ACT4060
Rev8, 24-Jul-07

Wide Input 2A Step Down Converter

FEATURES

- 2A Output Current
- Up to 95% Efficiency
- 4.75V to 20V Input Range
- $8 \mu \mathrm{~A}$ Shutdown Supply Current
- 420kHz Switching Frequency
- Adjustable Output Voltage
- Cycle-by-Cycle Current Limit Protection
- Thermal Shutdown Protection
- Frequency FoldBack at Short Circuit
- Stability with Wide Range of Capacitors, Including Low ESR Ceramic Capacitors
- SOP-8 Package

GENERAL DESCRIPTION

The ACT4060 is a current-mode step-down DC/DC converter that generates up to 2A of output current at 420 kHz switching frequency. The device utilizes Active-Semi's proprietary ISOBCD20 process for operation with input voltages up to 20 V .

Consuming only $8 \mu \mathrm{~A}$ in shutdown mode, the ACT4060 is highly efficient with peak operating efficiency at 95%. Protection features include cycle-bycycle current limit, thermal shutdown, and frequency foldback at short circuit.

The ACT4060 is available in a SOP-8 package and requires very few external devices for operation.

APPLICATIONS

- TFT LCD Monitors
- Portable DVDs
- Car-Powered or Battery-Powered Equipments
- Set-Top Boxes
- Telecom Power Supplies
- DSL and Cable Modems and Routers
- Termination Supplies

TYPICAL APPLICATION CIRCUIT

Active-Senil

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE	PINS	PACKING
ACT4060SH	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOP-8	8	TUBE
ACT4060SH-T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOP- 8	8	TAPE \& REEL

PIN CONFIGURATION

PIN DESCRIPTIONS

PIN NUMBER	PIN NAME	PIN DESCRIPTION
1	BS	Bootstrap. This pin acts as the positive rail for the high-side switch's gate driver. Connect a 10nF capacitor between BS and SW.
2	IN	Input Supply. Bypass this pin to G with a low ESR capacitor. See Input Capacitor in the Application Information section.
3	SW	Switch Output. Connect this pin to the switching end of the inductor.
4	G	Ground.
5	FB	Feedback Input. The voltage at this pin is regulated to 1.293V. Connect to the resistor divider between output and ground to set output voltage.
6	EOMP	Compensation Pin. See Stability Compensation in the Application Information section.
7	N/C	Enable Input. When higher than 1.3V, this pin turns the IC on. When lower than 0.7 V, this pin turns the IC off. Output voltage is discharged when the IC is off. When left unconnected, EN is pulled up to 4.5V tip with a 2 $2 \mu \mathrm{~A}$ pull-up current.
8	Not Connected.	

ABSOLUTE MAXIMUM RATINGS ${ }^{\text {© }}$

PARAMETER	VALUE	UNIT
IN Supply Voltage	-0.3 to 25	V
SW Voltage	-1 to $\mathrm{V}_{\mathrm{IN}}+1$	V
BS Voltage	$\mathrm{V}_{\text {SW }}-0.3$ to $\mathrm{V}_{\mathrm{SW}}+8$	V
EN, FB, COMP Voltage	-0.3 to 6	V
Continuous SW Current	Internally Limited	A
Junction to Ambient Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	105	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation	0.76	W
Operating Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)$	300	${ }^{\circ} \mathrm{C}$

(1): Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0 \mathrm{~A}$ to 1 A	7		20	V
Feedback Voltage	$V_{\text {FB }}$	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 20 \mathrm{~V}, \mathrm{~V}_{\text {COMP }}=1.5 \mathrm{~V}$	1.267	1.293	1.319	V
High-Side Switch On Resistance	$\mathrm{R}_{\text {ONH }}$			0.20		Ω
Low-Side Switch On Resistance	RonL			4.7		Ω
SW Leakage		$V_{E N}=0$		0	10	$\mu \mathrm{A}$
Current Limit	ILIM		2.4	2.85		A
COMP to Current Limit Transconductance	$\mathrm{G}_{\text {comp }}$			1.8		A/V
Error Amplifier Transconductance	$\mathrm{G}_{\text {EA }}$	$\Delta \mathrm{l}_{\text {COMP }}= \pm 10 \mu \mathrm{~A}$		550		$\mu \mathrm{A} / \mathrm{V}$
Error Amplifier DC Gain	$\mathrm{A}_{\text {VEA }}$			4000		V/V
Switching Frequency	$\mathrm{f}_{\text {sw }}$		350	420	490	kHz
Short Circuit Switching Frequency		$\mathrm{V}_{\mathrm{FB}}=0$		50		kHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{FB}}=1.1 \mathrm{~V}$		90		\%
Minimum Duty Cycle		$\mathrm{V}_{\mathrm{FB}}=1.4 \mathrm{~V}$			0	\%
Enable Threshold Voltage		Hysteresis $=0.1 \mathrm{~V}$	0.7	1	1.3	V
Enable Pull-Up Current		Pin pulled up to 4.5 V typically when left unconnected		2		$\mu \mathrm{A}$
Supply Current in Shutdown		$\mathrm{V}_{\text {EN }}=0$		8	20	$\mu \mathrm{A}$
IC Supply Current in Operation		$\mathrm{V}_{\mathrm{EN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.4 \mathrm{~V}$		0.7		mA
Thermal Shutdown Temperature		Hysteresis $=10^{\circ} \mathrm{C}$		160		${ }^{\circ} \mathrm{C}$

