
PRELIMINARY ISTI **EEPROM SPECIFICATION AS8ERLC128K32** SEMICONDUCTOR Austin Semiconductor, Inc. PIN ASSIGNMENT 128K x 32 Radiation Tolerant EEPROM (Top View) 68 Lead CQFP AVAILABLE AS MILITARY SPECIFICATIONS • MIL-PRF-38534 compliant SPACE Level Process Flow **FEATURES** • Access time of 250ns, 300ns • Operation with single $3.3V (\pm .3V)$ supply • LOW Power Dissipation: Active(Worst case): 300mW (MAX), Max Speed Operation Standby(Worst case): 7.2mW(MAX), Battery Back-up Mode • Automatic Byte Write: 15 ms (MAX) • Automatic Page Write (128 bytes): 15 ms (MAX) Data protection circuit on power -on/off Low power CMOS MNOS cell Technology *Pin #'s 31 and 32, A15 and A14 respectively, are reversed from the AS8E128K32. Correct 10⁴ Erase/Write cycles (in Page Mode) use of these address lines is required for operation of the SDP mode to work properly. Software data protection • TTL Compatible Inputs and Outputs PIN NAME **FUNCTION** Data Retention: 10 years • A0 to A16 Address Input

	Address input
I/O0 to I/O31	Data Input/Output
OE\	Output Enable
CE\	Chip Enable
WE\	Write Enable
V _{CC}	Power Supply
V _{SS}	Ground
RDY/BUSY\	Ready Busy
RES\	Reset
-	
₩E4►	MO

FUNCTIONAL BLOCK DIAGRAM

For more products and information please visit our web site at *www.austinsemiconductor.com*

User configurable to 256K x16 or 512Kx 8. The module achieves high speed access, low power consumption and high reliability by

Ready/Busy\ and Data Polling Signals Write protection by RES\ pin

Operating Temperature Ranges: Military: -55°C to +125°C Industrial: -40°C to +85°C

Shielded Package for Best Radiation Immunity

Ceramic Quad Flat pack w/ formed leads

Ceramic Quad Flat pack w/ tie bar

Shielded Ceramic Quad Flat pack

Shielded Ceramic Quad Flat pack

GENERAL DESCRIPTION

•

OPTIONS

• Timing

250 ns 300 ns

Package

Radiation Tolerant: Proven total dose 40K to 100K RADS*

MARKINGS

-250

-300

Q

OB

SQ

No. 703Q

No. 703OB

No. 703SF

SQB No. 703SQB

employing advanced CMOS memory technology. The military grade product is manufactured in compliance to MIL-STD 883, making the AS8ERLC128K32 ideally suited for military or space applications.

The Austin Semiconductor, Inc. AS8ERLC128K32 is a 4 Megabit Radiation Tolerant EEPROM Module organized as 128K x 32 bit.

The module is offered as a 68 lead 0.880 inch square ceramic quad flat pack. It has a max. height of 0.200 inch (non-shielded). This package design is targeted for those applications which require low profile SMT Packaging.

* contact factory for test reports. ASI does not guarantee or warrant these performance levels, but references these third party reports.

EEPROM AS8ERLC128K32

Austin Semiconductor, Inc.

TRUTH TABLE

SEMICONDUCTOR

USTIN

MODE	CE\	OE\	WE\	RES\	RDY/BUSY\ ¹	I/O
Read	V _{IL}	V _{IL}	V _{IH}	V_{H}^{2}	High-Z	Dout
Standby	V _{IH}	X ³	Х	Х	High-Z	High-Z
Write	V _{IL}	V _{IH}	V _{IL}	V _H	High-Z to V_{OL}	Din
Deselect	V _{IL}	V _{IH}	V _{IH}	V _H	High-Z	High-Z
Wirte Inhibit	Х	Х	V _{IH}	Х		
	Х	V _{IL}	Х	Х		
Data\ Polling	V _{IL}	V _{IL}	V _{IH}	V _H	V _{OL}	Dout (I/O7)
Program Reset	Х	Х	Х	V _{IL}	High-Z	High-Z

NOTES: 1. RDY/Busy\ output has only active LOW V_{OL} and high impedance state. It can not go to HIGH (V_{OH}) state. 2. V_{CC} -0.5V $\leq V_{H} \leq V_{CC}$ +0.5V 3. X : DON'T CARE

EEPROM AS8ERLC128K32

Austin Semiconductor, Inc.

