

Document Title

512K x 32 x 4Banks Low Power SDRAM Specificaton

Revision History

Revision No.	History	Draft Date	Remark
0.0	Initial Draft	Sep 21 , 2006	Advanced
0.1	PAD coordinates are updated.	Dec 6 , 2006	Advanced
0.2	PAD allocation changed. (BA0,BA1)	Dec 19 , 2006	Advanced
0.3	DQ Order changed	Oct 9, 2007	

Emerging Memory & Logic Solutions Inc.

4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea Zip Code : 690-717 Tel : +82-64-740-1700 Fax : +82-64-740-1749~1750 / Homepage : www.emlsi.com

The attached datasheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will answer to your questions about device. If you have any questions, please contact the EMLSI office.

EMLSI Emerging Memory & Logic Solutions Inc.

EMLS232TA Series

512K x 32 x 4Banks Low Power SDRAM

512K x 32Bit x 4 Banks Low Power SDRAM

FEATURES

- · 2.8V power supply.
- · LVCMOS compatible with multiplexed address.
- · Four banks operation.
- · MRS cycle with address key programs.
 - -. CAS latency (1, 2 & 3).
 - -. Burst length(1, 2, 4, 8 & Full page).
 - -. Burst type (Sequential & Interleave).
- EMRS cycle with address key programs.
- All inputs are sampled at the positive going edge of the system clock.

· Burst read single-bit write operation.

- · Special Function Support.
- -. PASR(Partial Array Self Refresh).
- -. Internal auto TCSR (Temperature Compensated Self Refresh)
- -. DS (Driver Strength)
- -. Deep power down
- DQM for masking.
- · Auto refresh.
- · 64ms refresh period (4K cycle).
- Commercial Temperature Operation ($-0^{\circ} \sim 70^{\circ}$)

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
EMLS232TAW-6(E)	133Mbz(CL3), 100Mbz(CL2)	LVCMOS	Wafer Biz.

NOTE :

1. In case of 40 $\hbox{\rm Mz}$ Frequency, CL1 can be supported.

2. Ramsway are not designed or manufactured for use in a device or system that is used under circumstance in which human life is potentially at stake. Please contact to the memory marketing team in ramsway when considering the use of a product contained herein for any specific purpose, such as medical, aerospace, nuclear, military, vehicular or undersea repeater use.

GENERAL DESCRIPTION

The EMLS232TA series is 67,108,864 bits synchronous high data rate Dynamic RAM organized as 4 x 534,288 words by 32 bits, fabricated with Ramsway's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.

512K x 32 x 4Banks Low Power SDRAM

General Wafer Specifications

- Process Technology : 0.125um Trench DRAM Process
- Wafer thickness : 725 +/- 25um
- Wafer Diameter : 8-inch

512K x 32 x 4Banks Low Power SDRAM

PAD FUNCTION DESCRIPTION

Pad	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
CS	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby.
A ₀ ~ A ₁₀	Address	Row/column addresses are multiplexed on the same pins. Row address : $RA_0 \sim RA_{10}$, Column address : $CA_0 \sim CA_7$
BA ₀ ~ BA ₁	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with $\overline{\text{RAS}}$ low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\text{CAS}}$ low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from \overrightarrow{CAS} , \overrightarrow{WE} active.
DQM0~DQM3	Data input/output mask	Makes data output Hi-Z, t _{SHZ} after the clock and masks the output. Blocks data input when DQM active.
DQ _{0 ~ n}	Data input/output	Data inputs/outputs are multiplexed on the same pins.: $\text{DQ}_{0\sim31}$
V _{DD} /V _{SS}	Power supply/ground	Power and ground for the input buffers and the core logic.
V _{DDQ} /V _{SSQ}	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity
N.C/RFU	No connection /reserved for future use	This pin is recommended to be left No Connection on the device.