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

As seen in Functional Block Diagram, the ACT4060 is a current mode pulse width modulation (PWM) converter. The converter operates as follows:
A switching cycle starts when the rising edge of the Oscillator clock output causes the High-Side Power Switch to turn on and the Low-Side Power Switch to turn off. With the SW side of the inductor now connected to IN , the inductor current ramps up to store energy in the magnetic field. The inductor current level is measured by the Current Sense Amplifier and added to the Oscillator ramp signal. If the resulting summation is higher than the COMP voltage, the output of the PWM Comparator goes high. When this happens or when Oscillator clock output goes low, the High-Side Power Switch turns off and the Low-Side Power Switch turns on. At this point, the SW side of the inductor swings to a diode voltage below ground, causing the inductor current to decrease and magnetic energy to be transferred to output. This state continues until the cycle starts again.
The High-Side Power Switch is driven by logic using $B S$ as the positive rail. This pin is charged to $\mathrm{V}_{\mathrm{sw}}+$ 6 V when the Low-Side Power Switch turns on.

The COMP voltage is the integration of the error between FB input and the internal 1.293 V reference. If $F B$ is lower than the reference voltage, COMP tends to go higher to increase current to the output. Current limit happens when COMP reaches its maximum clamp value of 2.55 V .
The Oscillator normally switches at 420 kHz . However, if FB voltage is less than 0.7 V , then the switching frequency decreases until it reaches a typical value of 50 kHz at $\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$.

Shutdown Control

The ACT4060 has an enable input EN for turning the IC on or off. When EN is less than 0.7 V , the IC is in $8 \mu \mathrm{~A}$ low current shutdown mode and output is discharged through the Low-Side Power Switch. When EN is higher than 1.3 V , the IC is in normal operation mode. EN is internally pulled up with a $2 \mu \mathrm{~A}$ current source and can be left unconnected for always-on operation. Note that EN is a low voltage input with a maximum voltage of 6 V , it should never be directly connected to IN.

Thermal Shutdown

The ACT4060 automatically turns off when its junction temperature exceeds $160^{\circ} \mathrm{C}$.

APPLICATIONS INFORMATION

Output Voltage Setting

Figure 1:

Output Voltage Setting

Figure 1 shows the connections for setting the output voltage. Select the proper ratio of the two feedback resistors $R_{F B 1}$ and $R_{F B 2}$ based on the output voltage. Typically, use $R_{\text {FB2 }} \approx 10 \mathrm{k} \Omega$ and determine $R_{F B 1}$ from the following equation:
$R_{\text {FB1 }}=R_{\text {FB2 }}\left(\frac{V_{\text {OUT }}}{1.293 \mathrm{~V}}-1\right)$

Inductor Selection

The inductor maintains a continuous current to the output load. This inductor current has a ripple that is dependent on the inductance value: higher inductance reduces the peak-to-peak ripple current. The trade off for high inductance value is the increase in inductor core size and series resistance, and the reduction in current handling capability. In general, select an inductance value L based on ripple current requirement:
$L=\frac{V_{\text {OUT }} \times\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }} I_{\text {SW }} I_{\text {OUTMAX }} K_{\text {RIPPLE }}}$
where $\mathrm{V}_{\mathbb{I N}}$ is the input voltage, $\mathrm{V}_{\text {OUt }}$ is the output voltage, f_{SW} is the switching frequency, loutmax is the maximum output current, and $\mathrm{K}_{\text {RIPPLE }}$ is the ripple factor. Typically, choose $K_{\text {RIPPLE }}=30 \%$ to correspond to the peak-to-peak ripple current being 30\% of the maximum output current.

With this inductor value, the peak inductor current is lout $\times\left(1+\mathrm{K}_{\text {RIpple }} / 2\right)$. Make sure that this peak inductor current is less that the 3A current limit. Finally, select the inductor core size so that it does not saturate at 3A. Typical inductor values for various output voltages are shown in Table 1.

