

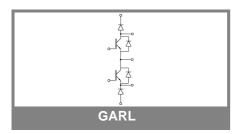
SEMITOP® 2

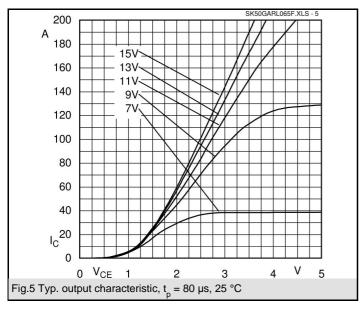
IGBT Module

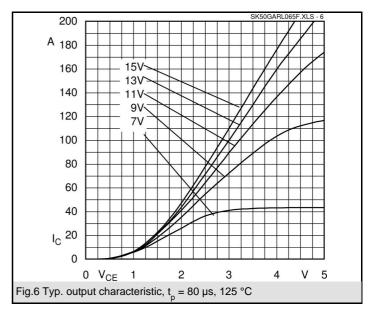
SK 50 GARL 065 F

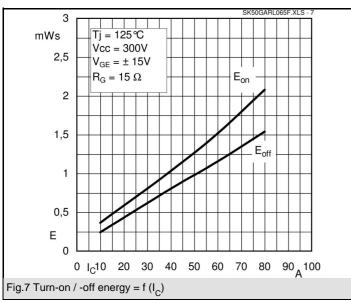
Preliminary Data

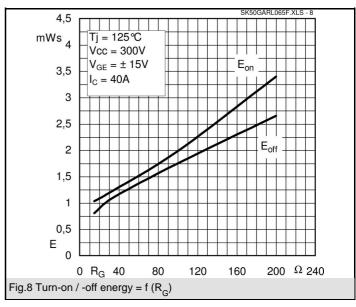
Features

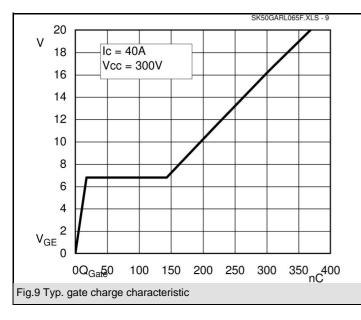

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- · Low threshold voltage
- · Fast Turbo diode

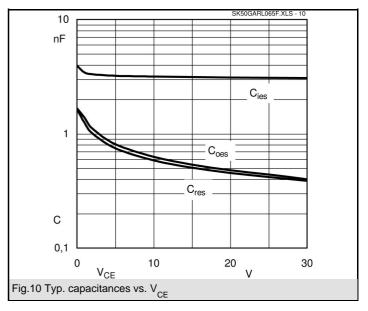

Typical Applications

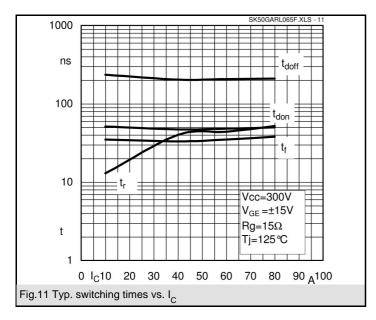

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

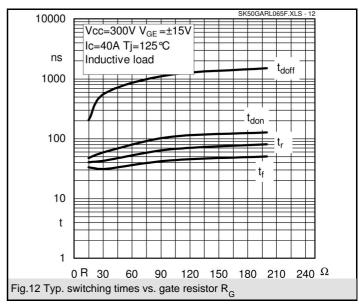

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT		·					
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	$T_s = 25 (80) ^{\circ}C;$	54 (40)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	108 (80)	Α				
T _j	·	- 40 + 150	°C				
Freewheeling diode							
I _F	$T_s = 25 (80) ^{\circ}C;$	82 (50)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	160 (100)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

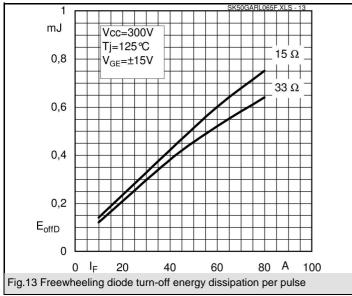

Characteristics		Τ.:	T _s = 25 °C, unless otherwise specified				
		· S					
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{CE(sat)}	I _C = 40 A, T _j = 25 (125) °C			1,7 (2,2)	, ,	V	
$V_{GE(th)}$	$V_{CE} = V_{GE}; I_{C} = 0,0007 A$		3	4	5	V	
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$			3		nF	
$R_{th(j-s)}$	per IGBT				0,85	K/W	
	per module					K/W	
	under following conditions:						
t _{d(on)}	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$			47		ns	
t _r	$I_C = 40 \text{ A}, T_j = 125 ^{\circ}\text{C}$			40		ns	
t _{d(off)}	$R_{Gon} = R_{Goff} = 15 \Omega$			203		ns	
t_f				33		ns	
$E_{on} + E_{off}$	Inductive load			1,84		mJ	
Freewhe	eling diode						
$V_F = V_{EC}$	I _F = 60 A; T _i = 25 (150) °C	ĺ		1,1	1,6 (1,25)	V	
V _(TO)	T _i = (150) °C			(0,85)		V	
r _T	$T_{i} = (150) ^{\circ}C$			(7)		mΩ	
$R_{th(j-s)}$					1,1	K/W	
	under following conditions:						
I _{RRM}	$I_F = 50 \text{ A}; V_R = 300 \text{ V}$			38		Α	
Q_{rr}	$dI_F/dt = -1000 A/\mu s$			2		μC	
E _{off}	$V_{GE} = 0 \text{ V; } T_j = 125 ^{\circ}\text{C}$			0,45		mJ	
Mechani	cal data	•					
M1	mounting torque		1,8		2	Nm	
w				19		g	
Case	SEMITOP® 2			T 31			

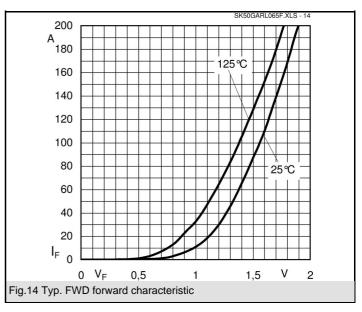


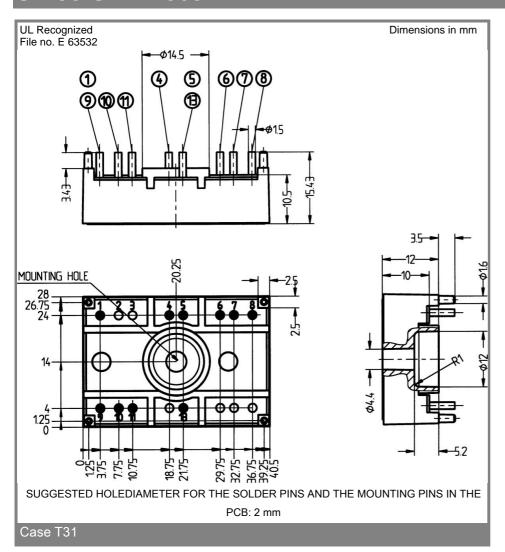


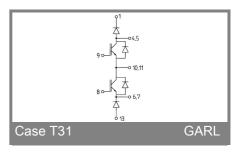












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.