TXC100 300-450MHz **RFIC Transmitter**

Complies with Directive 2002/95/EC (RoHS)

(Pb)

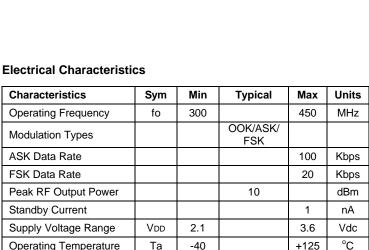
I. Product Overview

TXC100 is a rugged, single chip OOK/ASK/FSK Transmitter IC in the 300-450 MHz frequency range. This chip is highly integrated and has all required RF functions including a complete PLL circuit and power amplifier, thus requiring very few external components. The TXC100 is feature rich and is very small in size with high output power and low current consumption and is ideal for various short range wireless applications in the industrial, automotive and consumer markets.

II. Key Features

- Operating Frequency Range: 300-450 MHz
- Modulation Types: OOK/ASK/FSK
- Operation supply voltage: 2.1V 3.6V
- High Date rate: .

ASK: 100 kbps FSK: 20 kbps


- Low current consumption: ASK mode: 7 mA typical FSK mode: 10 mA typical
- Low Stand by current: < 1 nA •
- Adjustable Output power: -10dBm to +10dBm
- Adjustable FSK Shift
- Programmable Clock Output
- Very Low external component count
- Extended temperature range: -40°C to +125°C.
- Small Package: 3X3 mm 16-pin TQFN package
- Standard 13 inch reel, 2500 pieces

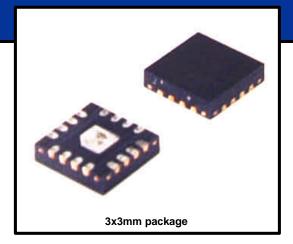
III. Popular applications

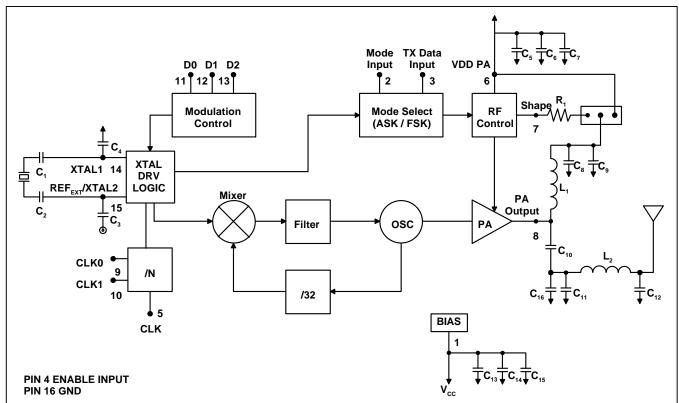
- Active RFID tags
- Automated Meter reading
- Wireless sensor nodes
- Home Automation
- Security systems
- Tire pressure monitoring
- Remote keyless entry
- Automobile Immobilizers
- Sports & Performance monitoring
- Wireless Toys
- Medical equipment
- Command & Control systems

RF Monolithics, Inc.

4441 Sigma Road Dallas, Texas 75244

Crystal Parameters


Operating Temperature


Characteristics	Sym	Min	Typical	Max	Units
Crystal Frequency	fc		fo/32		MHz
Load Capacitance	CI			10	pF
Tolerance	Tol		30		ppm

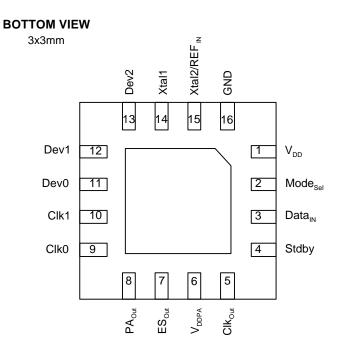
-40

+125

Та

IV. TXC100 Block Diagram and Typical Application Circuit

Component Values for Typical Application Circuit						
	315MHz Band	433MHz Band				
C1	100pF	100pF				
C2	100pF	100pF				
C3 ³	DNP	DNP				
C4 ³	DNP	DNP				
C5	1uF	1uF				
C6	.01uF	.01uF				
C7	220pF	220pF				
C8	100pF	100pF				
C9	680pF	680pF				
C10 ¹	15pF	6.8pF				
C11 ¹	22pF	1pF				
C12 ¹	15pF	6.8pF				
C13	1uF	1uF				
C14	.01uF	.01uF				
C15	220pF	220pF				
C16 ¹	2.2pF	1pF				
L1 ¹²	27nH	22nH				
L2 ¹²	22nH	18nH				
X1	9.84375MHz	13.5600MHZ				


