SCHOTTKY BARRIER DIODE

Features

· Medium current schottky rectifier diode

Applications

• For low-loss, fast-recovery, meter protection, bias isolation and clamping applications

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Reverse Voltage	V _R	40	V
Average forward current	I _{FAV}	500	mA
Forward Current	I _F	750	mA
Surge Forward Current (t ≤ 10 ms)	I _{FSM}	2.5	А
Total Power Dissipation	P _{tot}	600	mW
Junction Temperature	TJ	150	°C
Storage Temperature Range	T _s	- 65 to + 150	°C

Characteristics at T_a = 25 °C

Parameter	Symbol	Max.	Unit
Forward Voltage at I _F = 10 mA at I _F = 250 mA	V _F	0.4 0.7	V
Reverse Current at $V_R = 30 V$ at $V_R = 30 V$, $T_a = 65 °C$	I _R	50 900	μA
Diode Capacitance at V_R = 10 V, f = 1 MHz	CT	12	pF

Dated : 01/09/2006

Diode capacitance $C_{T} = f(V_{R})$ f = 1 MHz T_A = Parameter 10 -A 40 рF 10 - ' 65°C 34 45°C 10 ⁻⁶ 30 5 Ř 25°0 26 10 -22 0°C 10 18 10 -8 14 **10**⁻¹⁰ 10 6° 0 10 ⁻¹¹ 2 4 6 8 10 12 V 15 0 V_{R}

Reverse current $I_{R} = f(V_{R})$

Forward current $I_{F} = f(V_{F})$ T_A = Parameter

Forward current $I_{\rm F}$ = $f(T_{\rm S})$

Dated : 01/09/2006

PACKAGE OUTLINE

Plastic surface mounted package; 2 leads

SOD-323

SEMTECH ELECTRONICS LTD. (Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated : 01/09/2006