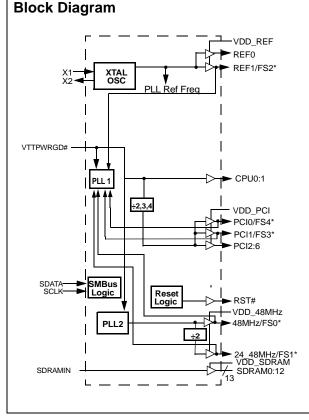
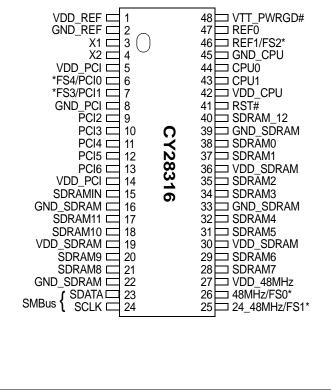


FTG for VIA PL133T and PLE133T

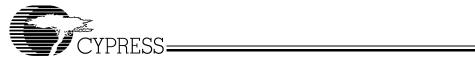

Features

- Single-chip system frequency synthesizer for VIA PL133T and PLE133T chipsets
- Programmable clock output frequency with less than
 1 MHz increment
- Integrated fail-safe Watchdog Timer for system recovery
- Automatically switches to HW-selected or SW-programmed clock frequency when Watchdog Timer time-out occurs
- Capable of generating system RESET after a Watchdog Timer time-out occurs or a change in output frequency via SMBus interface
- Supports SMBus byte Read/Write and block Read/Write operations to simplify system BIOS development


- Vendor ID and Revision ID support
- Programmable drive strength for SDRAM and PCI output clocks
- Programmable output skew for CPU, PCI, and SDRAM
- Maximized electromagnetic interference (EMI) suppression using Cypress's Spread Spectrum technology
- Available in 48-pin SSOP

Key Specifications

CPU to CPU Output Skew:	175 ps
PCI to PCI Output Skew:	500 ps



Pin Configuration^[1]

Note:

1. Signals marked with '*' have internal pull-up resistors.

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description		
CPU0:1	44, 43	0	CPU Clock Output 0 through 1: CPU clocks for processor and chipset.		
PCI2:6	9, 10, 11, 12, 13	0	PCI Clock Outputs 2 through 6 : 3.3V 33-MHz PCI clock outputs. Frequency is set by FS0:4 inputs or through serial data interface.		
PCI1/FS3	7	I/O	<i>Fixed PCI Clock Output/Frequency Select 3</i> : 3.3V PCI clock outputs. As an output, frequency is set by FS0:4 inputs or through the serial data interface. This pin also serves as a power-on strap option to determine the device operating frequency, as described in <i>Table 5</i> .		
PCI0/FS4	6	I/O	<i>Fixed PCI Clock Output/Frequency Select 4</i> : 3.3V PCI clock outputs. This pin also serves as a power-on strap option to determine the device operating frequency, as described in <i>Table 5</i> .		
RST#	41	O (open-drain)	Reset# Output: Open drain system reset output.		
48MHz/FS0	26	I/O	48-MHz Output/Frequency Select 0 : 3.3V 48-MHz non-spread spectrum output. This pin also serves as a power-on strap option to determine the device operating frequency as described in <i>Table 5</i> .		
24_48MHz/ FS1	25	I/O	24_48MHz Output/Frequency Select 1 : 3.3V 24- or 48-MHz non-spread spectrum output. This pin also serves as a power-on strap option to determine the device operating frequency, as described in <i>Table 5</i> .		
REF1/FS2	46	I/O	Reference Clock Output 1/Frequency Select 2 : 3.3V 14.318-MHz output clock. This pin also serves as a power-on strap option to determine the device operating frequency as described in <i>Table 5</i> .		
REF0	47	0	Reference Clock Output 0: 3.3V 14.318-MHz output clock.		
SDRAMIN	15	I	SDRAM Buffer Input Pin: Reference input for SDRAM buffer.		
SDRAM0:12	38, 37, 35, 34, 32, 31, 29, 28, 21, 20, 18, 17, 40	0	SDRAM Outputs : These thirteen dedicated outputs provide copies of the signal provided at the SDRAMIN input.		
SCLK	24	I	Clock pin for SMBus circuitry.		
SDATA	23	I/O	Data pin for SMBus circuitry.		
X1	3	I	<i>Crystal Connection or External Reference Frequency Input</i> . This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input.		
X2	4	0	<i>Crystal Connection</i> : An output connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.		
VTT_PWRGD#	48	I	VTT_PWRGD# : 3.3V LVTTL compatible input that controls the FS0:4 to be latched and enables all outputs. CY28316 will sample the FS0:4 inputs and enable all clock outputs after all V_{DD} become valid and VTT_PWRGD# is held LOW.		
VDD_REF, VDD_PCI, VDD_SDRAM, VDD_48MHz	1, 5, 14, 19, 27, 30, 36	Р	Power Connection : Power supply for core logic, PLL circuitry, SDRAM outputs, PCI outputs, reference outputs, 48-MHz output, and 24_48-MHz output. Connect to 3.3V supply.		
VDD_CPU	42	Р	Power Connection: Power supply for CPU outputs. Connect to 2.5V supply.		
GND_REF, GND_PCI, GND_SDRAM, VDD_48MHz, VDD_CPU	2, 8, 16, 22, 33, 39, 45	G	<i>Ground Connections</i> : Connect all ground pins to the common system ground plane.		

