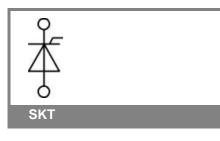
SKT 1200

Capsule Thyristor

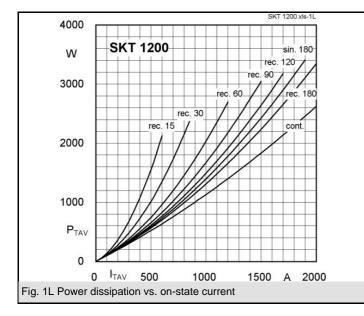
Line Thyris	stor
-------------	------

SKT 1200

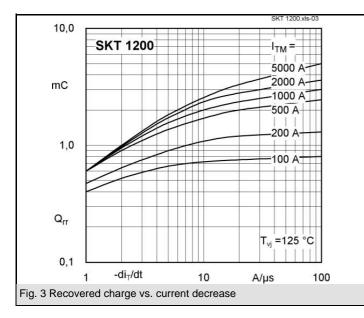
Features

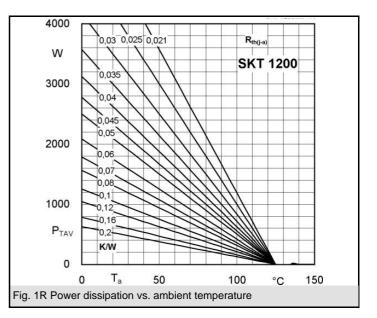

- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- International standard case
- Off-state and reverse voltages up to 1800 V
- Amplifying gate

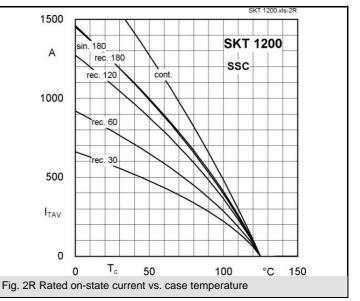
Typical Applications

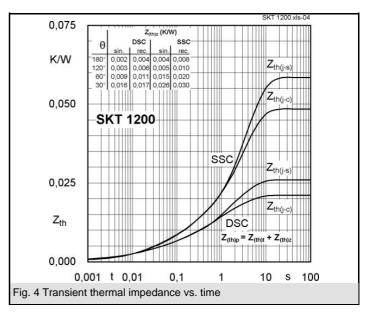

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
 AC controllers
- (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$:

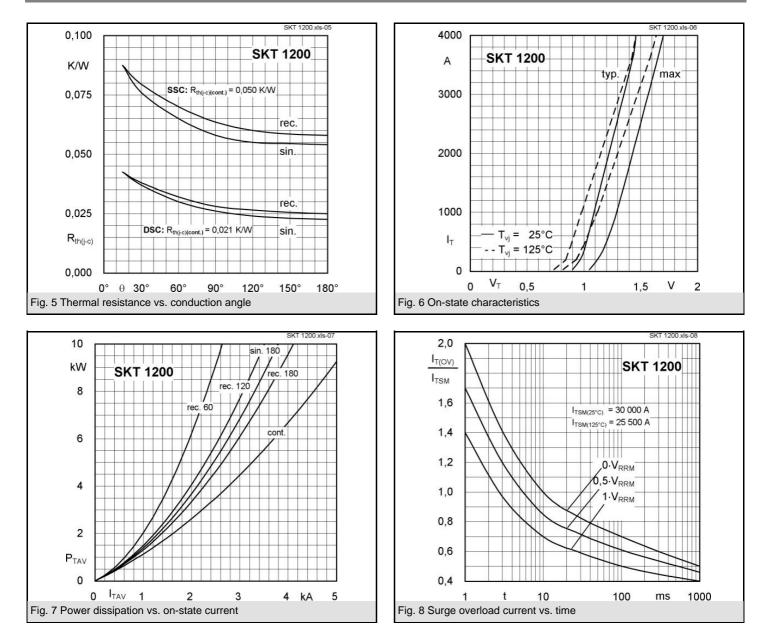
V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 2800 A (maximum value for continuous operation)		
V	V	I _{TAV} = 1200 A (sin. 180; DSC; T _c = 85 °C)		
1300	1200	SKT 1200/12E		
1500	1400	SKT 1200/14E		
1700	1600	SKT 1200/16E		
1900	1800	SKT 1200/18E		