ABSOLUTE MAXIMUM RATINGS*

SEMICONDUCTOR

Voltage on Vcc Supply Relative to Vss Vcc-0.6V to +7.0V Operating Temperature Range⁽¹⁾-55°C to +125°C

USTIN

Storage Temperature Range6	5° C to $+150^{\circ}$ C
Voltage on any Pin Relative to Vss0	$0.5V$ to $+7.0V^{(2)}$
Max Junction Temperature**	+150°C
Thermal Resistance junction to case (θ_{IC}) :	
Package Type Q	11.3° C/W
Package Type P & PN	2.8° C/W

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow, and humidity (plastics).

NOTES:

1) Including electrical characteristics and data retention.

2) V_{IN} MIN = -1.0V for pulse width < 20ns.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(-55^{\circ}C \le T_{a} \le 125^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C; Vcc = 3.3V +/-.3V)$

SYMBOL PARAMETER CONDITIONS MIN MAX UNITS V_{CC} +0.3 Input High Voltage VIH 2.2 V Input High Voltage (RES\) V_H V_{CC} -0.3 V_{cc} +.3 V -0.3 Input Low Voltage VIL 0.8 V -0.3 Input Low Voltage (RES\) V 0.4 V LOW INPUT Leakage(RES\ Signal) RES\=0V, VCC=3.6V ILI(RES) -300 μΑ I_{HI}(RES) HIGH INPUT Leakage(RES\ Signal) RES\=3.6V, VCC=3.6V -10.0 μΑ HIGH INPUT Leakage(RES\ Signal) RES\=3.3V, VCC=3.3V I_{HI}(RES) -30.0 μΑ $\overline{OV} \leq V_{IN} \leq V_{CC}$ -10 INPUT LEAKAGE CURRENT² I_{LI} 10 μΑ Outputs(s) Disabled, -10 10 OUTPUT LEAKAGE CURRENT² I_{LO} μΑ $OV \leq V_{OUT} \leq V_{CC}$ Output High Voltage I_{OH} = -0.4mA V_{OH} V_{CC}x.8 ---V Output High Voltage V_{OH} V_{cc}-0.3 V I_{OH} = -0.1mA --Output Low Voltage I_{OL} = 2.1mA VOL 0.4 V ---Output Low Voltage $I_{OL} = 0.1 mA$ VOL 0.2 V --- V_{CC} Supply Voltage 3 3.6 V

NOTE: 1) V_{IL} (MIN): -1.0V for pulse width < 20ns. 2) All other Signal pins except RES\

			MAX	MAX	
PARAMETER	CONDITIONS	SYM	-250	-300	UNITS
Power Supply Current: Operating	lout = 0mA, V_{CC} = 3.6V Cycle = 1 μ S, Duty = 100%	I _{cc3}	30	30	mA
	lout = 0mA, V _{CC} = 3.6V Cycle = MIN, Duty = 100%		80	70	
Power Supply Current:	$CE = V_{CC}, V_{CC} = 3.6V$	I _{CC1}	0.4	0.4	mA
Standby	$CE = V_{\rm IH,} V_{\rm CC} = 3.6V$	I _{CC2}	4	4	mA

Austin Semiconductor, Inc. reserves the right to change products or specifications without notice.

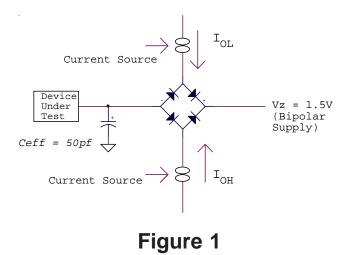
EEPROM AS8ERLC128K32

Austin Semiconductor, Inc.

CAPACITANCE TABLE¹ ($V_{IN} = 0V$, f = 1 MHz, $T_A = 25^{\circ}C$, VCC=3.3V)

SYMBOL	PARAMETER	MAX	UNITS
C _{ADD}	A0 - A16 Capacitance	40	pF
C _{OE}	OE RES RDY Capacitance	40	pF
$C_{WE,} C_{CE}$	WE\ and CE\ Capacitance	12	pF
C _{IO}	I/O 0- I/O 31 Capacitance	20	pF

NOTE: 1. This parameter is guaranteed but not tested.


