DC Current Transducer

- Main Advantages
 High Accuracy over high bandwidth.
 Very low output noise and offset drift.
 Negligible insertion losses.
 High immunity to interference.
 Overload Capability.

- Excellent linearity.

- Applications
 Precise and high stability inverters
 Energy measurements
 High Precision Power Supplies
 Feed back element in high performance gradient amplifiers for MRI
 Medical Equipment

Electrical Parameters

Primary Current	0 to 700 A DC	I pn
Measuring Range 10 Vin	± 700 A DC	I p
Overload Condition	± 2000 A (100ms)	lov
Burden Resistor Range	1 Ohm Min	Rв
(IP =700A) Vcc = ± 12V		
Secondary Nominal Current	700 mA	I s
Secondary Nominal Current Conversion Ratio	700 mA 1:1000	ls N
,		
Conversion Ratio	1:1000	N

Accuracy

Accuracy at Ip T = 25 °C	< 0.1%	
Linear Error (Beetwen 400 to 700 A)	< 5 ppm	ϵ_{LFR}
Vcc = ±12V, Rb = 1 Ohm		
Linear Error (Beetwen 150A to 400A)	< 10 ppm	ϵ_{LMR}
$Vcc = \pm 12V$, $Rb = 5$ Ohm		
Linear Error (Beetwen 0.1 to 150A)	< 100 ppm	arepsilon LLR
Vcc = ±12V, Rb = 20 Ohm		
Offset Current	5uA Max	los
Offser Current Temperature Drift	< 5 ppm/°C	Klos
Time Response (10% to 90% of Ip)	<1us	Tr
di/dt Followed Accurately	> 100A/us	
Frequency Bandwidth (Ip = 10A DC)	DC to 100kHz (-3dB)	Fc

DC Current Transducer

Output Connector

Connector	DB-9 Standard Type (Female)
Fault Operation Condition (Led Power OFF)	lp > 120%
Maximum Switching Current (pins 3 to 8 and pin 3 to 7)	2A
Maximum Switching Voltage (pins 3 to 8 and pin 3 to 7)	30 VDC/120 VAC
Compensation Winding Maximum Resistance (T = 50°C)	10 Ohm Rc
Lenght Two Wire Cable to R Burden (Connected between pin 1 and 6)	50 cm (Typical)

General Data

Operating Temperature	-20 to +70 °C	TA
Storage Temperature	-20 to +85 °C	Ts
Weight	800 g	
Primary Diameter Hole	30 mm	
Basic Insulation (Between Primary	3500 V AC 50Hz 1'	Vı
and Measurement Current)		

According To

resistor = 1 Ohm.

- UNE EN 50178
- UNE EN 50155

Power Consumption Characteristics

Total Power Consumption Vs Primary Current

Power Consumption for full range measurements and nominal conditions . Burden

DC Current Transducer

DCT-700A Installation

In the following picture we show as to connect the secondary side of current transducer.

External Connections

Between the pins 3 and 8 the DCT have a normally closed switch while the measure is correct. In the same manner, DCT provide a normally open switch while the measure is correct between pins 3 and 7.

D-SUB standard connector

The D-sub connection correspond to the next table.

9-POLE D-SUB

Pin 1: Connected to GND internally

Pin 2: (For Factory use only)

Pin 3: Input to normally closed/open Switch

Pin 4 : 0V

Pin 5: Earth connexion

Pin 6 : Output Current + (Current Direction F to B)

Pin 7 : Output to normally open switch (1A DC MÁX)

Pin 8 : Output to normally closed switch (1A DC MAX)

Pin 9: Vcc

DC Current Transducer

Burden resistor and voltage range

The burden resistor (Rb in the picture) must be changed in function of the primary current. The values of R burden and maximum voltage generate are showed below. Premo advice to use this values (at least approximatelly) to ensure a good response of the transducer in terms of accuracy, linearity and power consumption.

These values are recommended for a resistances that can dissipate 0,5W.

Dimensions