512K x 32 x 4Banks Low Power SDRAM

FUNCTIONAL BLOCK DIAGRAM

512K x 32 x 4Banks Low Power SDRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V_{SS}	V _{IN} ,V _{OUT}	-1.0 ~ 4.0	V
Voltage on V_{DD} supply relative to V_{SS}	V_{DD}, V_{DDQ}	-1.0 ~ 4.0	V
Storage temperature	T _{STG}	-55 ~ +150	C
Power dissipation	P _D	1.0	W
Short circuit current	I _{OS}	50	mA

NOTE :

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition. Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to $V_{SS} = 0V$, $T_A = -25^{\circ}C \sim 85^{\circ}C$ for Extended, $0^{\circ}C \sim 70^{\circ}C$ for Commercial)

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Supply voltage	V _{DD}	2.6	2.8	3.0	V	1
Supply voltage	V _{DDQ}	2.6	2.8	3.0	V	1
Input logic high voltage	V _{IH}	0.8 x V _{DDQ}	2.8	V _{DDQ} + 0.3	V	2
Input logic low voltage	V _{IL}	-0.3	0	0.3	V	3
Output logic high voltage	V _{OH}	0.9 x V _{DDQ}	-	-	V	$I_{OH} = -0.1 \text{mA}$
Output logic low voltage	V _{OL}	-	-	0.2	V	$I_{OL} = 0.1 \text{mA}$
Input leakage current	ILI	-2	-	2	μA	4

NOTE :

1. Under all conditions V_{DDQ} must be less than or equal to $V_{\text{DD}}.$

 $2.V_{IH}$ (max) = 4.3V AC. The overshoot voltage duration is \leq 3ns

 $3.V_{IL}$ (min) = -1.5V AC. The undershoot voltage duration is $~\leq~3 {\rm ns}$.

4.Any input 0V \leq V_{IN} \leq V_{DDQ}.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.

5.Dout is disabled, $0V \le V_{OUT} \le V_{DDQ}$.

CAPACITANCE

 $(V_{DD} = 2.8V, T_A = 23 \degree C, f = 1 Mz, V_{REF} = 0.9V \pm 50 \ mV)$

Pin	Symbol	Min	Мах	Unit	Note
Clock	C _{CLK}	1.5	3.5	pF	
RAS, CAS, WE, CS, CKE, DQM0~DQM3	C _{IN}	1.5	3.0	pF	
Address	C _{ADD}	1.5	3.0	pF	
DQ ₀ ~ DQ ₃₁	C _{OUT}	2.0	4.5	pF	

S Emerging Memory & Logic Solutions Inc. **EMLS232TA Series**

512K x 32 x 4Banks Low Power SDRAM

DC CHARACTERISRICS

Recommended operating conditions (Voltage referenced to $V_{SS} = 0V$, $T_A = 0^{\circ}C \sim 70^{\circ}C$ for Extended, -25°C ~ 85°C for Commercial)

