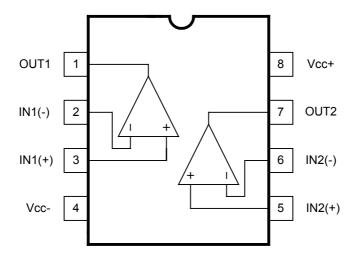

## UTCMC4560 LINEAR INTEGRATED CIRCUIT

## **DUAL OPERATIONAL AMPLIFIER**

#### **DESCRIPTION**

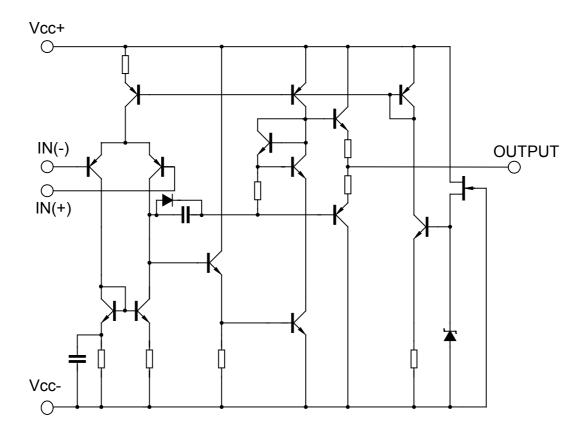
The UTC MC4560 integrated circuit is a high-gain, wide-bandwidth, dual operational amplifier capable of driving 20V peak-to-peak into  $400 \Omega$  loads. The MC4560 combines many of the features of the MC4558 as well as providing the capability of wider bandwidth, and higher slew rate make the MC4560 ideal for active filters, data and telecommunications, and many instrumentation applications. The availability of the MC4560 in the surface mounted micro-package allows the MC4560 to be used in critical applications requiring very high packing densities.




#### **FEATURES**

\*Operating Voltage (±4V~±18V) \*Wide Gain Bandwidth Product. (10MHz typ.) \*Slew Rate (4V /  $\mu$ s typ.)

\*Bipolar Technology


### PIN CONFIGURATION



UTC UNISONIC TECHNOLOGIES CO., LTD.

# UTC MC4560 LINEAR INTEGRATED CIRCUIT

**BLOCK DIAGRAM** 



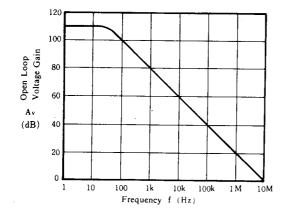
## ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

| PARAMETER                   | SYMBOL     | RATINGS     | UNIT |
|-----------------------------|------------|-------------|------|
| Supply Voltage              | V+/V-      | <b>±</b> 18 | V    |
| Differential Input Voltage  | VID        | ±30         | V    |
| Input Voltage               | Vı         | ±15(note)   | V    |
| Power Dissipation           | P <b>D</b> |             |      |
| DIP-8                       |            | 500         | mW   |
| SOP-8                       |            | 300         | mW   |
| Operating Temperature Range | Topr       | -20 ~ +75   | °C   |
| Storage Temperature Range   | Тѕтс       | -40 ~ +125  | °C   |

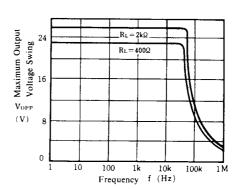
Note: For supply voltage less than  $\pm 15V$ , the absolute maximum input voltage is equal to the supply voltage.

UTC UNISONIC TECHNOLOGIES CO., LTD.