AC TEST CHARACTERISTICS

TEST SPECIFICATIONS

Input pulse levels	$\dots V_{ss}$ to 3V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figure 1

NOTES:

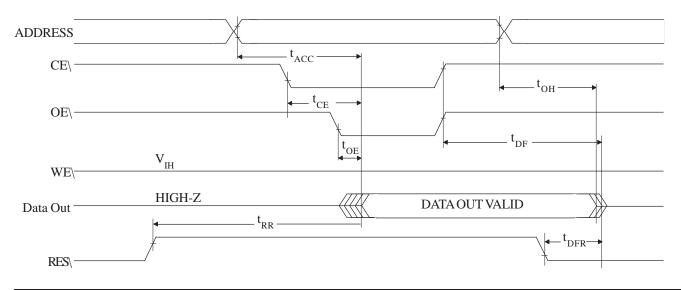
Vz is programmable from -2V to + 5V. I_{OL} and I_{OH} programmable from 0 to 16 mA. Vz is typically the midpoint of V_{OH} and V_{OL} . I_{OL} and I_{OH} are adjusted to simulate a typical resistive load circuit.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

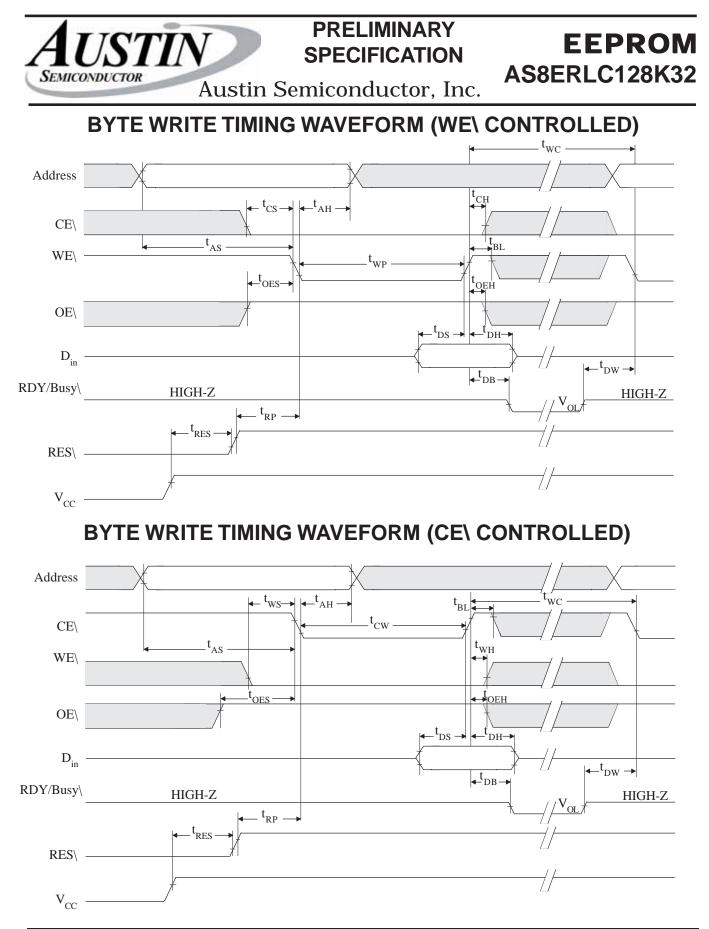
 $(-55^{\circ}C \le T_{A} \le +125^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C; Vcc = 3.3V \pm .3V)$

DESCRIPTION	TEST CONDITIONS	-2		-250)0	
DESCRIPTION	TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	UNITS
Address to Output Delay	$CE = OE = V_{IL}, WE = V_{IH}$	t _{ACC}		250		300	ns
CE\ to Output Delay	$OE = V_{IL}, WE = V_{IH}$	t _{CE}		250		300	ns
OE∖ to Output Delay	$OE = V_{IL}, WE = V_{IH}$	t _{OE}	10	120	10	130	ns
Address to Output Hold	$CE = OE = V_{IL}, WE = V_{IH}$	t _{OH}	0		0		ns
CE\ or OE\ high to Output Float (1)	$OE = V_{IL}, WE = V_{IH}$	t _{DF}	0	50	0	50	ns
RES\ low to Output Float (1)	$CE = OE = V_{IL}, WE = V_{IH}$	t _{DFR}	0	350	0	350	ns
RES\ to Output Delay	$CE = OE = V_{IL}, WE = V_{IH}$	t _{RR}	0	600	0	600	ns

Austin Semiconductor, Inc. reserves the right to change products or specifications without notice.

