MICROCHIP TC4426A/TC4427A/TC4428A

1.5A Dual High-Speed Power MOSFET Drivers

Features:

- High Peak Output Current 1.5A
- Wide Input Supply Voltage Operating Range:
 4.5V to 18V
- High Capacitive Load Drive Capability 1000 pF in 25 ns (typ.)
- Short Delay Times 30 ns (typ.)
- Matched Rise, Fall and Delay Times
- Low Supply Current:
 - With Logic '1' Input 1 mA (typ.)
- With Logic '0' Input 100 μA (typ.)
- Low Output Impedance 7Ω (typ.)
- Latch-Up Protected: Will Withstand 0.5A Reverse Current
- Input Will Withstand Negative Inputs Up to 5V
- ESD Protected 4 kV
- Pin-compatible with TC426/TC427/TC428 and TC4426/TC4427/TC4428
- Space-saving 8-Pin MSOP and 8-Pin 6x5 DFN Packages

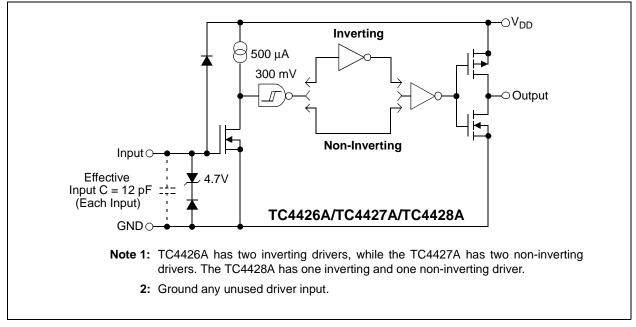
Applications:

- Switch Mode Power Supplies
- Line Drivers
- Pulse Transformer Drive

General Description:

The TC4426A/TC4427A/TC4428A are improved versions of the earlier TC4426/TC4427/TC4428 family of MOSFET drivers. In addition to matched rise and fall times, the TC4426A/TC4427A/TC4428A devices have matched leading and falling edge propagation delay times.

These devices are highly latch-up resistant under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (of either polarity) occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against Electrostatic Discharge (ESD) up to 4 kV.


The TC4426A/TC4427A/TC4428A MOSFET drivers can easily charge/discharge 1000 pF gate capacitances in under 30 ns. These devices provide low enough impedances in both the on and off states to ensure the MOSFET's intended state will not be affected, even by large transients.

Package Types

	\ TC4427A	TC4428A	8-	Pin DFN ⁽¹	, TC4426A	TC4427A	TC4428A
NC 1 • 8 NC A 2 TC4426A 7 OUT A	NC ^V OUT A		NC 1		8 NC	NC	NC
ND 3 TC4427A 6 V _{DD}	V _{DD}	V _{DD}	IN A 2	TC4426A TC4427A	7 OUT A	OUT A	OUT A
NB4TC4428A5 OUT B	OUT B	OUT B	GND 3	TC4428A	6 V _{DD}	V _{DD}	V _{DD}
			IN B 4		5 OUT B	OUT B	OUT B

TC4426A/TC4427A/TC4428A

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute	Maximum	Ratings†
----------	---------	----------

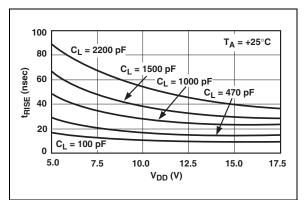
+22V
GND – 5V)
Note 2
340 mW
730 mW
470 mW