Serial Data Interface

The CY28316 features a two-pin, serial data interface that can be used to configure internal register settings that control particular device functions.

Data Protocol

The clock driver serial protocol supports byte/word Write, byte/word Read, block Write and block Read operations from the controller. For block Write/Read operation, the bytes must be accessed in sequential order from lowest to highest byte, with the ability to stop after any complete byte has been transferred. For byte/word Write and byte Read operations, the system controller can access individual indexed bytes. The offset of the indexed byte is encoded in the command code.

The definition for the command code is defined in Table 1.

Table 1. Command Code Definition

Bit	Descriptions
7	0 = Block read or block write operation 1 = Byte/Word read or byte/word write operation
6:0	Byte offset for byte/word read or write operation. For block read or write operations, these bits need to be set at '0000000.'

Table 2. Block Read and Block Write Protocol

	Block Write Protocol	Block Read Protocol			
Bit	Bit Description		Description Bit		Description
1	Start	1	Start		
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits		
9	Write	9	Write		
10	Acknowledge from slave	10	Acknowledge from slave		
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation		
19	Acknowledge from slave	19	Acknowledge from slave		
20:27	Byte Count – 8 bits	20	Repeat start		
28	Acknowledge from slave	21:27	Slave address – 7 bits		
29:36	Data byte 0 – 8 bits	28	Read		
37	Acknowledge from slave	29	Acknowledge from slave		
38:45	Data byte 1 – 8 bits	30:37	Byte count from slave – 8 bits		
46	Acknowledge from slave	38	Acknowledge		
	Data Byte N/Slave Acknowledge	39:46	Data byte from slave – 8 bits		
	Data Byte N – 8 bits	47	Acknowledge		
	Acknowledge from slave	48:55	Data byte from slave – 8 bits		
	Stop	56	Acknowledge		
			Data bytes from slave/Acknowledge		
			Data byte N from slave – 8 bits		
			Not acknowledge		
			Stop		

Table 3. Word Read and Word Write Protocol

	Word Write Protocol		Word Read Protocol		
Bit	Description	Bit	Description		
1	Start	1	Start		
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits		
9	Write	9	Write		
10	Acknowledge from slave	10	Acknowledge from slave		

Table 3. Word Read and Word Write Protocol (continued)

	Word Write Protocol		Word Read Protocol
Bit	Description	Bit	Description
11:18	Command Code – 8 bits '1xxxxxx' stands for byte or word operation bit[6:0] of the command code represents the offset of the byte to be accessed	11:18	Command Code – 8 bits '1xxxxxx' stands for byte or word operation bit[6:0] of the command code represents the offset of the byte to be accessed
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte low – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29:36	Data byte high – 8 bits	28	Read
37	Acknowledge from slave	29	Acknowledge from slave
38	Stop	30:37	Data byte low from slave – 8 bits
		38	Acknowledge
		39:46	Data byte high from slave – 8 bits
		47	Not acknowledge
		48	Stop

Table 4. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Bit Description		Description
1	Start	1	Start
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
11:18	11:18 Command Code – 8 bits '1xxxxxx' stands for byte operation bit[6:0] of the command code represents the offset of the byte to be accessed		Command Code – 8 bits '1xxxxxx' stands for byte operation bit[6:0] of the command code represents the offset of the byte to be accessed
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		30:37	Data byte from slave – 8 bits
		38	Not acknowledge
		39	Stop

CY28316 Serial Configuration Map

- 1. The serial bits will be read by the clock driver in the following order:
 - Byte 0 Bits 7, 6, 5, 4, 3, 2, 1, 0
 - Byte 1 Bits 7, 6, 5, 4, 3, 2, 1, 0
 - Byte N Bits 7, 6, 5, 4, 3, 2, 1, 0
- 2. All unused register bits (reserved and N/A) should be written to a "0" level.
- 3. All register bits labeled "Write with 1" must be written to "1" during initialization.

Byte 0: Control Register 0

Bit	Pin#	Name	Default	Description
Bit 7	-	Spread Select1	0	See definition in Bit[0].
Bit 6	-	SEL2	0	See Table 5.
Bit 5	-	SEL1	0	See Table 5.
Bit 4	-	SEL0	0	See Table 5.
Bit 3	-	FS_Override	0	0 = Select operating frequency by FS[4:0] input pins. 1 = Select operating frequency by SEL[4:0] settings.
Bit 2	-	SEL4	0	See Table 5.
Bit 1	-	SEL3	0	See Table 5.
Bit 0	-	Spread Select0	0	'00' = OFF.
				'01' = - 0.5%.
				$^{\prime}10' = \pm 0.5\%.$
				'11' = ± 0.25%.

