

■ Low Miller Charge

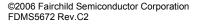
Features

FAIRCHILD SEMICONDUCTOR

FDMS5672

60V, **22A**, **11.5m**Ω

Optimized efficiency at high frequencies


■ Max r_{DS(on)} = 11.5mΩ at V_{GS} = 10V, I_D = 10.6A

N-Channel UltraFET Trench[®] MOSFET

RoHS Compliant

General Description

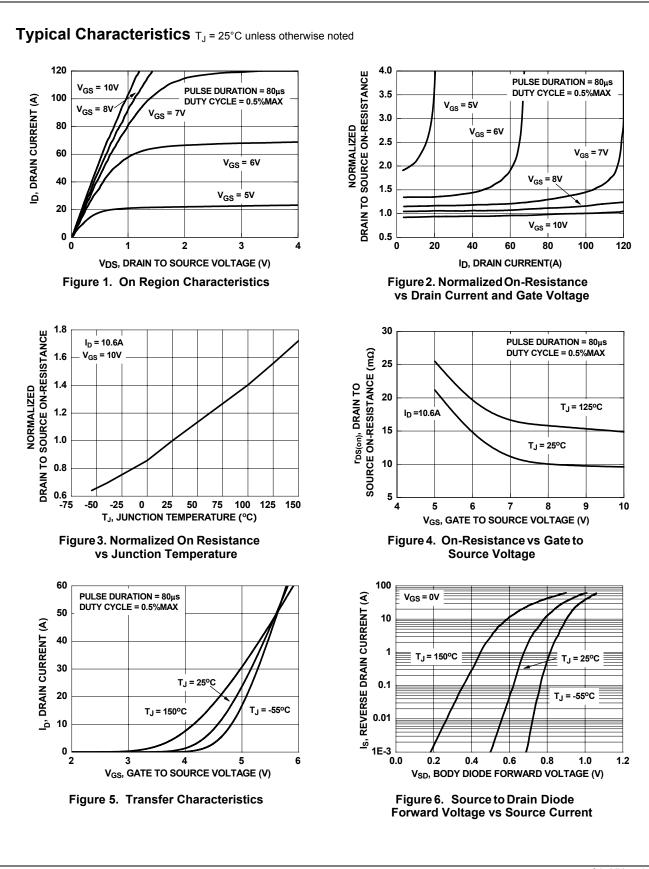
UltraFET devices combine characteristics that enable benchmark efficiency in power conversion applications. Optimized for $r_{DS(on)}$, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