Table 1:
Component Values for Typical Application Circuit

¹Matched to 50 Ohms

²Use wirewound inductors ONLY ³Use for External Reference Input

DNP - Do Not Populate

V. Pin Configuration

VI. Pin Description

Pin	Name	Description
1	V _{DD}	V_{DD} is the supply voltage for the PLL and Logic. Bypass as close as possible to pin with 1µF, .01µF, 220pf.
		Mode Select enables the chip to be set in ASK or FSK mode Low: ASK mode High: FSK mode
2	Modesel	ASK, FSK Mode Selection The Mode Select pin (2) sets the transmit mode of the device. A logic low sets the mode to ASK modulation. A logic high sets the device to FSK modulation.
2	Mode _{Sel}	In ASK mode, data driven onto the Data _{IN} pin (3) gates the internal power amplifier. A data "High" turns the power amplifier on and thus drives the RF signal to the antenna. A data "Low" turns off the power amplifier.
		In FSK mode, data driven onto the Data _{IN} pin shifts the carrier frequency by the amount programmed through the DEV[20] pins (13,12,11). A data "Low" performs no shift. The frequency of a data "Low" in FSK mode is the same frequency of a data "High" in ASK mode. The FSK deviation is achieved by pulling the crystal frequency. See <i>Crystal Reference</i> section (pin 15) for more details. The maximum deviation for the 315MHz band and 433MHz band is approximately 55 kHz and 80 kHz, respectively.
		Data Input enables the turning on and off of the Power Amplifier in ASK mode and selection of high or low frequency in FSK mode.
3	Data _{IN}	Low (ASK mode): Power Amplifier off High (ASK mode): Power Amplifier on
		Low (FSK mode): Low frequency High (FSK mode): High frequency
		Standby enables selection of low power shutdown/standby mode
		Low or if left unconnected: Sets device in Standby mode High: Sets device in Ready for transmission mode
4	Stdby	Note: Lowest current consumption achieved when all config pins at Logic Low.
		Standby Mode The Standby pin (4) sets the device in low power shutdown, pulling only 0.2nA. When the device is brought out of standby with a logic "High", it is ready for operation within 200us. The Standby pin has an internal pull-down resistor so this pin can be pulled low or left unconnected. The 200us turn-on time is due to crystal start-up. An optimally matched crystal will minimize this turn-on time. See <i>Crystal</i> <i>Reference</i> section (pin 15) for details on crystal load matching.