Table 1:
Typical Inductor Values

V out $^{\prime}$	$\mathbf{1 . 5 V}$	$\mathbf{1 . 8 V}$	$\mathbf{2 . 5 V}$	$\mathbf{3 . 3 V}$	$\mathbf{5 V}$
L	$6.8 \mu \mathrm{H}$	$6.8 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$15 \mu \mathrm{H}$	$22 \mu \mathrm{H}$

Input Capacitor

The input capacitor needs to be carefully selected to maintain sufficiently low ripple at the supply input of the converter. A low ESR capacitor is highly recommended. Since large current flows in and out of this capacitor during switching, its ESR also affects efficiency.
The input capacitance needs to be higher than $10 \mu \mathrm{~F}$. The best choice is the ceramic type, however, low ESR tantalum or electrolytic types may also be used provided that the RMS ripple current rating is higher than 50% of the output current. The input capacitor should be placed close to the IN and G pins of the IC, with the shortest traces possible. In the case of tantalum or electrolytic types, they can be further away if a small parallel $0.1 \mu \mathrm{~F}$ ceramic capacitor is placed right next to the IC.

Output Capacitor

The output capacitor also needs to have low ESR to keep low output voltage ripple. The output ripple voltage is:
$V_{\text {RIPPLE }}=I_{\text {OUTMAX }} K_{\text {RIPPLE }} R_{\text {ESR }}$
$+\frac{V_{I N}}{28 \times f_{S W}{ }^{2} L C_{\text {OUT }}}$
where $\mathrm{l}_{\text {OUtMAX }}$ is the maximum output current, $\mathrm{K}_{\text {RIP- }}$ PLE is the ripple factor, $\mathrm{R}_{\text {ESR }}$ is the ESR of the output capacitor, f_{Sw} is the switching frequency, L is the inductor value, and Cout is the output capacitance. In the case of ceramic output capacitors, $\mathrm{R}_{\text {ESR }}$ is very small and does not contribute to the ripple. Therefore, a lower capacitance value can be used for ceramic type. In the case of tantalum or electrolytic capacitors, the ripple is dominated by $R_{E S R}$ multiplied by the ripple current. In that case, the output capacitor is chosen to have sufficiently low ESR.
For ceramic output capacitor, typically choose a capacitance of about $22 \mu \mathrm{~F}$. For tantalum or electrolytic capacitors, choose a capacitor with less than $50 \mathrm{~m} \Omega \mathrm{ESR}$.

Rectifier Diode

Use a Schottky diode as the rectifier to conduct current when the High-Side Power Switch is off. The Schottky diode must have current rating higher than the maximum output current and a reverse voltage rating higher than the maximum input voltage.

STABILITY COMPENSATION

Figure 2:
Stability Compensation

(1): Ccomp2 is needed only for high ESR output capacitor

The feedback loop of the IC is stabilized by the components at the COMP pin, as shown in Figure 2. The DC loop gain of the system is determined by the following equation:
$A_{V D C}=\frac{1.3 \mathrm{~V}}{I_{\text {OUT }}} A_{V E A} G_{\text {COMP }}$
The dominant pole P 1 is due to $\mathrm{C}_{\text {comp: }}$
$f_{P 1}=\frac{G_{E A}}{2 \pi A_{V E A} C_{\text {COMP }}}$
The second pole P2 is the output pole:
$f_{\text {P2 }}=\frac{I_{\text {OUT }}}{2 \pi V_{\text {OUT }} C_{\text {OUT }}}$
The first zero Z 1 is due to $\mathrm{R}_{\text {сомр }}$ and $\mathrm{C}_{\text {сомр }}$:
$f_{z 1}=\frac{1}{2 \pi R_{\text {COMP }} C_{\text {COMP } 2}}$
And finally, the third pole is due to $\mathrm{R}_{\text {сомp }}$ and $\mathrm{C}_{\text {comp2 }}$ (if $\mathrm{C}_{\text {comp2 }}$ is used):
$f_{\text {P3 }}=\frac{1}{2 \pi R_{\text {COMP }} C_{\text {COMP2 }}}$
The following steps should be used to compensate the IC:

STEP 1. Set the cross over frequency at $1 / 10$ of the switching frequency via $\mathrm{R}_{\text {comp: }}$
$R_{\text {COMP }}=\frac{2 \pi V_{\text {OUT }} C_{\text {OUT }} f_{\text {SW }}}{10 G_{\text {EA }} G_{\text {COMP }} \times 1.3 \mathrm{~V}}$
$=1.7 \times 10^{8} V_{\text {OUT }} C_{\text {OUT }}$
but limit $\mathrm{R}_{\text {comp }}$ to $15 \mathrm{k} \Omega$ maximum.