V

V

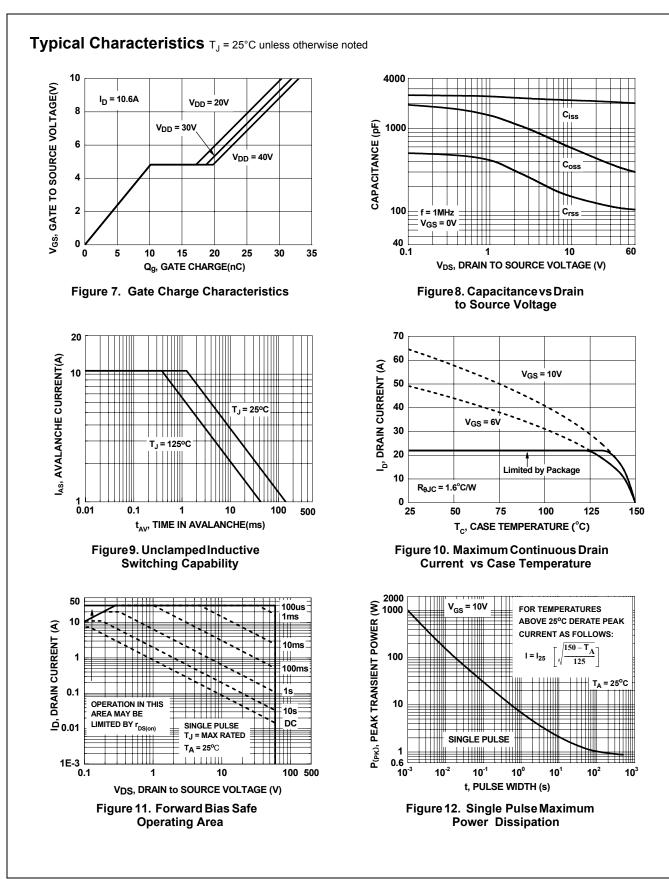
А

mJ


\٨/

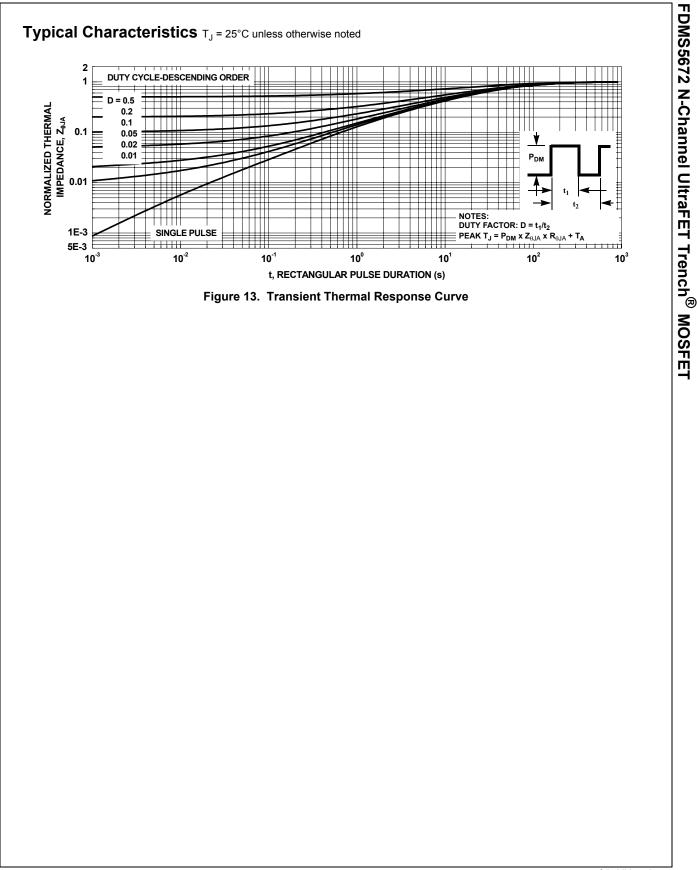
°C

December 2007


FDMS5672
N-Channel I
UltraFET
Trench®
MOSFET

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	60			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		59		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48V, V _{GS} = 0V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	2	3.2	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		-11		mV/°C
	Drain to Source On Resistance	V _{GS} = 10V, I _D = 10.6A		9.4	11.5	
r		V _{GS} = 6V, I _D = 8A		13.0	16.5	mΩ
r _{DS(on)}		V _{GS} = 10V, I _D = 10.6A, T _J = 125°C		15.0	18.0	
9 _{FS}	Forward Transconductance	V _{DS} = 10V, I _D = 10.6A		26		S
Dvnamic (Characteristics					
C _{iss}	Input Capacitance			2100	2800	pF
C _{oss}	Output Capacitance	$-V_{DS} = 30V, V_{GS} = 0V,$		375	500	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		120	180	pF
R _g	Gate Resistance	f = 1MHz		1.2		Ω
t _{d(on)}	Turn-On Delay Time			16	29	ns
t _r	Rise Time	$V_{DD} = 30V, I_D = 10.6A$		17	31	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10V, R_{GEN} = 6 Ω		22	35	ns
t _f	Fall Time			8	16	ns
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 30V$		32	45	nC
Q _{gs}	Gate to Source Gate Charge	$I_{\rm D} = 10.6 {\rm A}$		10		nC
Q _{gd}	Gate to Drain "Miller" Charge			8.3		nC
	Irce Diode Characteristics					1
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 10.6A$ (Note 2)		0.80	1.20	V
t _{rr} Q _{rr}	Reverse Recovery Time	—I _F = 10.6A, di/dt = 100A/μs		35	53	ns
	Reverse Recovery Charge	•		42	63	nC

www.fairchildsemi.com



FDMS5672 Rev.C2

4

www.fairchildsemi.com

__0.10 C 2X F 5.0 A -0.77 卪 8 4.52 6.0 6.61 4.32 3.91-0.10 C 4 PIN #1 IDENT -2X TOP VIEW 0.61 TYP. 1.27 TYP -0.8 MAX RECOMMENDED LAND PATTERN // 0.10 C (0.25)____ 0.08 C Ċ 0.05 SIDE VIEW SEATING PLANE 3.86 🕢 0.64 0.44 3.66 PIN #1 IDENT (OPTIONAL) 3.42 3.22 4.01? .10 5 0.36-0.46 🚯 1.27 ⊕ 0.10 M C A B 3.81 ٨ ⊕ 0.05∭ C BOTTOM VIEW NOTES: ODES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229. DATED 11/2001. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994 D. TERMINALS 5,6,7 AND 8 ARE TIED TO THE EXPOSED PADDLE MLP08GrevD

FDMS5672 N-Channel UltraFET Trench[®] MOSFET

FDMS5672 Rev.C2

6

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] CROSSVOLT[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] *

FPS™ **FRFET**® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX[™] **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM[™] **OPTOLOGIC**® **OPTOPLANAR[®]**

PDP-SPM™ Power220[®] Power247[®] **POWEREDGE[®]** Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET**® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SyncFET™ GENERAL ® The Power Franchise[®] franchise TinvBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinvWire™ µSerDes™ . UHC® Ultra FRFET™ UniFET™ VCX™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	dentification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor res			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.		