5	Clk _{out}	Clock output is a buffered version of the crystal frequency which may be used to drive external logic or a microprocessor. The frequency is programmable thru pins 9 (Clk0) and 10(Clk1) as below: $ \frac{\hline Clk0}{0} Clk1 Clk_{out}}{1} 0 fc/4} \\ 0 1 fc/8} \\ NB: fc = (Crystal Frequency) $
6	V _{DDPA}	Supply voltage for the Power amp. Bypass as close as possible to the pin with a $.01\mu$ F and 220pf capacitor.
7	ES _{Out}	Envelope-Shaping Output controls the on/off ramp time of the power amp in ASK mode. This reduces the spectral width of the output signal when modulated. Placing a small resistor in series with the output, as close as possible to the chip to minimize circuit parasitics, will enable control of output power. A potentiometer may be used to adjust the output power to the desired level. Bypass as close to the pin as possible with a 680pF and 220pF capacitor. Note: By using the ES _{OUT} pin there is approx a 0.6dB drop in max output power. Spectral Shaping/Output Power Adjust The ES _{OUT} pin (7) can serve a dual function. Use of the ES _{OUT} pin will allow for a softer turn-on/turn-off of the power amplifier resulting in reduced spectral spreading of the ASK signal. Inserting a series resistor between the ES _{OUT} pin and the pull-up inductor will allow for adjustment of the carrier output power. Typically a resistance of 5K Ohms or less will allow adjustment down to -10dBm.
8	PA _{Out}	The envelope-shaping resistor allows for a turn on / turn-off of the Power Amp in ASK mode. Power-Amplifier Output Requires a DC path to the supply voltage, thru a series inductor which can be part of the output matching network to an antenna Power Amplifier The power amp is an open-drain, Class C amplifier with optimal impedance at PA _{OUT} (pin 8) of about 250 Ohms. A matching network can optimize the output to drive typical 50 Ohm antennas. An output matching network with component values is shown in the <i>Typical Application Circuit</i> (section IV). Additionally, the matching network aids in suppressing carrier harmonics to aid in compliance testing.
10, 9	Clk[10]	See description for Pin 5
13, 12, 11	FreqDev[20]	Frequency Deviation configuration pins set the amount of deviation desired between data logic states in FSK mode. Frequency deviation is programmable through pins 13, 12, 11 as below: DEV D DEV 2 DEV 1 DEV 0 1.25 x max 0 0 0
14	Xtal1	External Crystal input 1 presents a capacitance of 3pF to GND in ASK and FSK(Data _{IN} =0V) mode. Additional circuit parasitics add to the package capacitance which increases the presented load to about 4.5pF.
15	Xtal2/REF _{IN}	External Crystal input 2 presents a capacitance of 3pF to GND in ASK and FSK(Data _{IN} =0V) mode. Additional circuit parasitics add to the package capacitance which increases the presented load to about 4.5pF. External Ref Input enables a custom frequency to be applied to obtain the desired transmit frequency. Unconnected Xtal1 input must be bypassed with a .01µF capacitor and additional .01µF series capacitance should be added into External Reference input. Crystal Reference The crystal drive circuit in the TXC100 is designed to present a 3pF load to GND to the reference crystal. Including PCB parasitic capacitances, this increases to about 4.5pF. In ASK mode, the full 3pF load is applied to the crystal allowing it to oscillate at the desired frequency. In FSK mode, a portion of the 3pF load is removed in response to a data logic "High" applied to the Data _{IN} (pin 2) and the programmed frequency deviation pins DEV[02] (13,12,11). For larger frequency deviations use a crystal with larger motional capacitance as much as possible. NOTE: Use a crystal with the same load capacitance as that presented by the TXC100. If not, additional matching will be necessary to achieve the desired carrier frequency and the added matching will reduce the desired FSK deviation.
16	GND	Ground. Connect to system ground. Note: The exposed ground pad is the power amp ground. It must be connected to system ground thru a low inductance path.

VII. Absolute Maximum Ratings

Parameter	Symbol	Limit \	Unit				
		Min	Max				
Operating Temperature	To	-40	+125	°C			
Junction Temperature	TJ	-40	+150	°C			
Storage Temperature	Ts	-60	+150	°C			
Supply Voltage – Vdd to GND	Vs	-0.3	+4	V			
All pins to GND		-0.3	Vdd + 0.3	V			
Note: Maximum ratings must not be exceeded under any circumstances and can cause permanent damage to the IC							

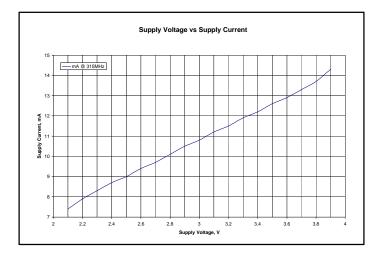
VIII. DC Electrical Characteristic

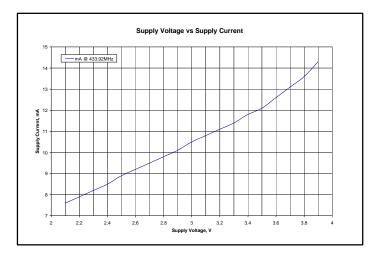
(Typical values taken at V_{DD} = +3.0V, T_A = +25°C, unless otherwise noted)