Beromotor	Symbol	Test Conditio	Test Condition					Unit	Noto							
Falameter	Symbol	lest Condition	n		133	MHz			NOLE							
Operating Current (One Bank Active)	I _{CC1}	$\label{eq:constraint} \begin{array}{l} \mbox{Active mode; Burst length = 2; Re:} \\ t_{RC} \geq t_{RC}(min); \mbox{CL=3; } t_{CC} \mbox{=} 10\rm{ns} \\ l_{O} \mbox{=} 0\rm{mA} \end{array}$	ad or Write;		9	10		mA	1							
Precharge Standby Cur-	I _{CC2} P	$\label{eq:cke} CKE \leq V_{IL}(max), t_{CC} \mbox{=} 10 {\rm ns}$	$\label{eq:cke} CKE \leq V_{IL}(max), t_{CC} = 10 \mathrm{ns} \qquad \qquad 0.5$					0.5			$E \le V_{IL}(max), t_{CC}=10 \text{ ns}$ 0.5					
rent in power-down mode	I _{CC2} PS	CKE & CLK \leq V _{IL} (max), t _{CC} = ∞			0	.5		mA								
Precharge Standby Cur-	I _{CC2} N	$\label{eq:cke} \begin{split} \mbox{CKE} &\geq V_{IH}(\mbox{min}), \overline{\mbox{CS}} &\geq V_{IH}(\mbox{min}), \\ \mbox{Input signals are changed one tim} \end{split}$	$\label{eq:KE} \begin{split} KE &\geq V_{IH}(\text{min}),\overline{\mathrm{CS}} &\geq V_{IH}(\text{min}),t_{CC} = 10\mathrm{ns} \\ \text{put signals are changed one time during } 20\mathrm{ns} \end{split}$													
mode	I _{CC2} NS	$\label{eq:cke} \begin{array}{l} \mbox{CKE} \geq V_{IH}(\mbox{min}), \mbox{CLK} \leq V_{IL}(\mbox{max}) \\ \mbox{Input signals are stable} \end{array}$	$\geq V_{IH}(min), CLK \leq V_{IL}(max), t_{CC} = \infty$ t signals are stable													
Active Standby Current	I _{CC3} P	$CKE \le V_{IL}(max), t_{CC} = 10 \text{ns}$		5												
in power-down mode	I _{CC3} PS	CKE & CLK \leq V _{IL} (max), t _{CC} = ∞	CKE & CLK \leq V _{IL} (max), t _{CC} = $^{\infty}$					mA								
Active Standby Current in non power-down	I _{CC3} N	$\label{eq:cke} \begin{split} CKE \geq V_{IH}(\text{min}), \overline{CS} \geq V_{IH}(\text{min}), \\ \text{Input signals are changed one time} \end{split}$	t _{CC} = 10ns ne during 20ns	30				mA								
mode (One Bank Active)	I _{CC3} NS	$\label{eq:cke} \begin{array}{l} \mbox{CKE} \geq V_{IH}(\mbox{min}), \mbox{CLK} \leq V_{IL}(\mbox{max}) \\ \mbox{Input signals are stable} \end{array}$), $t_{CC} = \infty$	25				mA								
Operating Current (Burst Mode)	I _{CC} 4	I _O = 0mA Page burst, CL=3, Read or Write, 4Banks Activated	t _{CC} = 10ns	110				mA	1							
Refresh Current	I _{CC} 5	$t_{ARFC} \ge t_{ARFC}(min), t_{CC} = 10 \text{ ns}$			11	10		mA	2							
			Internal Auto TCSR	Max 15	Max 45	Max 70	Max 85	ĉ								
Self Refresh Current I _{CC} 6		$CKE \leq 0.2V$	Full Array	TBD	TBD	TBD	250									
			TBD	TBD	TBD	190	μA									
			1/4 of Full Array	TBD	TBD	TBD	150									
Deep Power Down mode current	I _{CC} 7				1	0		μA								

NOTE :

Measured with outputs open.
Refresh period is 64ms.

3.Unless otherwise noted, input swing level is $CMOS(V_{IH}/V_{IL}=V_{DDQ}/V_{SSQ})$.

512K x 32 x 4Banks Low Power SDRAM

AC OPERATING TEST CONDITIONS

(V_DD = 2.6V ~ 3.0V, T_A = 0 $^\circ \!\!\! C$ ~ 70 $^\circ \!\!\! C$ for Commercial, -25 $^\circ \!\!\! C$ ~85 $^\circ \!\!\! C$ for ExtendedI)

Parameter	Value	Unit		
AC input levels(Vih/Vil)	0.9 $ imes$ V _{DDQ} / 0.2	V		
Input timing measurement reference level	$0.5 imes V_{ ext{DDQ}}$	V		
Input rise and fall time	tr/tf = 1/1	ns		
Output timing measurement reference level	$0.5 imes V_{ ext{DDQ}}$	V		
Output load condition	See Figure 2			