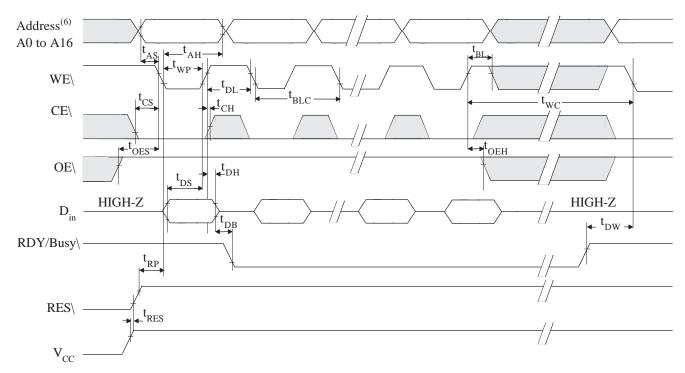

EEPROM AS8ERLC128K32

Austin Semiconductor, Inc.

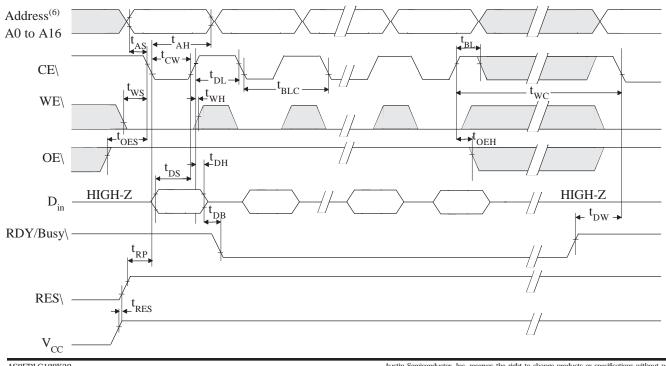

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC WRITE CHARACTERISTICS (-55°C $\leq T_A \leq +125$ °C; Vcc = 3.3V ±.3V)

SYMBOL	PARAMETER	MIN ⁽²⁾	MAX	UNITS
t _{AS}	Address Setup Time	0		ms
t _{AH}	Address Hold Time	150		ns
t _{CS}	CE\ to Write Setup Time (WE\ controlled)	0		ns
t _{CH}	CE\ Hold Time (WE\ controlled)	0		ns
t _{WS}	WE\ to Write Setup Time (CE\ controlled)	0		ns
t _{WH}	WE\ to Hold Time (CE\ controlled)	0		ns
t _{OES}	OE\ to Write Setup Time	0		ns
t _{OEH}	OE\ to Hold Time	0		ns
t _{DS}	Data Setup Time	100		ns
t _{DH}	Data Hold Time	10		ns
t _{WP}	WE\ Pulse Width (WE\ controlled)	250		ns
t _{CW}	CE\ Pulse Width (CE\ controlled)	250		ns
t _{DL}	Data Latch Time	750		ns
t _{BLC}	Byte Load Cycle	1	30	μs
t _{BL}	Byte Load Window	100		μs
t _{WC}	Write Cycle Time		15 ⁽³⁾	ms
t _{DB}	Time to Device Busy	150		ns
t _{DW}	Write Start Time	250 ⁽⁴⁾		ns
t _{RP}	Reset Protect Time	100		μs
t _{RES}	Reset High Time ⁽⁵⁾	2		μs

