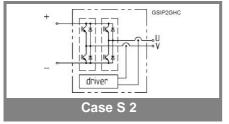

SKiiP 132GH120-212CTV

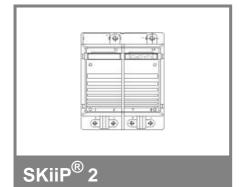
4-pack - integrated intelligent Power System

Power section


SKiiP 132GH120-212CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
 UL recognized File no. E63532
- UL recognized File no. E63532 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	150 (112,5)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	150 (112,5)	Α			
I _{FSM}	$T_{j} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}.$	1440	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25$ °C unless otherwise specified							specified	
	Conditions				min.	typ.	max.	Units
IGBT	Contain	7113				typ.	IIIUA.	Offics
V _{CEsat}	I _a = 125 A	T. = 25 (1	25) °C		İ	2,6 (3,1)	3,1	V
V _{CEO}	$I_C = 125 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $I_C = 25 (125) ^{\circ}\text{C}$,	1,5 (1,6)	V
r _{CE}	$T_j = 25 (125)^{\circ}C$ $T_j = 25 (125)^{\circ}C$						12,6 (16,1)	mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$					(10)	0.4	mA
CES	T _i = 25 (12		=9,			(- /	-,	
E _{on} + E _{off}	I _C = 125 A,		0 V				38	mJ
	T _i = 125 °C	c, V _{CC} = 90	00 V				66	mJ
R _{CC' + EE'}	terminal ch	ip, T _i = 12	5 °C			0,5		mΩ
L _{CE}	top, bottom	ı ,				15		nΗ
C_{CHC}	per phase,	AC-side				1,4		nF
Inverse diode								
$V_F = V_{EC}$	I _F = 150 A,	$T_i = 25 (1$	25) °C			2,1 (1,9)	2,6	V
V_{TO}	$T_i = 25 (12)$					1,3 (1)	1,4 (1,1)	V
r_T	$T_{j} = 25 (12)$					5 (6)	6,8 (7,8)	$m\Omega$
E _{rr}	I _C = 125 A,						6	mJ
	T _j = 125 °C	$V_{CC} = 90$	00 V				8	mJ
Mechani	cal data							
M_{dc}	DC termina	als, SI Unit	ts		6		8	Nm
M_{ac}	AC terminals, SI Units				13		15	Nm
W	SKiiP® 2 System w/o heat sink					1,9		kg
w	heat sink					4,7		kg
Thermal	characte	ristics (P16 hea	t sink; 3′	10 m ³ /h)	; "	rence to	
	ure sens					ı		
$R_{th(j-s)I}$	per IGBT						0,18	K/W
$R_{th(j-s)D}$	per diode						0,375	K/W
$R_{th(s-a)}$	per module	<u> </u>					0,044	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	20	139	22		1	0,13	0,001	
$Z_{th(j-r)D}$	41	289	45		1	0,13	0,001	
$Z_{th(r-a)}$	14,2	19,3	6,8	3,7	262	50	5	0,02

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

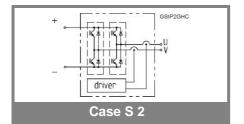
SKiiP 132GH120-212CTV

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 132GH120-212CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1} V_{S2}	stabilized 15 V power supply unstabilized 24 V power supply	18 30	V V		
V _{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{max}	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characte	(T _a =			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	230+150	230+150*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	170+130*f/f _{max} +1,0*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		150		Α
l,	(available when supplied with 24 V)			50	mA
Vs1outmax	output current at pin 15/16/18/19			5	mA
V _{0I}	logic low output voltage			0.6	V
V _{OH}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		188		Α
I _{TRIPLG}	ground fault protection		43		A
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
DCTRIP	$(U_{analog OUT} = 9 V); (option)$				•

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

