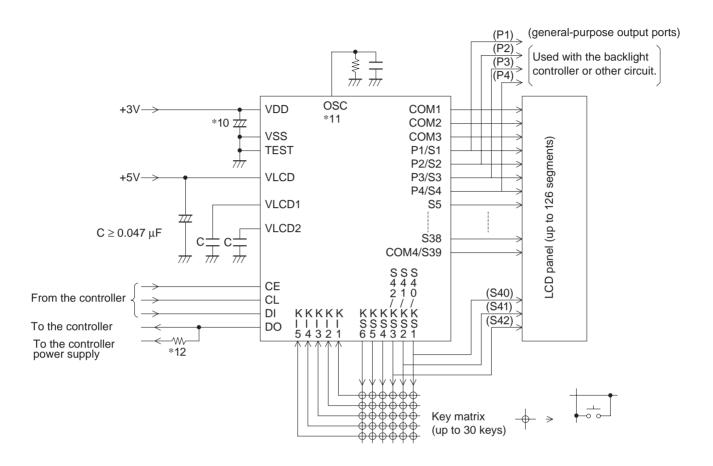
When external clock mode is selected, the current protection resistor Rg (4.7 to 47 k Ω) must be connected between the OSC pin and the external clock output pin (external oscillator). The value of this resistor is determined by the allowable current for the external clock output pin. Verify that the external clock waveform is not deformed significantly.


Note: The external clock output pin allowable current must be greater than VDD/Rg.

1/3 duty, 1/2 bias (for use with normal panels)

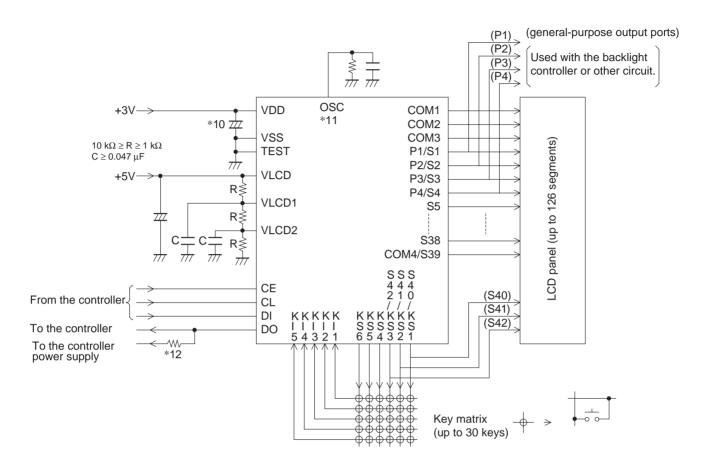
- *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
- *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

1/3 duty, 1/2 bias (for use with large panels)

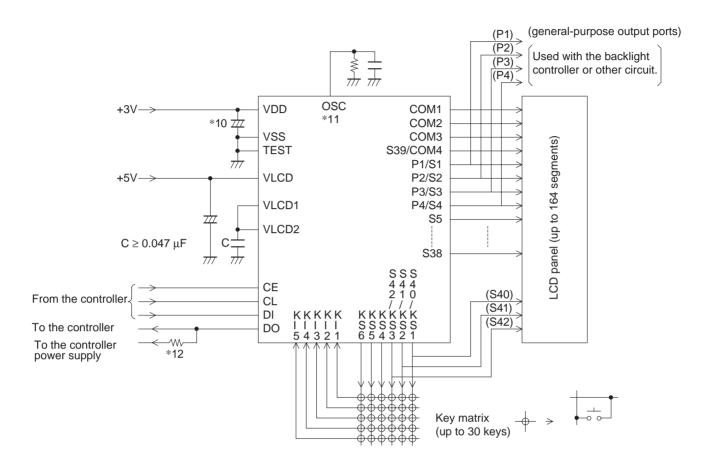


Notes:*10. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75857E/W is reset by the VDET.