READ TIMING WAVEFORM

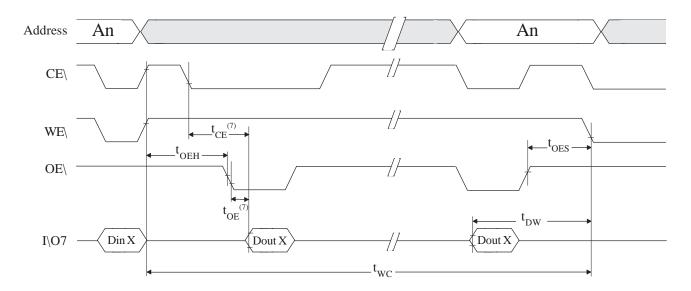


SEMICONDUCTOR



PRELIMINARY **EEPROM** ISTI **SPECIFICATION AS8ERLC128K32** SEMICONDUCTOR Austin Semiconductor, Inc.

PAGE WRITE TIMING WAVEFORM (WE\ CONTROLLED)



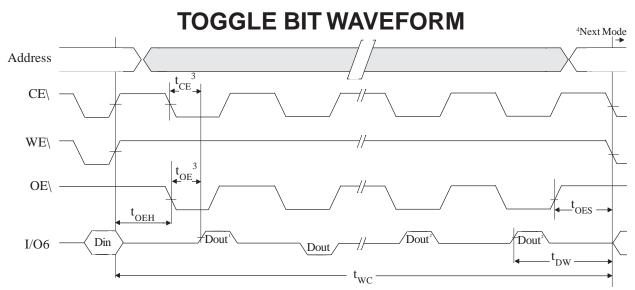
PAGE WRITE TIMING WAVEFORM (CE\ CONTROLLED)

AUSTIN AUSTIN SPECIFICATION Austin Semiconductor, Inc. PRELIMINARY SPECIFICATION AS8ERLC128K32

DATA POLLING TIMING WAVEFORM

NOTES:

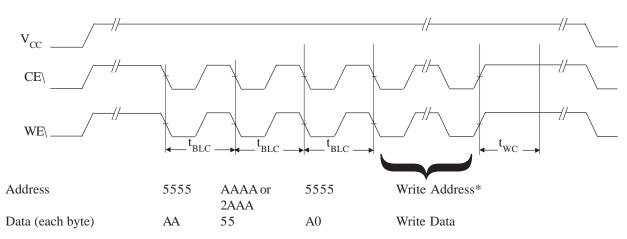
- 1. t_{DF} and t_{DFR} are defined as the time at which the outputs achieve the open circuit conditions and are no longer driven.
- 2. Use this device in longer cycle than this value.


3. t_{wc} must be longer than this value unless polling techniques or RDY/Busy\ are used. This device automatically completes the internal write operation within this value.

- 4. Next read or write operation can be initiated after t_{DW} if polling techniques or RDY/Busy\ are used.
- 5. This parameter is sampled and not 100% tested.
- 6. A7 to A16 are page addresses and must be same(i.e. Not Change) during the page write operation.
- 7. See AC read characteristics.

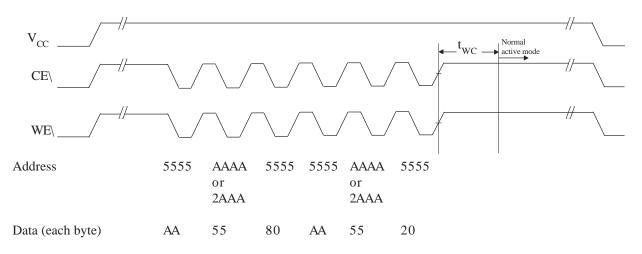
AUSTI	PRELIMINARY SPECIFICATION	
SEMICONDUCTOR	Austin Semiconductor, Inc.	AS8ERLC128K32

TOGGLE BIT


This device provides another function to determine the internal programming cycle. If the EEPROM is set to read mode during the internal programming cycle, I/O6 will charge from "1" to "0" (toggling) for each read. When the internal programming cycle is finished, toggling of I/O6 will stop and the device can be accessible for next read or program.

NOTES:

- 1) I/O6 beginning state is "1".
- 2) I/O6 ending state will vary.
- 3) See AC read characteristics.
- 4) Any locations can be used, but the address must be fixed.


SOFTWARE DATA PROTECTION TIMING WAVEFORM (In protection mode)

* During this write cycle, data is physically written to the address provided.