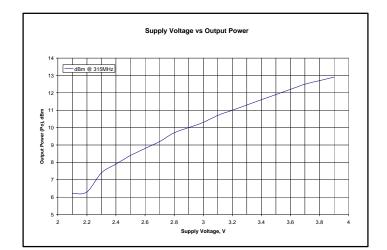
Characteristic	Sym	Notes	Limit Values			Unit	Test Conditions	
Characteristic	Syn	Notes	min	typ	max	Onit	Test conditions	
Supply Voltage	V_{DD}		2.1		3.6	V		
Current Consumption								
				0.2	1		T _A = +25 deg (C
Standby	I _{STDBY}			120	300	nA	T _A = +85 deg (C
				700	1600		T _A = +125 deg C	
				2.9	4.3		PA off, Data=0V (ASK)	
	I _{DD}	1,4		7	10.7		50% duty cycle (ASK)	315 Mhz Band 433 Mhz Band
Supply				10.5	17.1	mA	Data=+ V_{DD} (FSK and ASK)	
				3.3	4.8		PA off, Data=0V (ASK)	
				7.3	11.4		50% duty cycle (ASK)	
				10	18.1		Data=+ V_{DD} (FSK and ASK)	
Digital Inputs								
Data Input Low	V _{IL}				0.25	V		
Data Input High	VIH		V _{DD} -0.25			V		
Max Input Current	I,			15.5	20	μa		
Digital Outputs								
Output Voltage Low	Vol				0.25	V	Clkout, Load = 10pF	
Output Voltage High	V _{OH}		V _{DD} -0.25			V	Clkout, Load = 10pF	

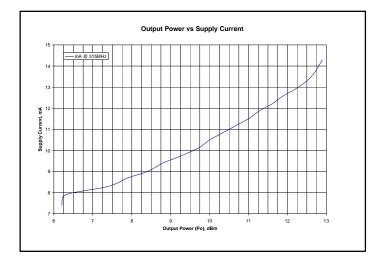
IX. AC Electrical Characteristic

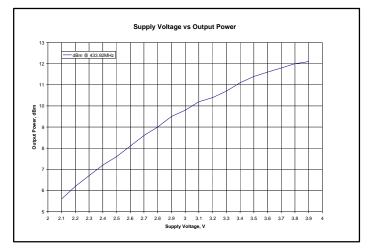
(Typical values taken at V_{DD} = +3.0V, T_A = +25°C, unless otherwise noted)

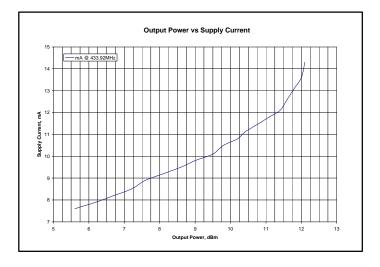

Parameter	C. m	Notes	Limit Values		Unit	Test Conditions		
Parameter	Sym		min	typ	max	Unit	Test Conditions	
PLL Performance								
VCO Gain	K _{VCO}			280		MHz/V		
				-75		dBc/Hz	315 Mhz Band	Freq Offset = 100kHz Freq Offset = 1MHz
Phase Noise				-74			433 Mhz Band	
				-98			315 Mhz Band	
				-98			433 Mhz Band	
Loop BW	BW			300		kHz		
Reference Spur				-40		dBc		
2nd Harmonic				-56		dBc	315 Mhz Band	
Zha Hamonic				-52		ubc	433 Mhz Band	
3rd Harmonic				-56		dBc	315 Mhz Band	
Sid Harmonic				-65		UDC	433 Mhz Band	
Crystal								
Frequency Range	f _{REF}			f _{RF} /32		MHz	fundamental mode, AT	
Tolerance		3		50		ppm		
Internal Load Capacitance		2		3		pF		
Clock Output Frequency	CLK _{OUT}			F _{XTAL} /N		MHz	Determined by CLK	1 and CLK2
System Characteristics								
Frequency Range			300		450	MHz		
	4			12.2	16.1	dBm	$TA = -40C, V_{DD} = +3.6V$	
Output Power		4	6.1	10	12.4		TA = +25C, VDD = +3.0V	into 50Ω matched load
			2.7	5.3			TA = +125C, VDD = +2.1V	loud
Start-up time	t _{ON}	5		160		μs	STDBY to	Tx
Rise Time	tr	5		300		ns		
Max Data Rate		5		20		kbps	FSK (50% Duty	/ Cycle)
INIAX Data Nate		5		100		KDP2	ASK (50% Duty	/ Cycle)
Frequency Deviation (FSK)				55		kHz	315 Mhz Band	
Frequency Deviation (FSK)				80		KIIZ	433 Mhz Band	DEV[20]=111
				35			315 Mhz Band	CW
Transmit Efficiency		4		31		0/	433 Mhz Band	- CW
h=P _{OUT} /(V _{DD} xI _{DD})		4		27		%	315 Mhz Band	50% duty avaia
				25			433 Mhz Band	50% duty cycle
Power ON/OFF Ratio				-77		dB	ASK Mode	
Frequency Stability vs. V _{DD}	Δdf_{VDD}			4		kHz		
Frequency Stability vs. Temp	Δdf_{TA}			TBD		kHz	-40°C to +8	5°C