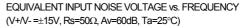
# UTC MC4560 LINEAR INTEGRATED CIRCUIT

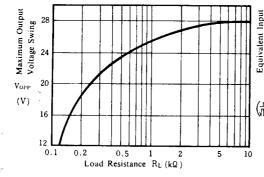

### ELECTRICAL CHARACTERISTICS (Ta=25°C, V+/V-=±15V)

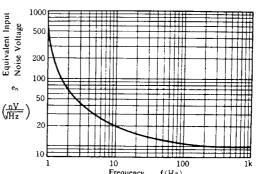
| PARAMETER                       | SYMBOL           | TEST CONDUCTION                     | MIN  | TYP   | MAX | UNIT  |
|---------------------------------|------------------|-------------------------------------|------|-------|-----|-------|
| Input offset voltage            | V <sub>IO</sub>  | Rs≤10kΩ                             | -    | 0.5   | 6   | mV    |
| Input offset current            | I <sub>IO</sub>  |                                     | -    | 5     | 200 | nA    |
| Input bias current              | I <sub>B</sub>   |                                     | -    | 40    | 500 | nA    |
| Input Resistance                | R <sub>IN</sub>  |                                     | 0.3  | 5     | -   | MΩ    |
| Large Signal Voltage Gain       | Av               | R <sub>L</sub> ≥2kΩ, Vo=±10V        | 86   | 100   | -   | dB    |
| Maximum Output Voltage 1        | V <sub>OM1</sub> | R <sub>L</sub> ≥2kΩ                 | ±12  | ±14   | -   | V     |
| Maximum Output Voltage 2        | V <sub>OM2</sub> | I <sub>O</sub> =25mA                | ±10  | ±11.5 | -   | V     |
| Input Common Mode Voltage Range | V <sub>ICM</sub> |                                     | ±12  | ±14   | -   | V     |
| Common Mode Rejection Ratio     | CMR              | Rs≤10kΩ                             | 70   | 90    | -   | dB    |
| Supply Voltage Rejection Ratio  | SVR              | Rs≤10kΩ                             | 76.5 | 90    | -   | dB    |
| Operating Current               | Icc              |                                     | -    | 4.3   | 5.7 | mA    |
| Slew Rate                       | SR               |                                     | -    | 4     | -   | V/μs  |
| Gain Bandwidth Product          | GB               |                                     | -    | 10    | -   | MHz   |
| Equivalent Input Noise Voltage  | $V_{NI}$         | RIAA,R <sub>S</sub> =2kΩ, 30kHz LPF | -    | 1.2   | -   | μVrms |


## UTCMC4560 LINEAR INTEGRATED CIRCUIT

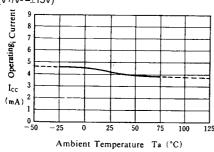
#### TYPICAL CHARACTERISTICS


OPEN LOOP VOLTAGE GAIN vs. FREQUENCY (V+/V- = $\pm$ 15V, R<sub>L</sub>=2K $\Omega$ , Ta=25°C)

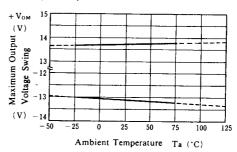




MAXIMUM OUTPUT VOLTAGE SWING vs. FREQUENCY (V+/V-  $=\pm15$ V, Ta=25°C)




MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE (V+/V-= $\pm$ 15V, Ta=25°C)



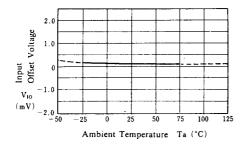




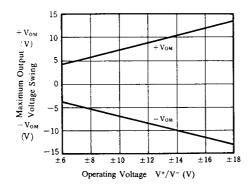

OPERATING CURRENT vs. TEMPERATURE (V+/V-=±15V)



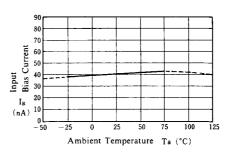
MAXIMUM OUTPUT VOLTAGE SWING vs. TEMPERATURE (V+/V- = $\pm$ 15V, R<sub>L</sub>=2k $\Omega$ )



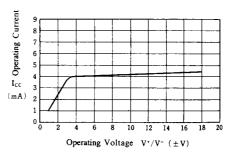

UTC


UNISONIC TECHNOLOGIES CO., LTD.

## UTCMC4560 LINEAR INTEGRATED CIRCUIT


INPUT OFFSET VOLTAGE vs. TEMPERATURE (V+/V-= $\pm$ 15V)




MAXIMUM OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE (R\_=400 $\Omega$ , Ta=25°C)



INPUT BIAS CURRENT vs. TEMPERATURE (V+/V- = $\pm$ 15V)



OPERATING CURRENT vs. OPERATING VOLTAGE (Ta=25°C)



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC

UNISONIC TECHNOLOGIES CO., LTD.

5