AUSTIN AUSTIN SPECIFICATION Austin Semiconductor, Inc. PRELIMINARY SPECIFICATION AS8ERLC128K32

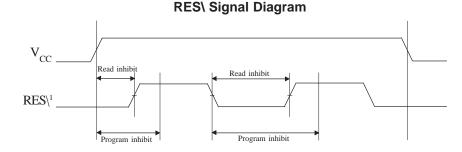
SOFTWARE DATA PROTECTION TIMING WAVEFORM (In non-protection mode)

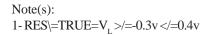
FUNCTIONAL DESCRIPTION

Automatic Page Write

Page-mode write feature allows 1 to 128 bytes of data to be written into the EEPROM in a single write cycle. Following the initial byte cycle, an additional 1 to 128 bytes can be written in the same manner. Each additional byte load cycle must be started within 30µs from the preceding falling edge of WE\ or CE\. When CE\ or WE\ is kept high for 100µs after data input, the EEPROM enters write mode automatically and the input data are written into the EEPROM.

DATA\ Polling


DATA\ polling allows the status of the EEPROM to be determined. If EEPROM is set to read mode during the write cycle, an inversion of the last byte of data to be loaded outputs from I/O's 7, 15, 23, and 31 to indicate that the EEPROM is performing a write operation.


RDY/Busy\ Signal

RDY/Busy\ signal also allows status of the EEPROM to be determined. The RDY/Busy\ signal has high impedance except in write cycle and is lowered to V_{OL} after the first write signal. At the end of write cycle, the RDY/Busy\ signal changes state to high impedance.

RES\ Signal

When RES\ is low, the EEPROM cannot be read or programmed. Therefore, data can be protected by keeping RES\ low when V_{CC} is switched. RES\ should be high during read and programming because it doesn't provide a latch function. See timing diagram below.

AUSTIN Austin Semiconductor, Inc. PRELIMINARY SPECIFICATION ASSERLC128K32

WE\, CE\ Pin Operation

During a write cycle, address are latched by the falling edge of WE\ or CE\, and data is latched by the rising edge of WE\ or CE\.

Write/Erase Endurance and Data Retention Time

The endurance is 10^4 cycles in case of the page programming and 10^3 cycles in case of the byte programming (1% cumulative failure rate). The data retention time is more than 10 years when a device is page-programmed less than 10^4 cycles.

RDY/Busy\SIGNAL

RDY/Busy\ signal also allows status of the EEPROM to be determined. The RDY/Busy\ signal has high impedance except in write cycle and is lowered to V_{OL} after the first write signal. At the end of the write cycle, the RDY/Busy\ signal changes state to high impedance. This allows many AS8ERLC128K32 devices RDY/Busy\ signal lines to be wired-OR together.

PROGRAMMING/ERASE

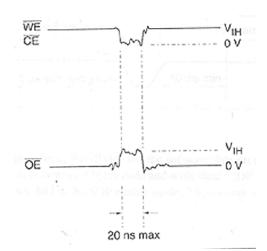
The AS8ERLC128K32 does **NOT** employ a BULK-erase function. The memory cells can be programmed '0' or '1'. A write cycle performs the function of erase & write on every cycle with the erase being transparent to the user. The internal erase data state is considered to be '1'. To program the memory array with background of ALL 0's or All 1's, the user would program this data using the page mode write operation to program all 1024 128-byte pages.

Data Protection

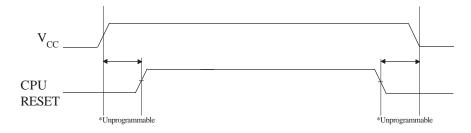
1. Data Protection against Noise on Control Pins (CE\, OE\, WE\) During Operation

During readout or standby, noise on the control pins

may act as a trigger and turn the EEPROM to programming mode by mistake. To prevent this phenomenon, this device has a noise cancellation function that cuts noise if its width is 20ns or less in program mode.


Be careful not to allow noise of a width more than 20ns on the control pins. See Diagram 1 below.

2. Data Protection at V_{CC} On/Off


When V_{CC} is turned on or off, noise on the control pins generated by external circuits (CPU, etc.) may act as a trigger and turn the EEPROM to program mode by mistake. To prevent this unintentional programming, the EEPROM must be kept in an unprogrammable state while the CPR is in an unstable state.