Figure 1. DC Output Load Circuit

Figure 2. AC Output Load Circuit

512K x 32 x 4Banks Low Power SDRAM

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol	Value	Unit	Note
Row active to row active delay		t _{RRD} (min)	15	ns	1
RAS to CAS delay		t _{RCD} (min)	22.5	ns	1
Row precharge time		t _{RP} (min)	22.5	ns	1
Pour activa tima		t _{RAS} (min)	45	ns	1
now active time		t _{RAS} (max)	70,000	ns	
Row cycle time		t _{RC} (min)	67.5	ns	1
Last data in to row precharge		t _{RDL} (min)	in) 15		2
Last data in to Active delay		t _{DAL} (min)	t _{RDL} + t _{RP}	-	
Last data in to new col. address delay		t _{CDL} (min)	1	CLK	2
Last data in to burst stop		t _{BDL} (min)	1	CLK	2
Auto refresh cycle time		t _{ARFC} (min)	80	ns	3
Exit self refresh to active command		t _{SRFX} (min)	120	ns	
Col. address to col. address delay		t _{CCD} (min)	CD(min) 1		4
Number of valid output data CAS la		atency=3	2		
Number of valid output data CAS lat		atency=2	1	ea	5
Number of valid output data CAS lat		atency=1	-		

NOTE :

1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer. 2. Minimum dealy is required to complete write.

Maximum burst refresh cycle: 8
All parts allow every cycle column address change.
In case of row precharge interrupt, auto precharge and read burst stop.

S Emerging Memory & Logic Solutions Inc.

EMLS232TA Series

512K x 32 x 4Banks Low Power SDRAM

AC CHARACTERISTICS

(AC operating conditions unless otherwise noted)

Parameter	Cumhal	Va	Unit	Note		
Parameter		Symbol	Min	Мах	Unit	Note
	CAS latency=3	t _{CC}	7.5			
CLK cycle time	CAS latency=2	t _{CC}	10	1000	ns	1
	CAS latency=1	t _{CC}	-			
	CAS latency=3	t _{AC}		6		
CLK to valid output delay	CAS latency=2	t _{AC}		7	ns	1,2,3
	CAS latency=1	t _{AC}		-		
	CAS latency=3	t _{ОН}	2.5			
Output data hold time	CAS latency=2	t _{ОН}	2.5		ns	2
	CAS latency=1	t _{ОН}	-			
CLK high pulse width		t _{CH}	2.5		ns	4
CLK low pulse width		t _{CL}	2.5		ns	4
Input setup time		t _{SS}	2.0		ns	4
Input hold time		t _{SH}	1.0		ns	4
CLK to output in Low-Z		t _{SLZ}	1.0		ns	2
	CAS latency=3			6		
CLK to output in Hi-Z	CAS latency=2	t _{SHZ}		7	ns	
	CAS latency=1			-		

NOTE :

1. Parameters depend on programmed CAS latency. 2. If clock rising time is longer than 1 ns, (tr/2-0.5) ns should be added to the parameter. 3. $t_{AC}(max)$ value is measured at the low Vdd(2.6V) and cold temperature(-25 °C).

 t_{AC} is measured in the device with half driver strength(CL=10pF) and under the AC output load condition.

4. Assumed input rise and fall time (tr & tf) = 1 ns.

If tr & tf is longer than 1ns, transient time compensation should be considered, i.e., [(tr + tf)/2-1]ns should be added to the parameter.