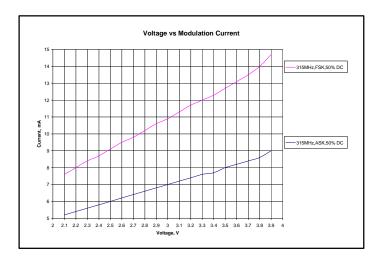

Notes:

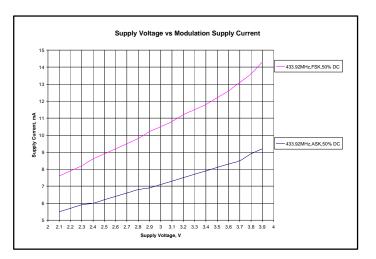

1. 10kHz, 50% duty cycle
 2. Dependent on PCB parasitic trace capacitance and crystal parameters.
 3. Dependent on crystal parameters.
 4. Transmit Efficiency, RF Output Power, and Supply Current are heavily dependent on proper output matching and PCB layout.

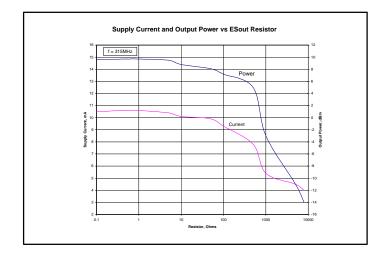

5. No Envelope Shaping.

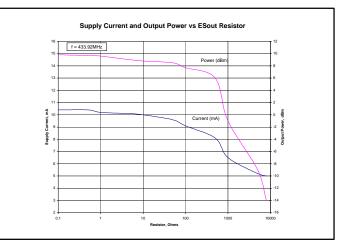

X. Typical Operating Characteristics











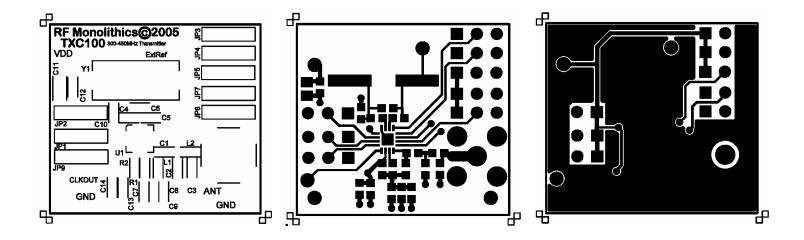
XI. Theory of Operation

Introduction

The TXC100 is a crystal-referenced transmitter designed to operate in the 315/433 MHz frequency spectrum. The carrier and crystal reference relation is given by:

 $f_{C} = f_{XTAL} * 32$ It is capable of supporting OOK/ ASK and FSK data transmissions at 100kbps and 20kbps, respectively. The output power is adjustable from -10dBm to +10dBm thru a resistor at the ES_{OUT} (pin 7). The FSK frequency deviation is programmable with up to eight different deviation values. The IC also provides a buffered clock output of the reference crystal for use by an external processor. The clock output is also programmable.