NOTE: The EEPROM should be kept in unprogrammable state during V_{CC} on/off by using CPU RE-SET signal. See the timing diagram below.

DIAGRAM 1

DATA PROTECTION AT V_{CC} ON/OFF

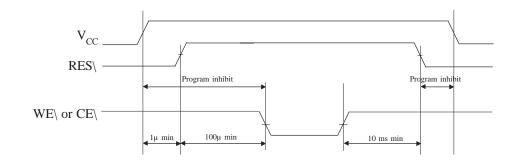
AUSTIN SEMICONDUCTOR Austin Semiconductor, Inc. PRELIMINARY SPECIFICATION ASSERLC128K32

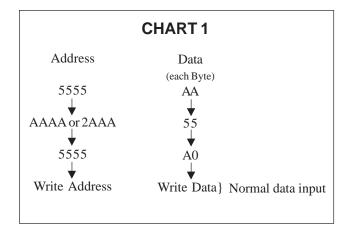
Data Protection Cont.

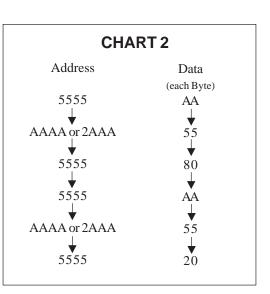
a. *Protection by RES*\

The unprogrammable state can be realized by the CPU's reset signal inputs directly to the EEPROM's RES pin. RES should be kept V_{SS} level during V_{CC} on/off.

The EEPROM brakes off programming operation when RES becomes low, programming operation doesn't finish correctly in case that RES falls low during programming operation. RES should be kept high for 10ms after the last data inputs. See the timing diagram below.

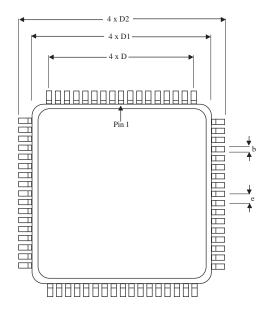

3. Software data protection


To prevent unintentional programming, this device has the software data protection (SDP) mode. The SDP is enabled by inputting the 3 bytes code and write data in Chart 1. SDP is not enabled if only the 3 bytes code is input. To program data in the SDP enable mode, 3 bytes code must be input before write data. This 4th cycle during write is required to initiate the SDP and physically writes the address and data. While in SDP the entire array is protected in which writes can only occur if the exact SDP sequence is re-executed or the unprotect sequence is executed.

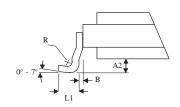

The SDP is disabled by inputting the 6 bytes code in Chart 2. Note that, if data is input in the SDP disable cycle, data can not be written.

The software data protection is not enabled at the shipment.

NOTE: These are some differences between ASI's and other company's for enable/disable sequence of software data protection. If these are any questions, please contact ASI.



PROTECTION BY RES



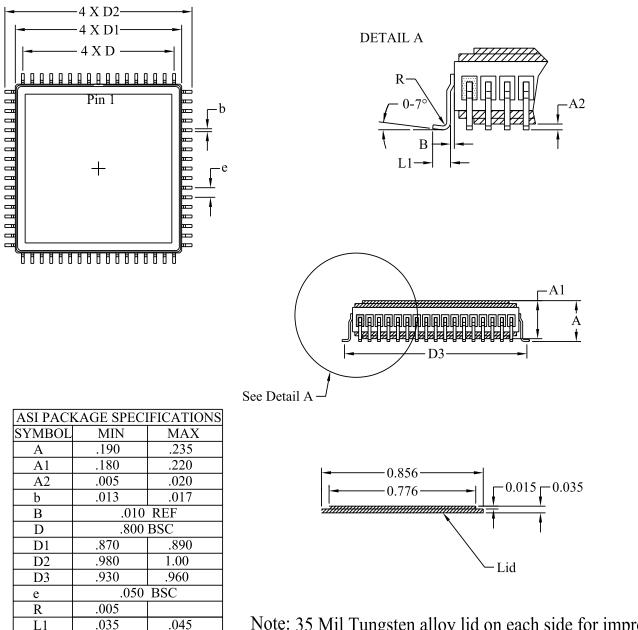
MECHANICAL DEFINITIONS*

ASI Case #703 (Package Designator Q)