Byte 1: Control Register 1

Bit	Pin#	Name	Default	Description
Bit 7	6	Latched FS4 input	Х	Latched FS[4:0] inputs. These bits are read-only.
Bit 6	7	Latched FS3 input	Х	
Bit 5	46	Latched FS2 input	Х	
Bit 4	25	Latched FS1 input	Х	
Bit 3	26	Latched FS0 input	Х	
Bit 2	44	CPU0	1	(Active/Inactive).
Bit 1	43	CPU1	1	(Active/Inactive).
Bit 0	-	Vendor Test Mode	1	Write with '1.'

Byte 2: Control Register 2

Bit	Pin#	Name	Default	Description
Bit 7	40	SDRAM12	1	(Active/Inactive).
Bit 6	6	PCI0	1	(Active/Inactive).
Bit 5	13	PCI6	1	(Active/Inactive).
Bit 4	12	PCI5	1	(Active/Inactive).
Bit 3	11	PCI4	1	(Active/Inactive).
Bit 2	10	PCI3	1	(Active/Inactive).
Bit 1	9	PCI2	1	(Active/Inactive).
Bit 0	7	PCI1	1	(Active/Inactive).

Byte 3: Control Register 3

Bit	Pin#	Name	Default	Description
Bit 7	21, 20, 18, 17	SDRAM8:11	1	(Active/Inactive).
Bit 6	-	SEL_48MHz	0	0 = 24 MHz. 1 = 48 MHz.
Bit 5	26	48MHz	1	(Active/Inactive).
Bit 4	25	24_48MHz	1	(Active/Inactive).
Bit 3	29, 28	SDRAM6:7	1	(Active/Inactive).
Bit 2	32, 31	SDRAM4:5	1	(Active/Inactive).
Bit 1	35, 34	SDRAM2:3	1	(Active/Inactive).
Bit 0	38, 37	SDRAM0:1	1	(Active/Inactive).

Byte 4: Control Register 4

Bit	Pin#	Name	Default	Description
Bit 7	-	Reserved	0	Reserved.
Bit 6	-	Reserved	0	Reserved.
Bit 5	-	Reserved	0	Reserved.
Bit 4	-	Reserved	0	Reserved.
Bit 3	-	Reserved	0	Reserved.
Bit 2	-	Reserved	0	Reserved.
Bit 1	-	Reserved	0	Reserved.
Bit 0	-	Reserved	0	Reserved.

Byte 5: Control Register 5

Bit	Pin#	Name	Default	Description
Bit 7	-	Reserved	0	Reserved.
Bit 6	-	Reserved	0	Reserved.
Bit 5	-	Reserved	0	Reserved.
Bit 4	-	Reserved	0	Reserved.
Bit 3	-	Reserved	0	Reserved.
Bit 2	-	Reserved	0	Reserved.
Bit 1	46	REF1	1	(Active/Inactive).
Bit 0	47	REF0	1	(Active/Inactive).

Byte 6: Watchdog Timer Register

Bit	Name	Default	Pin Description
Bit 7	PCI_Skew1	0	PCI skew control.
Bit 6	PCI_Skew0	0	00 = Normal. 01 = -500 ps. 10 = Reserved. 11 = +500 ps.
Bit 5	WD_TIMER4	1	These bits store the time-out value of the Watchdog Timer. The scale of the
Bit 4	WD_TIMER3	1	timer is determined by the prescaler. The timer can support a value of 150 ms to 4.8 sec when the prescaler is set to 150 ms. If the prescaler is set to 2.5 sec,
Bit 3	WD_TIMER2	1	it can support a value from 2.5 sec to 80 sec. When the Watchdog Timer reaches
Bit 2	WD_TIMER1	1	"0," it will set the WD_TO_STATUS bit and generate Reset if RST_EN_WD is
Bit 1	WD_TIMER0	1	enabled.
Bit 0	WD_PRE_ SCALER	0	0 = 150 ms. 1 = 2.5 sec.

Byte 7: Control Register 7

Bit	Pin#	Name	Default	Pin Description
Bit 7	-	Reserved	0	Reserved.
Bit 6	25	24_48MHz_DRV	1	0 = Norm, 1 = High Drive.
Bit 5	26	48MHz_DRV	1	0 = Norm, 1 = High Drive.
Bit 4	-	Reserved	0	Reserved.
Bit 3	-	Reserved	0	Reserved.
Bit 2	-	Reserved	0	Reserved.
Bit 1	-	Reserved	0	Reserved.
Bit 0	-	Reserved	0	Reserved.

Byte 8: Vendor ID and Revision ID Register (Read Only)

Bit	Name	Default	Pin Description	
Bit 7	Revision_ID3	0	Revision ID bit[3].	
Bit 6	Revision_ID2	0	Revision ID bit[2].	
Bit 5	Revision_ID1	0	Revision ID bit[1].	
Bit 4	Revision_ID0	0	Revision ID bit[0].	
Bit 3	Vendor_ID3	1	Bit[3] of Cypress's Vendor ID. This bit is read-only.	
Bit 2	Vendor_ID2	0	Bit[2] of Cypress's Vendor ID. This bit is read-only.	
Bit 1	Vendor _ID1	0	Bit[1] of Cypress's Vendor ID. This bit is read-only.	
Bit 0	Vendor _ID0	0	Bit[0] of Cypress's Vendor ID. This bit is read-only.	