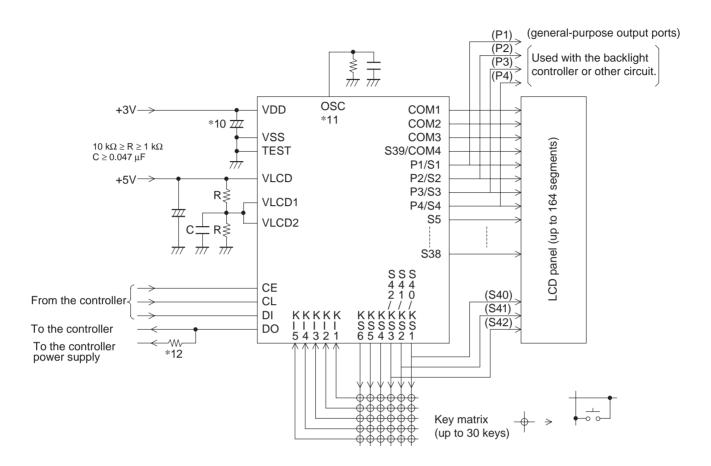
*11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)


*12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

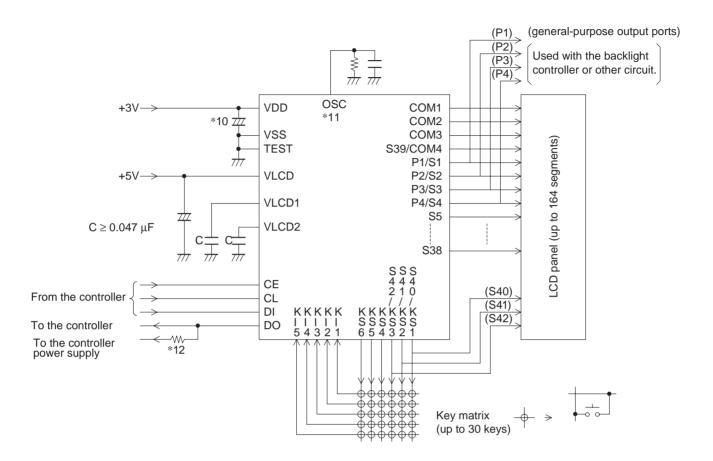
1/3 duty, 1/3 bias (for use with normal panels)


- *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
- *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

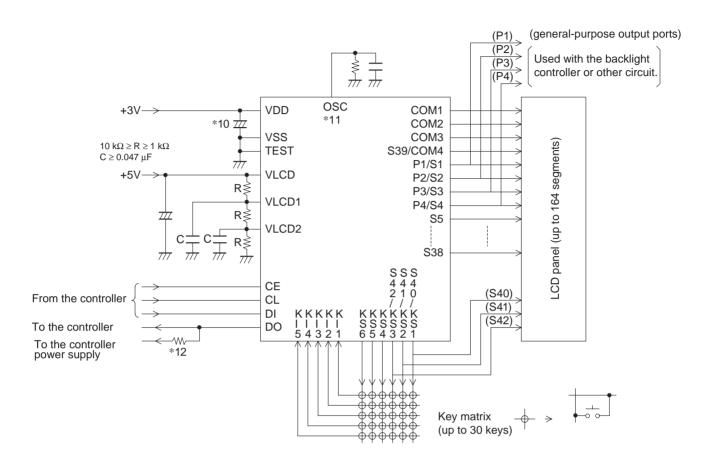
1/3 duty, 1/3 bias (for use with large panels)


- *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
- *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

1/4 duty, 1/2 bias (for use with normal panels)


- *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
- *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

1/4 duty, 1/2 bias (for use with large panels)

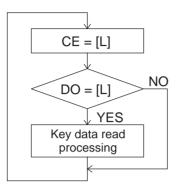

- Notes:*10. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75857E/W is reset by the VDET.
 - *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
 - *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

1/4 duty, 1/3 bias (for use with normal panels)