DETAILA

	ASI PACKAGE SPECIFICATIONS			
SYMBOL	MIN	MAX		
A	0.123	0.200		
A1	0.118	0.186		
A2	0.000	0.020		
b	0.013	0.017		
В	0.010 REF			
D	0.800	BSC		
D1	0.870	0.890		
D2	0.980	1.000		
D3	0.936	0.956		
е	0.050 BSC			
R	0.005			
L1	0.035	0.045		

SPECIFICATION


PRELIMINARY

EEPROM AS8ERLC128K32

Austin Semiconductor, Inc.

MECHANICAL DEFINITIONS*

ASI Case #703SQ

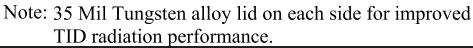
Note: 35 Mil Tungsten alloy lid on each side for improved TID radiation performance.

All Dimensions in inches

SEMICONDUCTOR

EEPROM AS8ERLC128K32

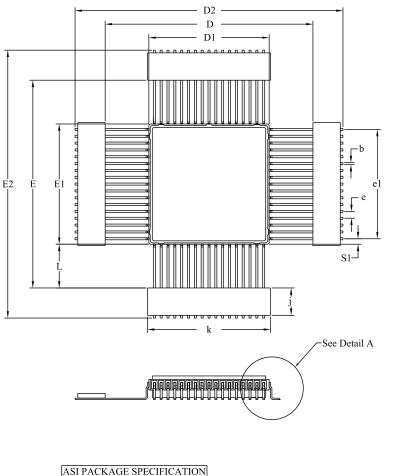
Austin Semiconductor, Inc.

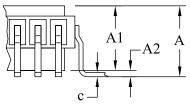

ISTIN

SEMICONDUCTOR

MECHANICAL DEFINITIONS*

ASI Case #703SQB





MECHANICAL DEFINITIONS*

ASI Case (Package Designator QB)

ASI PACKAGE SPECIFICATION					
Symbol	Min	Max			
А	.157	.190			
A1	.142	.175			
A2	.005	.020			
b	.013	.017			
с	.009	.012			
D/E	1.500	1.540			
D1/E1	.870	.890			
D2/E2	1.920	2.000			
e	.050	BSC			
e1	.800	BSC			
j	.190	.210			
k	.890	.910			
L	.310	.330			
S1	.040 BSC				
Dimensions in inches					

Detail A

*All measurements are in inches.

EEPROM AS8ERLC128K32

Austin Semiconductor, Inc.

USTIN

EXAMPLE:

SEMICONDUCTOR

ORDERING INFORMATION

AS8ERLC128K32Q-250/Q

AS8ERLC128K32QB-300/SPACE					
Device NumbERLV	Package Type	Speed ns	Process		
AS8ERLC128K32	Q	-250	/*		
AS8ERLC128K32	Q	-300	/*		
AS8ERLC128K32	QB	-250	/*		
AS8ERLC128K32	QB	-300	/*		
AS8ERLC128K32	SQ	-250	/*		
AS8ERLC128K32	SQ	-300	/*		
AS8ERLC128K32	SQB	-250	/*		
AS8ERLC128K32	SQB	-300	/*		

*AVAILABLE PROCESSES

IT = Industrial Temperature Range	-40°C to +85°C
XT = Extended Temperature Range	-55°C to +125°C
Q=MIL-PRF-38534, Class H compliant	-55°C to +125°C
SPACE = ASI Class 'S' Flow	-55°C to +125°C

* ASI part number is for reference only. Orders received referencing the SMD part number will be processed per the SMD.

Austin Semiconductor, Inc. ASI TO DSCC PART NUMBER CROSS REFERENCE*

Package Designator Q

PRELIMINARY

SPECIFICATION

<u>ASI Part #</u> AS8ERLC128K32Q AS8ERLC128K32Q **SMD Part** to be determined to be determined

Package Designator QB

<u>ASI Part #</u> AS8ERLC128K32QB AS8ERLC128K32QB

SMD Part

to be determined to be determined

AUSTIN

EEPROM AS8ERLC128K32