Byte 9: System RESET and Watchdog Timer Register

r			
Bit	Name	Default	Pin Description
Bit 7	SDRAM_DRV	0	SDRAM clock output drive strength. 0 = Normal. 1 = High Drive.
Bit 6	PCI_DRV	0	PCI clock output drive strength. 0 = Normal. 1 = High Drive.
Bit 5	Reserved	0	Reserved
Bit 4	RST_EN_WD	0	This bit will enable the generation of a Reset pulse when a Watchdog Timer time-out occurs. 0 = Disabled. 1 = Enabled.
Bit 3	RST_EN_FC	0	This bit will enable the generation of a Reset pulse after a frequency change occurs. 0 = Disabled. 1 = Enabled.
Bit 2	WD_TO_STATUS	0	Watchdog Timer Time-out Status bit. 0 = No time-out occurs (Read); Ignore (Write). 1 = Time-out occurred (Read); Clear WD_TO_STATUS (Write).
Bit 1	WD_EN	0	 0 = Stop and reload Watchdog Timer. Unlock CY28316 from recovery frequency mode. 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs. Note: CY28316 will generate a system Reset, reload a recovery frequency, and lock itself into a recovery frequency mode after a Watchdog Timer time-out occurs. Under recovery frequency mode, CY28316 will not respond to any attempt to change output frequency via the SMBus control bytes. System software can unlock CY28316 from its recovery frequency mode by clearing the WD_EN bit.

Byte 9: System RESET and Watchdog Timer Register (continued)

Bit	Name	Default	Pin Description
Bit 0	CPU0:1_DRV		CPU0:1 clock output drive strength. 0 = Normal. 1 = High Drive.

Byte 10: Skew Control Register

Bit	Name	Default	Description
Bit 7	CPU0:1_Skew2	0	CPU0:1 output skew control.
Bit 6	CPU0:1_Skew1	0	000 = Normal. −001 = −150 ps.
Bit 5	CPU0:1_Skew0	0	$\begin{array}{l} 010 = -300 \text{ ps.} \\ 011 = -450 \text{ ps.} \\ 100 = +150 \text{ ps.} \\ 101 = +300 \text{ ps.} \\ 110 = +450 \text{ ps.} \\ 111 = +600 \text{ ps.} \end{array}$
Bit 4	Reserved	0	Reserved.
Bit 3	Reserved	0	Reserved.
Bit 2	Reserved	0	Reserved.
Bit 1	Reserved	0	Reserved.
Bit 0	Reserved	0	Reserved.

Byte 11: Recovery Frequency N-Value Register

Bit	Name	Default	Pin Description	
Bit 7	ROCV_FREQ_N7	0	If ROCV_FREQ_SEL is set, CY28316 will use the values programmed in	
Bit 6	ROCV_FREQ_N6	0	ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] to determine the recovery CPU output frequency when a Watchdog Timer time-out occurs. The setting	
Bit 5	ROCV_FREQ_N5	0	of FS_Override bit determines the frequency ratio for CPU and PCI. When i	
Bit 4	ROCV_FREQ_N4	0	is cleared, CY28316 will use the same frequency ratio stated in the Latched	
Bit 3	ROCV_FREQ_N3	0	FS[4:0] register. When it is set, CY28316 will use the frequency ratio stated in the SEL[4:0] register. CY28316 supports programmable CPU frequencies	
Bit 2	ROCV_FREQ_N2	0	ranging from 50 MHz to 248 MHz. CY28316 will change the output frequency	
Bit 1	ROCV_FREQ_N1	0	whenever there is an update to either ROCV_FREQ_N[7:0] or ROCV_FREQ_M[6:0]. Therefore it is recommended to use word or block Wr	
Bit 0	ROCV_FREQ_N0	0	to update both registers within the same SMBus bus operation.	

Byte 12: Recovery Frequency M-Value Register

Bit	Name	Default	Pin Description			
Bit 7	ROCV_FREQ_SEL	0	ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog Timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL. 0 = From latched FS[4:0]. 1 = From the settings of ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0].			
Bit 6	ROCV_FREQ_M6	0	If ROCV_FREQ_SEL is set, CY28316 will use the values programmed in			
Bit 5	ROCV_FREQ_M5	0	ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] to determine the recover CPU output frequency when a Watchdog Timer time-out occurs. The setting			
Bit 4	ROCV_FREQ_M4	0	of the FS_Override bit determines the frequency ratio for CPU, SDRAM, and			
Bit 3	ROCV_FREQ_M3	0	PCI. When it is cleared, CY28316 will use the same frequency ratio stated in			
Bit 2	ROCV_FREQ_M2	0	the Latched FS[4:0] register. When it is set, CY28316 will use the frequency ratio stated in the SEL[4:0] register. CY28316 supports programmable CPU			
Bit 1	ROCV_FREQ_M1	0	frequencies ranging from 50 MHz to 248 MHz. CY28316 will change the output			
Bit 0	ROCV_FREQ_M0	0	frequency whenever there is an update to either ROCV_FREQ_N[7:0] or ROCV_FREQ_M[6:0]. Therefore, it is recommended to use word or block Write to update both registers within the same SMBus bus operation.			