512K x 32 x 4Banks Low Power SDRAM

SIMPLIFIED TRUTH TABLE

	COMMAND		CKEn-1	CKEn	CS	RAS	CAS	WE	DQM	BA0, 1 A10/AP A9 ~ A0			Note				
Register	Mode Regis	ster Set	Н	х	L	L	L	L	х		OP CODE		1, 2				
	Auto Refres	sh	ц	н				ц	v		v		3				
Pofroch		Entry		L			L	п	^		~		3				
nellesii	Self Refresh	Evit		ц	L	н	н	Н	v		v		3				
		EXIL		п	н	х	х	х			~		3				
Bank Active	Bank Active & Row Addr.		Н	х	L	L	н	Н	х	V	Row A	Address					
Read &	Auto Precha	arge Disable	ц	~				ц	~	L C		Column	4				
Address	Auto Precha	arge Enable		^		п	L	п	^	ЧН		(A0~A7)	4, 5				
Write &	Auto Precha	arge Disable		v					v	V <u>L</u> H		Column	4				
Address	Auto Precha	arge Enable		^		п	L	L	^			Address (A0~A7)	4, 5				
Burst Stop			Н	х	L	н	н	L	х	Х			6				
Pre-	Bank Selec	tion		v					v	V	L	×					
charge	All Banks		н	~			н	L	~	Х	Н	X					
		Fata	Ц		н	х	х	х	v								
Clock Susp Active Pow	end or er Down	Entry	н		L	V	V	V			Х						
		Exit	L	н	х	х	х	х	х								
		Entry	н	L	н	х	x	x	х								
Precharge	Power	_									х						
Down Mod	9	Exit	L	L	L	L	L	н	н	Х	Х	Х	x				
					L	V	V	V									
		Entry	н	L	L	н	н	L	х								
Deep Power Down					ц	v	v	v			Х						
		Exit	L	н		× v	~ 	^ V	x								
DOM			ц		L	×	v	v	V				7				
					ц	x	×	x	v		Λ		'				
No Operati	on Command		н	х					х	х							
						н	п										

NOTE :

1. OP Code : Operand Code A0 ~ A10 & BA0 ~ BA1 : Program keys. (@MRS)

2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS

3. Auto refresh functions are the same as CBR refresh of DRAM. The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state. Partial self refresh can be issued only after setting partial self refresh mode of EMRS. 4. BA0 ~BA1 : Bank select addresses.

5. During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst. New row active of the associated bank can be issued at t_{RP} after the end of burst.

6. Burst stop command is valid at every burst length.

7. DQM sampled at the positive going edge of CLK masks the data-in at that same CLK in write operation (Write DQM latency is 0), but in read operation, it makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2).

(V=Valid, X =Don't care, H=Logic High, L=Logic Low)

512K x 32 x 4Banks Low Power SDRAM

A. MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with Normal MRS

Address	BA0 ~ BA1	A10/AP ^{*1}	A9 ^{*3}	A 8	A7	A6	A5	A 4	A3	A2	A1	A0
Function	" 0 " Setting for Normal MRS	Wrap Mode 0 : Wrap on 1 : Wrap off	W.B.L	Test M	Mode	CA	S Later	су	BT	E	Burst Leng	gth

Normal MRS Mode

	٦	lest Mode		CA	S Late	ncy		Burst T	Burst Length									
A 8	A7	Туре	A6	A5	A 4	Latency	A3	٦	Гуре	A2	A1	A0	BT=0	BT=1				
0	0	Mode Register Set	0	0	0	Reserved	0	Sec	Sequential		Sequential		Sequential		0	0	1	1
0	1	Reserved	0	0	1	1	1	Interleave		0	0	1	2	2				
1	0	Reserved	0	1	0	2	I	Mode Se	0	1	0	4	4					
1	1	Reserved	0	1	1	3	BA1	BA0	Mode	0	1	1	8	8				
	Write	Burst Length	1	0	0	Reserved				1	0	0	Reserved	Reserved				
A9	A9 Length			0	1	Reserved	0	0	setting for Nor-	1	0	1	Reserved	Reserved				
0	0 Burst			1	0	Reserved		0	mal MRS	1	1	0	Reserved	Reserved				
1	1 Single Bit			1	1	Reserved				1	1	1	Full Page	Reserved				