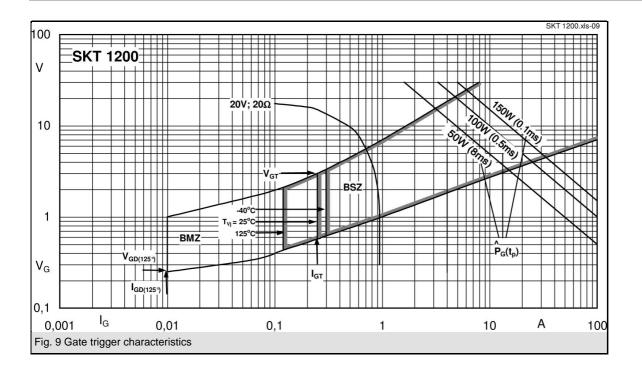

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	840 (1200)	А
I _D	2 x P8/180F; T _a = 35 °C; B2 / B6	1440 / 2050	А
	2 x P19/190F; T _a = 35 °C; B2 / B6	1550 /2200	А
I _{RMS}	2 x P8/180F; T _a = 35 °C; W1C	1600	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	30000	Α
	T _{vi} = 125 °C; 10 ms	25500	А
i²t	T _{vi} = 25 °C; 8,3 10 ms	4500000	A²s
	T _{vi} = 125 °C; 8,3 10 ms	3250000	A²s
V _T	$T_{vi} = 25 \text{ °C}; I_T = 3600 \text{ A}$	max. 1,65	V
V _{T(TO)}	$T_{vi}^{i} = 125 \text{ °C}^{i}$	max. 0,95	V
r _T	$T_{vi} = 125 ^{\circ}C$	max. 0,18	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 160	mA
gd	T _{vi} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t gr	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
q	T _{vi} = 125 °C ,	100 250	μs
I _H	T _{vi} = 25 °C; typ. / max.	250 / 500	mA
I _L	T _{vj} = 25 °C; R _G = 33 Ω; typ. / max.	500 / 2000	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
GT	$T_{vi} = 25 \text{ °C}; \text{ d.c.}$	min. 250	mA
V _{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
GD	T _{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,021	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,0225 / 0,054	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,027 / 0,06	K/W
R _{th(c-s)}	DSC / SSC	0,005 / 0,01	K/W
Γ _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	22 25	kN
а			m/s²
m	approx.	480	g
Case		B 14	

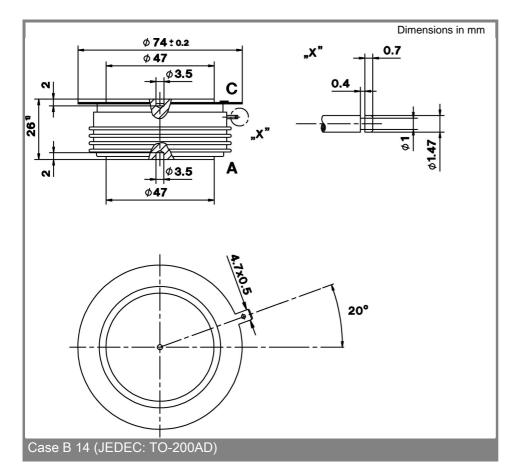


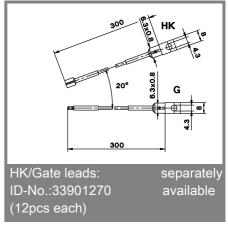

1








© by SEMIKRON


16-02-2009 MAY

SKT 1200

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.