Byte 13: Programmable Frequency Select N-Value Register

Bit	Name	Default	Pin Description
Bit 7	CPU_FSEL_N7	0	If Prog_Freq_EN is set, CY28316 will use the values programmed in
Bit 6	CPU_FSEL_N6	0	CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] to determine the CPU output frequency. The new frequency will start to load whenever CPU_FSELM[6:0]
Bit 5	CPU_FSEL_N5	0	is updated. The setting of the FS_Override bit determines the frequency ratio
Bit 4	CPU_FSEL_N4	0	for CPU, SDRAM, and PCI. When it is cleared, CY28316 will use the same frequency ratio stated in the Latched FS[4:0] register. When it is set, CY28316
Bit 3	CPU_FSEL_N3	0	will use the frequency ratio stated in the SEL[4:0] register. CY28316 supports
Bit 2	CPU_FSEL_N2	0	programmable CPU frequencies ranging from 50 MHz to 248 MHz.
Bit 1	CPU_FSEL_N1	0	
Bit 0	CPU_FSEL_N0	0	

Byte 14: Programmable Frequency Select M-Value Register

Bit	Name	Default	Description		
Bit 7	Pro_Freq_EN	0	Programmable output frequencies enabled. 0 = Disabled. 1 = Enabled.		
Bit 6	CPU_FSEL_M6	0	If Prog_Freq_EN is set, CY28316 will use the values programmed in		
Bit 5	CPU_FSEL_M5	0	CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] to determine the CPU output frequency. The new frequency will start to load whenever CPU_FSELM[6:0] is		
Bit 4	CPU_FSEL_M4	0	updated. The setting of the FS_Override bit determines the frequency ratio for		
Bit 3	CPU_FSEL_M3	0	CPU, SDRAM, and PCI. When it is cleared, CY28316 will use the same		
Bit 2	CPU_FSEL_M2	0	frequency ratio stated in the Latched FS[4:0] register. When it is set, CY2 will use the frequency ratio stated in the SEL[4:0] register. CY28316 sup		
Bit 1	CPU_FSEL_M1	0	programmable CPU frequencies ranging from 50 MHz to 248 MHz.		
Bit 0	CPU_FSEL_M0	0			

Byte 15: Reserved Register

Bit	Pin#	Name	Default	Description
Bit 7	-	Reserved	0	Reserved.
Bit 6	_	Reserved	0	Reserved.
Bit 5	_	Reserved	0	Reserved.
Bit 4	-	Reserved	0	Reserved.
Bit 3	-	Reserved	0	Reserved.
Bit 2	-	Vendor test mode	0	Reserved. Write with '0.'
Bit 1	-	Vendor test mode	1	Test mode. Write with '1.'
Bit 0	-	Vendor test mode	1	Test mode. Write with '1.'

Byte 16: Reserved Register

Bit	Pin#	Name	Default	Description
Bit 7	-	Reserved	0	Reserved.
Bit 6	-	Reserved	0	Reserved.
Bit 5	-	Reserved	0	Reserved.
Bit 4	-	Reserved	0	Reserved.
Bit 3	-	Reserved	0	Reserved.
Bit 2	-	Reserved	0	Reserved.
Bit 1	-	Reserved	0	Reserved.

Byte 17: Reserved Register

Bit	Pin#	Name	Default	Description
Bit 7	-	Reserved	0	Reserved.
Bit 6	-	Reserved	0	Reserved.

Byte 17: Reserved Register (continued)

Bit	Pin#	Name	Default	Description
Bit 5	-	Reserved	0	Reserved.
Bit 4	-	Reserved	0	Reserved.
Bit 3	-	Reserved	0	Reserved.
Bit 2	-	Reserved	0	Reserved.
Bit 1	-	Reserved	0	Reserved.

 Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes

	In	put Conditio	ons		Output Fr	equency	
FS4	FS3	FS2	FS1	FS0			PLL Gear
SEL4	SEL3	SEL2	SEL1	SEL0	CPU	PCI	Constant (G)
0	0	0	0	0	200.0	33.3	48.000741
0	0	0	0	1	190.0	38.0	48.000741
0	0	0	1	0	180.0	36.0	48.000741
0	0	0	1	1	170.0	34.0	48.000741
0	0	1	0	0	166.0	33.2	48.000741
0	0	1	0	1	160.0	32.0	48.000741
0	0	1	1	0	150.0	37.5	48.000741
0	0	1	1	1	145.0	36.3	48.000741
0	1	0	0	0	140.0	35.0	48.000741
0	1	0	0	1	136.0	34.0	48.000741
0	1	0	1	0	130.0	32.5	48.000741
0	1	0	1	1	124.0	31.0	48.000741
0	1	1	0	0	67.2	33.6	48.000741
0	1	1	0	1	100.8	33.6	48.000741
0	1	1	1	0	118.0	39.3	48.000741
0	1	1	1	1	134.4	33.6	48.000741
1	0	0	0	0	67.0	33.5	48.000741
1	0	0	0	1	100.5	33.5	48.000741
1	0	0	1	0	115.0	38.3	48.000741
1	0	0	1	1	134.0	33.5	48.000741
1	0	1	0	0	66.8	33.4	48.000741
1	0	1	0	1	100.2	33.4	48.000741
1	0	1	1	0	110.0	36.7	48.000741
1	0	1	1	1	133.6	33.4	48.000741
1	1	0	0	0	105.0	35.0	48.000741
1	1	0	0	1	90.0	30.0	48.000741
1	1	0	1	0	85.0	28.3	48.000741
1	1	0	1	1	78.0	39.0	48.000741
1	1	1	0	0	66.6	33.3	48.000741
1	1	1	0	1	100.0	33.3	48.000741
1	1	1	1	0	75.0	37.5	48.000741
1	1	1	1	1	133.3	33.3	48.000741