STEP 2. Set the zero $f_{\mathrm{Z}_{1}}$ at $1 / 4$ of the cross over frequency. If $R_{\text {comp }}$ is less than $15 \mathrm{k} \Omega$, the equation for $\mathrm{C}_{\text {сомр }}$ is:
$C_{\text {COMP }}=\frac{1.8 \times 10^{-5}}{R_{\text {COMP }}}$
If $\mathrm{R}_{\text {comp }}$ is limited to $15 \mathrm{k} \Omega$, then the actual cross over frequency is 3.4 / (V $\left.\mathrm{V}_{\text {Out }} \mathrm{C}_{\text {out }}\right)$. Therefore:
$C_{\text {COMP }}=1.2 \times 10^{-5} \mathrm{~V}_{\text {OUT }} C_{\text {OUT }}$
STEP 3. If the output capacitor's ESR is high enough to cause a zero at lower than 4 times the cross over frequency, an additional compensation capacitor $\mathrm{C}_{\text {comp2 }}$ is required. The condition for using $\mathrm{C}_{\text {comp2 }}$ is:
$R_{\text {ESRCOUT }} \geq \operatorname{Min}\left(\frac{1.1 \times 10^{-6}}{C_{\text {OUT }}}, 0.012 \times V_{\text {OUT }}\right)$
And the proper value for $\mathrm{C}_{\text {comp2 }}$ is:
$C_{\text {COMP2 }}=\frac{C_{\text {OUT }} R_{\text {ESRCOUT }}}{R_{\text {COMP }}}$
Though $\mathrm{C}_{\text {comp2 }}$ is unnecessary when the output capacitor has sufficiently low ESR, a small value $\mathrm{C}_{\text {comp2 }}$ such as 100 pF may improve stability against PCB layout parasitic effects.
Table 2 shows some calculated results based on the compensation method above.

Table 2:
Typical Compensation for Different Output Voltages and Output Capacitors

$\mathbf{V}_{\text {out }}$	Cout	$\mathbf{R}_{\text {comp }}$	$\mathbf{C}_{\text {comp }}$	$\mathbf{C}_{\text {comp }}{ }^{\text {® }}$
2.5 V	$22 \mu \mathrm{~F}$ Ceramic	$8.2 \mathrm{k} \Omega$	2.2 nF	None
3.3 V	$22 \mu \mathrm{~F}$ Ceramic	$12 \mathrm{k} \Omega$	1.5 nF	None
5 V	$22 \mu \mathrm{~F}$ Ceramic	$15 \mathrm{k} \Omega$	1.5 nF	None
2.5 V	$47 \mu \mathrm{~F} \mathrm{SP} \mathrm{CAP}$	$15 \mathrm{k} \Omega$	1.5 nF	None
3.3 V	$47 \mu \mathrm{~F} \mathrm{SP} \mathrm{CAP}$	$15 \mathrm{k} \Omega$	1.8 nF	None
5 V	$47 \mu \mathrm{~F} \mathrm{SP} \mathrm{CAP}$	$15 \mathrm{k} \Omega$	2.7 nF	None
2.5 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	15 nF	1 nF
3.3 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	22 nF	1 nF
5 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	27 nF	None

(1): $\mathrm{C}_{\text {COMP2 }}$ is needed for high ESR output capacitor.

Figure 3 shows an example ACT4060 application circuit generating a $2.5 \mathrm{~V} / 2 \mathrm{~A}$ output.

Figure 3:

ACT4060 2.5V/2A Output Application ${ }^{\oplus}$

(1): D1 is a 40V, 3A Schottky diode with low forward voltage, an IR 30BQ040 or SK34 equivalent. C4 can be either a ceramic capacitor (Panasonic ECJ-3YB1C226M) or SP-CAP (Specialty Polymer) Aluminum Electrolytic Capacitor such as Panasonic EEFCD0J470XR. The SP-Cap is based on aluminum electrolytic capacitor technology, but uses a solid polymer electrolyte and has very stable capacitance characteristics in both operating temperature and frequency compared to ceramic, polymer, and low ESR tantalum capacitors.

TYPICAL PERFORMANCE CHARACTERISTICS

(Circuit of Figure 3, unless otherwise specified.)

PACKAGE OUTLINE

SOP-8 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
B	0.330	0.510	0.013	0.020	
C	0.190	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
e	1.270 TYP		0.050 TYP		
L	0.400	1.270	0.016	0.050	
θ	0°		8°	00°	

Active-Semi, Inc. reserves the right to modify the circuitry or specifications without notice. Users should evaluate each product to make sure that it is suitable for their applications. Active-Semi products are not intended or authorized for use as critical components in life-support devices or systems. Active-Semi, Inc. does not assume any liability arising out of the use of any product or circuit described in this datasheet, nor does it convey any patent license.

Active-Semi and its logo are trademarks of Active-Semi, Inc. For more information on this and other products, contact sales@active-semi.com or visit http://www.active-semi.com. For other inquiries, please send to:

1270 Oakmead Parkway, Suite 310, Sunnyvale, California 94085-4044, USA