Frequency Synthesizer

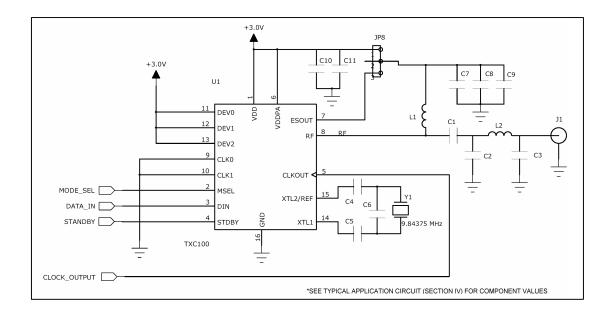

The frequency synthesizer is simply a Phase Locked Loop circuit with a loop bandwidth of 300 kHz. The PLL contains a phase detector, charge pump, VCO, integrated loop filter, ÷32 clock divider, and crystal oscillator drive circuit. The internal PLL is self contained and requires no external components for filtering or dividing. Only a reference crystal is needed.

50W Output Matching

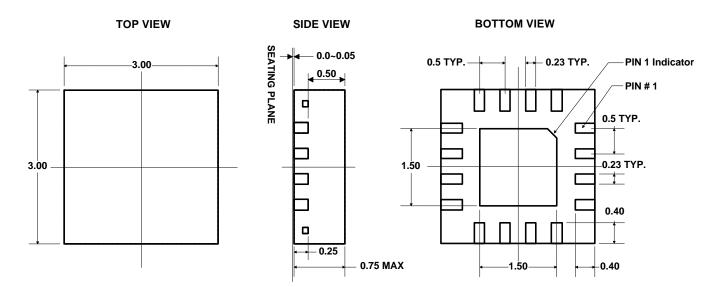
When properly matched, the TXC100 can output up to +12 dBm into a 50Ω load. The output is an open-drain configuration which requires a pull-up inductor for proper internal biasing. The pull-up inductance serves to provide biasing for the power amplifier and is a high frequency choke to reduce unwanted coupling back into the power supply. Maximum power transfer occurs when the output is closely matched to 250Ω . For best performance use wirewound inductors instead of chip inductors. Wirewound inductors provide lower insertion loss as opposed to chip inductors. See *Typical Application Circuit* (section IV) for topology and matching component values.

PCB Layout Considerations

PCB layout is critical to proper and consistent operation. Always use controlled impedance lines from the PA_{OUT} (pin 8). For a .062" thick FR4 board a 50 Ω impedance line is approximately .110" wide. Component spacing is critical as well. Keep all output matching components as close together as possible to minimize stray inductance and capacitance that can detune the matching network. Keep ground planes at least a board thickness away from the signal output leading to the antenna or RF connector.



Antenna Layout Considerations


Most compact wireless designs have the need for a small, compact antenna. Typically, loop antennas are the ones of choice since they can be designed into tight spaces. Loop antenna design can become fairly lengthy and detailed discussion is beyond the scope of this datasheet. The object here is to provide a "rule of thumb" approach to achieve an appropriate starting point. Empirical data will provide the best path to take.

The circumference of the antenna should be less than $\lambda/4$ so that the antenna appears inductive. For this, a series matching capacitor is used to tune out the inductance of the antenna, since the antenna appears inductive. The capacitor may be located at the feed point of the antenna or at the "grounded" end. The capacitor may be a variable type or several fixed values may be attempted until an optimal match is reached. The use of a good network analyzer is essential for proper matching and maximum power transfer. For additional information on antenna design see the <u>Application Notes</u> section of our website: <u>http://www.rfm.com/corp/apnotes.htm</u>.

XII. Typical Test Circuit

Package Dimensions – 3x3mm 16-pin TQFN Package (all values in mm)

4441 Sigma Road Dallas, Texas 75244 (800) 704-6079 toll-free in U.S. and Canada Email: info@rfm.com

www.rfm.com www.wirelessis.com

© 2005 RF Monolithics, Inc. TXC100 012706