Programmable Output Frequency, Watchdog Timer, and Recovery Output Frequency Functional Description

The Programmable Output Frequency feature allows users to generate any CPU output frequency in the range of 50 MHz to 248 MHz. Cypress offers the most dynamic and the simplest programming interface for system developers to utilize this feature in their platforms.

The Watchdog Timer and Recovery Output Frequency features allow users to implement a recovery mechanism **Table 6. Register Summary**

when the system hangs or gets unstable. System BIOS or other control software can enable the Watchdog Timer before it attempts to make a frequency change. If the system hangs and a Watchdog Timer time-out occurs, a system reset will be generated and a recovery frequency will be activated.

All the related registers are summarized in *Table 6*.

Name	Description
Pro_Freq_EN	Programmable output frequencies enabled. 0 = Disabled (default). 1 = Enabled. When it is disabled, the operating output frequency will be determined by either the latched value of FS[4:0] inputs or the programmed value of SEL[4:0]. If FS_Override bit is clear, latched FS[4:0] inputs will be used. If the FS_Override bit is set, the programmed value of SEL[4:0] will be used. When it is enabled, the CPU output frequency will be determined by the programmed value of CPUFSEL_N, CPUFSEL_M, and the PLL Gear Constant. The program value of FS_Override, SEL[4:0] or the latched value of FS[4:0] will determine the PLL Gear Constant and the frequency ratio between CPU and other frequency outputs.
FS_Override	 When Pro_Freq_EN is cleared or disabled, 0 = Select operating frequency by FS input pins (default). 1 = Select operating frequency by SEL bits in SMBus control bytes. When Pro_Freq_EN is set or enabled, 0 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the latched value of FS input pins (default). 1 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the programmed value of SEL bits in SMBus control bytes.
CPU_FSEL_N, CPU_FSEL_M	When Prog_Freq_EN is set or enabled, the values programmed in CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] determine the CPU output frequency. The new frequency will start to load whenever there is an update to either CPU_FSEL_N[7:0] or CPU_FSEL_M[6:0]. Therefore, it is recommended to use word or block Write to update both registers within the same SMBus bus operation. The setting of the FS_Override bit determines the frequency ratio for CPU and PCI. When FS_Override is cleared or disabled, the frequency ratio follows the latched value of the FS input pins. When FS_Override is set or enabled, the frequency ratio follows the programmed value of SEL bits in SMBus control bytes.
ROCV_FREQ_SEL	ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog Timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL. 0 = From latched FS[4:0]. 1 = From the settings of ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0].
ROCV_FREQ_N[7:0], ROCV_FREQ_M[6:0]	When ROCV_FREQ_SEL is set, the values programmed in ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output frequency when a Watchdog Timer time-out occurs. The setting of the FS_Override bit determines the frequency ratio for CPU and SDRAM. When it is cleared, the same frequency ratio stated in the Latched FS[4:0] register will be used. When it is set, the frequency ratio stated in the SEL[4:0] register will be used. The new frequency will start to load whenever there is an update to either ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recommended to use word or block Write to update both registers within the same SMBus bus operation.
WD_EN	0 = Stop and reload Watchdog Timer. Unlock CY28316 from recovery frequency mode. 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs. Note: CY28316 will generate system reset, reload a recovery frequency, and lock itself into a recovery frequency mode after a Watchdog Timer time-out occurs. Under recovery frequency mode, CY28316 will not respond to any attempt to change output frequency via the SMBus control bytes. System software can unlock CY28316 from its recovery frequency mode by clearing the WD_EN bit.
WD_TO_STATUS	Watchdog Timer Time-out Status bit. 0 = No time-out occurs (Read); Ignore (Write). 1 = Time-out occurred (Read); Clear WD_TO_STATUS (Write).

Table 6. Register Summary

Name	Description
WD_TIMER[4:0]	These bits store the time-out value of the Watchdog Timer. The scale of the timer is determine by the prescaler. The timer can support a value of 150 ms to 4.8 sec when the prescaler is set to 150 ms. If the prescaler is set to 2.5 sec, it can support a value from 2.5 sec to 80 sec. When the Watchdog Timer reaches "0," it will set the WD_TO_STATUS bit.
WD_PRE_SCALER	0 = 150 ms. 1 = 2.5 sec.
RST_EN_WD	This bit will enable the generation of a Reset pulse when a watchdog timer time-out occurs. 0 = Disabled. 1 = Enabled.
RST_EN_FC	This bit will enable the generation of a Reset pulse after a frequency change occurs. 0 = Disabled. 1 = Enabled.