Full Page Length x32 : 64Mb(256)

Register Programmed with Extended MRS

Address	BA1	BA0	A10/AP	A9	A 8	A7	A 6	A5	A 4	A3	A2	A 1	A 0
Function	Mode	RFU ^{*2}			D	S	RF	U ^{*2}		PASR			

EMRS for PASR(Partial Array Self Ref.) & DS(Driver Strength)

	Mode Select						Driver Strength					PASR						
BA1	BA0		A 6	A5	Driver Strength		A2	A1	A0	Size of Refreshed Array								
0	0	Normal MRS			0	0	Full		0	0	0	Full Array (default)						
0	1	Reserved			0	1	1/:	2 (default)	0	0	1	1/2 of Full Array						
1	0	EMRS for Low Power SDRAM			1	0		1/4	0	1	0	1/4 of Full Array						
1	1	Reserved			1	1	1 1/8		0	1	1	Reserved						
			Reserved	Addres	6S				1	0	0	Reserved						
A10)/AP	A9	A8	4	47	A	4	A3	1	0	1	Reserved						
	n	0	0		0		<u> </u>	0	1	1	0	Reserved						
0		5	0 0		0		,	5	1	1	1	Reserved						

NOTE :

If A10/AP is high during MRS cycle, "Wrap off mode" function will be enabled. This mode support only sequential burst type.
RFU(Reserved for future use) should stay "0" during MRS cycle.
If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.

Partial Array Self Refresh

In order to save power consumption, Low Power SDRAM has PASR option.
Low Power SDRAM supports 3 kinds of PASR in self refresh mode : Full Array, 1/2 of Full Array and 1/4 of Full Array

Internal Temperature Compensated Self Refresh (TCSR) NOTE :

1. In order to save power consumption, Low power SDRAM includes the internal temperature sensor and control units to control the

self refresh cycle automatically according to the two temperature range : Max 85°C, Max 70°C, Max 45°C, Max 15°C 2. If the EMRS for exterant TCSR is issued by the controller, this EMRS code for TCRS is ignored.

3. It has +/- 5 °C tolerance.

Tomporatura Panga	S	Self Refresh Current (Icc6)										
	Full Array	1/2 of Full Array	1/4 of Full Array	Unit								
Max 85℃	250	190	150									
Max 70℃	TBD	TBD	TBD									
Max. 45 ℃ ³	TBD	TBD	TBD	μA								
Max 15℃	TBD	TBD	TBD									

B. POWER UP SEQUENCE

1. Apply power and attempt to maintain CKE at a high state and all other inputs may be undefined.

- -Apply V_{DD} before or at the same time as V_{DDQ}.
- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200/us.
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.
- 6. Issue a extended mode register set command to define DS or PASR operating type of the device after normal MRS.
- EMRS cycle is not mandatory and the EMRS command needs to be issued only when DS or PASR is used. The default state without EMRS command issued is half driver strength and full array refreshed.

The device is now ready for the operation selected by EMRS.

For operating with DS or PASR, set DS or PASR mode in EMRS setting stage.

In order to adjust another mode in the state of DS or PASR mode, additional EMRS set is required but power up sequence is not needed again at this time. In that case, all banks have to be in idle state prior to adjusting EMRS set.

512K x 32 x 4Banks Low Power SDRAM

C. BURST SEQUENCE (Wrap on mode)

1. BURST LENGTH = 4

Initial A	ddress		Sogu	ontial		Interleave						
A1	A0		Sequ	ential								
0	0	0	1	2	3	0	1	2	3			
0	1	1	2	3	0	1	0	3	2			
1	0	2	3	0	1	2	3	0	1			
1	1	3	0	1	2	3	2	1	0			

2. BURST LENGTH = 8

Initial Address						Sogu	ontial			Interleave								
A2	A1	A0				Sequ	ential			intereave								
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0