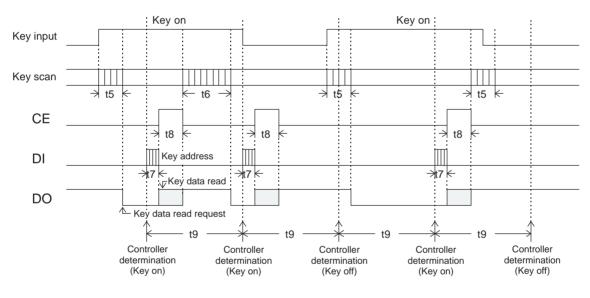
- Notes:*10. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75857E/W is reset by the VDET.
 - *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
 - *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

1/4 duty, 1/3 bias (for use with large panels)

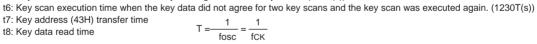
Notes:*10. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75857E/W is reset by the VDET.


- *11. When RC oscillator mode is used, the external resistor Rosc and the external capacitor Cosc must be connected between the OSC pin and ground, and when external clock mode is selected the current protection resistor Rg (4.7 to 47 kΩ) must be connected between the OSC pin and the external clock output pin (external oscillator). (See the section on the OSC pin peripheral circuit.)
- *12. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between 1 to 10 kΩ) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.

Notes on transferring display data from the controller


When using the LC75857E/W in 1/3 duty, applications transfer the display data (D1 to D126) in three operations, and in 1/4 duty, they transfer the display data (D1 to D164) in four operations. In either case, applications should transfer all of the display data within 30 ms to maintain the quality of the displayed image.

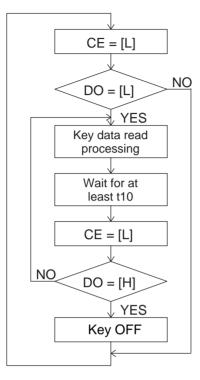
Notes on the controller key data read techniques


- 1. Timer based key data acquisition
- (1) Flowchart

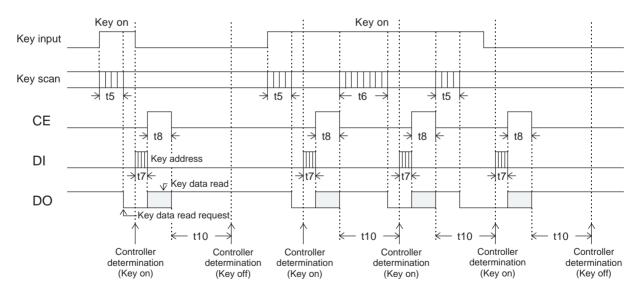
(2) Timing chart

t5: Key scan execution time when the key data agreed for two key scans. (615T(s))

(3) Explanation


In this technique, the controller uses a timer to determine key on/off states and read the key data. The controller must check the DO state when CE is low every t9 period without fail. If DO is low, the controller recognizes that a key has been pressed and executes the key data read operation.

The period t9 in this technique must satisfy the following condition.


t9>t6+t7+t8

If a key data read operation is executed when DO is high, the read key data (KD1 to KD30) and sleep acknowledge data (SA) will be invalid.

- 2. Interrupt based key data acquisition
- (1) Flowchart

(2) Timing chart

t5: Key scan execution time when the key data agreed for two key scans. (615T(s)) t6: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again. (1230T(s)) t7: Key address (43H) transfer time

 $\frac{1}{\text{fosc}} = \frac{1}{\text{fCK}}$

(3) Explanation

In this technique, the controller uses interrupts to determine key on/off states and read the key data. The controller must check the DO state when CE is low. If DO is low, the controller recognizes that a key has been pressed and executes the key data read operation. After that the next key on/off determination is performed after the time t10 has elapsed by checking the DO state when CE is low and reading the key data. The period t10 in this technique must satisfy the following condition.

t10 > t6

If a key data read operation is executed when DO is high, the read key data (KD1 to KD30) and sleep acknowledge data (SA) will be invalid.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 2004. Specifications and information herein are subject to change without notice.