How to Program CPU Output Frequency?

When the programmable output frequency feature is enabled (Pro_Freq_EN bit is set), the CPU output frequency is determined by the following equation:

Fcpu = G * (N+3)/(M+3).

"N" and "M" are the values programmed in the Programmable Frequency Select N-Value Register and M-Value Register, respectively.

"G" stands for the PLL Gear Constant, which is determined by the programmed value of FS[4:0] or SEL[4:0]. The value is listed in *Table 3*.

Table 7. Examples of N and M Value for Different CPU Frequency Range

Frequency Ranges	Gear Constants	Fixed Value for M-Value Register	Range of N-Value Register for Different CPU Frequency
50 MHz – 129 MHz	48.00741	93	97–255
130 MHz – 248 MHz	48.00741	45	127–245

[(N+3)/(M+3) > 1]. *Table* lists set of N and M values for different frequency output ranges. This example uses a fixed value for the M-Value Register and selects the CPU output frequency by changing

the value of the N-Value Register.

The ratio of (N+3) and (M+3) needs to be greater than "1"

Absolute Maximum Ratings^[2.]

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
Τ _B	Ambient Temperature under Bias	-55 to +125	°C
T _A	Operating Temperature	0 to +70	°C
ESD _{PROT}	Input ESD Protection	2 (min.)	kV

DC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, $V_{DDQ3} = 3.3V \pm 5\%^{[3]}$

Parameter	Descri	otion	Test Condition	Min.	Тур.	Max.	Unit
Supply Cur	rent						
I _{DD}	3.3V Supply Current				260		mA
I _{DD}	2.5V Supply Current				25		mA
Logic Input	S					11	
V _{IL}	Input Low Voltage			GND – 0.3		0.8	V
V _{IH}	Input High Voltage			2.0		V _{DD} + 0.3	V
IIL	Input Low Current ^[4]					-25	μA
IIH	Input High Current ^[4]					10	μA
Clock Outp	uts						
V _{OL}	Output Low Voltage		I _{OL} = 1 mA			50	mV
V _{OH}	Output High Voltage		I _{OH} = -1 mA	3.1			V
I _{OL}	Output Low Current	PCI	V _{OL} = 1.5V	70	110	135	mA
		REF	V _{OL} = 1.5V	50	70	100	mA
		48 MHz	V _{OL} = 1.5V	50	70	100	mA
		24 MHz	V _{OL} = 1.5V	50	70	100	mA
		SDRAM	V _{OL} = 1.5V	70	110	135	mA
I _{ОН}	Output High Current	PCI	V _{OH} = 1.5V	70	110	135	mA
		REF	V _{OH} = 1.5V	50	70	100	mA
		48 MHz	V _{OH} = 1.5V	50	70	100	mA
		24 MHz	V _{OH} = 1.5V	50	70	100	mA
		SDRAM	V _{OH} = 1.5V	70	110	135	mA
Crystal Osc	illator						
V _{TH}	X1 Input Threshold Ve	oltage ^[5]	V _{DDQ3} = 3.3V		1.65		V
C _{LOAD}	Load Capacitance, Imposed on External Crystal ^[6]				18		pF
C _{IN,X1}	X1 Input Capacitance ^[7]		Pin X2 unconnected		TBD		pF
Pin Capacit	ance/Inductance					<u>.</u>	
C _{IN}	Input Pin Capacitance	9	Except X1 and X2			5	pF
C _{OUT}	Output Pin Capacitan	се				6	pF
L _{IN}	Input Pin Inductance					7	nH

Notes:

Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. All clock outputs loaded with 6" 60Ω transmission lines with 20-pF capacitors. CY28316 logic inputs (except FS3) have internal pull-up devices (pull-ups not full CMOS level). Logic input FS3 has an internal pull-down device. X1 input threshold voltage (typical) is V_{DD}/2. **2.** 3.

4.

5.

The CY28316 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. The total load placed on the crystal is 18 pF; this includes typical stray capacitance of short PCB traces to the crystal. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected). 6.

7.

AC Electrical Characteristics ($T_A = 0^{\circ}C$ to +70°C, $V_{DDQ3} = 3.3V \pm 5\%$, $f_{XTL} = 14.31818$ MHz)

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output; Spread Spectrum is disabled.

CPU Clock Outputs (CPUT0, CPUC0, CPU_CS)^[8]

			CPU	l = 100	MHz	CPU	CPU = 133 MHz		
Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _R	Output Rise Edge Rate		1.0		4.0	1.0		4.0	V/ns
t _F	Output Fall Edge Rate		1.0		4.0	1.0		4.0	V/ns
t _D	Duty Cycle	Measured at 50% point	45		55	45		55	%
t _{JC}	Jitter, Cycle to Cycle				375			375	ps
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.		3			3		ms
Zo	AC Output Impedance	$V_{O} = V_{X}$		50			50		Ω

PCI Clock Outputs, PCI0:5 (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
t _P	Period	Measured on the rising edge at 1.5V	30			ns
t _H	High Time	Duration of clock cycle above 2.4V	12			ns
tL	Low Time	Duration of clock cycle below 0.4V	12			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on the rising and falling edges at 1.5V	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on the rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.			250	ps
t _{SK}	Output Skew	Measured on the rising edge at 1.5V			500	ps
to	CPU to PCI Clock Skew	Covers all CPU/PCI outputs. Measured on the rising edge at 1.5V. CPU leads PCI output.	1.5		4	ns
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for deter- mining series termination value.		30		Ω

REF0:1 Clock Outputs (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f	Frequency, Actual	Frequency generated by the crystal oscillator	14.318			MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	0.5		2	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	0.5		2	V/ns
t _D	Duty Cycle	Measured on the rising and falling edges at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Zo	AC Output Impedance	Average value during switching transition. Used for determining series termination value.		40		Ω

Note:

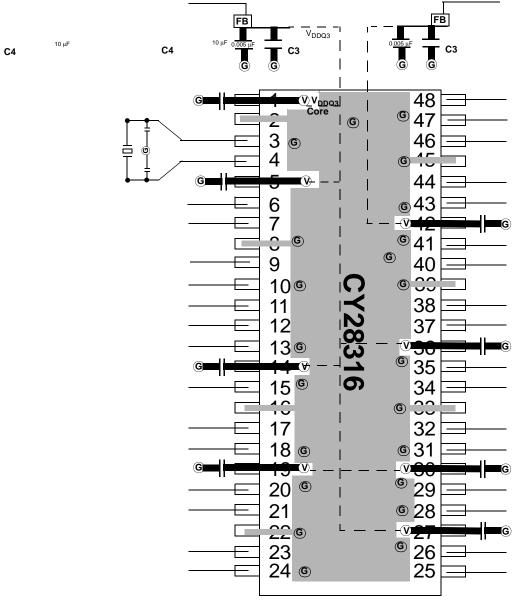
8. Refer to Figure 1 for K7 operation clock driver test circuit.

48-MHz Clock Output (Lump Capacitance Test Load = 20 pF)

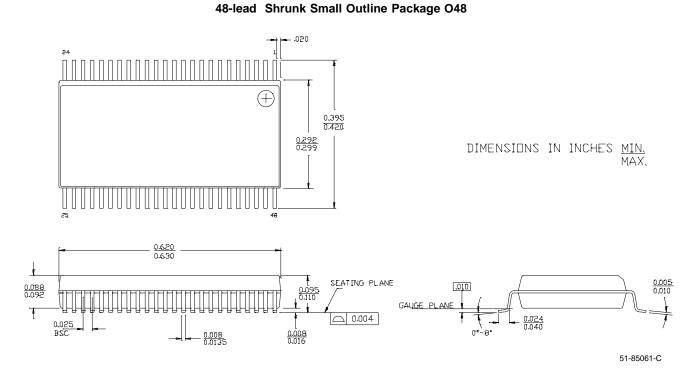
Parameter	Description	Test Condition/Comments		Тур.	Max.	Unit
f	Frequency, Actual	Determined by PLL divider ratio (see m/n below)	48.008			MHz
f _D	Deviation from 48 MHz	(48.008 - 48)/48	+167		ppm	
m/n	PLL Ratio	(14.31818 MHz × 57/17 = 48.008 MHz)	57/17			
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V 0			2	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V 0.5			2	V/ns
t _D	Duty Cycle	Measured on the rising and falling edges at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	quency Stabilization n Power-up (cold start)Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used40for determining series termination value.40			Ω	

24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f	Frequency, Actual	Determined by PLL divider ratio (see m/n below)	24.004			MHz
f _D	Deviation from 24 MHz	(24.004 - 24)/24	+167		ppm	
m/n	PLL Ratio	(14.31818 MHz × 57/34 = 24.004 MHz)	57/34			
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V 0.5			2	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	0.5		2	V/ns
t _D	Duty Cycle	Measured on the rising and falling edges at 1.5V	V 45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.	1 ms 3		3	ms
Zo	AC Output Impedance	Average value during switching transition. Used for determining series termination value.				Ω


Ordering Information

Ordering Code	Package Type	Operating Range
CY28316PVC	48-pin SSOP (300 mils)	Commercial, 0°C to +70°C
CY28316PVCT	48-pin SSOP (300 mils) – Tape and Reel	Commercial, 0°C to +70°C


CY28316

Layout Diagram

Package Drawing and Dimensions

VIA is a trademark of VIA Technologies, Inc. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

Document Title: CY28316 FTG for VIA PL133T and PLE133T Document Number: 38-07125					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	109866	11/13/01	IKA	New Data Sheet	
*A	120425	11/07/02	RGL	Changed the default value from 0 to 1in Bit0 of Byte1: Control Register 1 table.	
*В	122792	12/14/02	RBI	Add Power up Requirements to Operating Conditions Information	