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

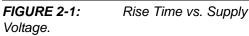
DC CHARACTERISTICS

Parameters	Sym	Min	Тур	Мах	Units	Conditions
Input						
Logic '1', High Input Voltage	VIH	2.4	_	_	V	
Logic '0', Low Input Voltage	V _{IL}	_	_	0.8	V	
Input Current	I _{IN}	-1.0 -10		+1.0 +10	μA	$0V \le V_{IN} \le V_{DD}$
Output					1	I
High Output Voltage	V _{OH}	V _{DD} - 0.025	_	_	V	DC Test
Low Output Voltage	V _{OL}	_	_	0.025	V	DC Test
Output Resistance	R _O	 	7 7 8 8	9 10 11 12	Ω	$\begin{split} I_{OUT} &= 10 \text{ mA}, \text{ V}_{DD} = 18 \text{ V}, \text{ T}_{A} = +25^{\circ}\text{C} \\ 0^{\circ}\text{C} &\leq \text{T}_{A} \leq +70^{\circ}\text{C} \\ -40^{\circ}\text{C} &\leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ -40^{\circ}\text{C} &\leq \text{T}_{A} \leq +125^{\circ}\text{C} \end{split}$
Peak Output Current	I _{PK}	_	1.5	_	А	$V_{DD} = 18V$
Latch-Up Protection Withstand Reverse Current	I _{REV}	—	> 0.5		A	Duty cycle ≤ 2%, t ≤ 300 µsec V _{DD} = 18V
Switching Time (Note 1)	1					
Rise Time	t _R	 	25 27 29 30	35 40 40 40	ns	$\begin{array}{l} T_{A} = +25^{\circ}C\\ 0^{\circ}C &\leq T_{A} &\leq +70^{\circ}C\\ -40^{\circ}C &\leq T_{A} &\leq +85^{\circ}C\\ -40^{\circ}C &\leq T_{A} &\leq +125^{\circ}C, \mbox{ Figure 4-1} \end{array}$
Fall Time	t _F	 	25 27 29 30	35 40 40 40	ns	$\begin{array}{l} T_{A} = +25^{\circ}C\\ 0^{\circ}C &\leq T_{A} &\leq +70^{\circ}C\\ -40^{\circ}C &\leq T_{A} &\leq +85^{\circ}C\\ -40^{\circ}C &\leq T_{A} &\leq +125^{\circ}C, \mbox{ Figure 4-1} \end{array}$
Delay Time	t _{D1}	 	30 33 35 38	35 40 45 50	ns	$T_{A} = +25^{\circ}C$ $0^{\circ}C \le T_{A} \le +70^{\circ}C$ $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ $-40^{\circ}C \le T_{A} \le +125^{\circ}C, \text{ Figure 4-1}$
Delay Time	t _{D2}	 	30 33 35 38	35 40 45 50	ns	$T_A = +25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +125^{\circ}C, \text{ Figure 4-1}$
Power Supply						· · · · · ·
Power Supply Current	۱ _S		1.0 0.1	2.0 0.2	mA	V _{IN} = 3V (Both inputs) V _{IN} = 0V (Both inputs), V _{DD} = 18V

Note 1: Switching times ensured by design.


2: Package power dissipation is dependent on the copper pad area on the PCB.

TEMPERATURE CHARACTERISTICS


Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges		•	•	•		
Specified Temperature Range (C)	T _A	0		+70	°C	
Specified Temperature Range (E)	Τ _Α	-40		+85	°C	
Specified Temperature Range (V)	T _A	-40		+125	°C	
Maximum Junction Temperature	ТJ	_		+150	°C	
Storage Temperature Range	Τ _Α	-65		+150	°C	
Package Thermal Resistances		•				
Thermal Resistance, 8L-6x5 DFN	θ_{JA}	_	33.2	_	°C/W	
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206		°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	—	125		°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	—	155	_	°C/W	

2.0 **TYPICAL PERFORMANCE CURVES**

The graphs and tables provided following this note are a statistical summary based on a limited number of Note: samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, over operating temperature range with 4.5V \leq V_{DD} \leq 18V.

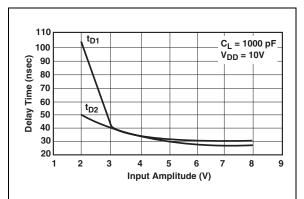


FIGURE 2-2: Delay Time vs. Input Amplitude.

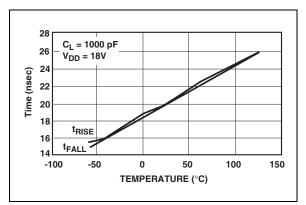
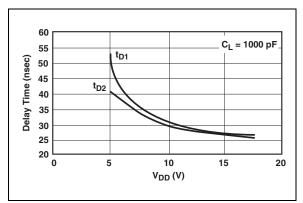
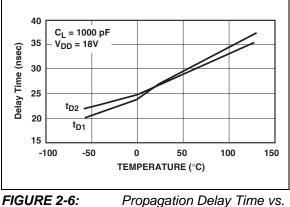
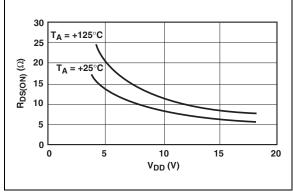


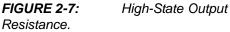
FIGURE 2-3: Rise and Fall Times vs. Temperature.



FIGURE 2-4: Fall Time vs. Supply Voltage.


FIGURE 2-5: Propagation Delay Time vs. Supply Voltage.



Temperature.

TC4426A/TC4427A/TC4428A

Note: Unless otherwise indicated, over operating temperature range with 4.5V \leq V_{DD} \leq 18V.

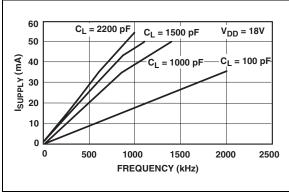


FIGURE 2-8: Supply Current vs. Frequency.

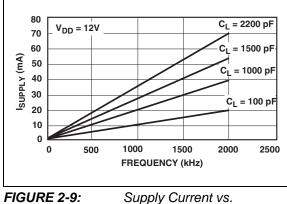


FIGURE 2-9: Frequency.

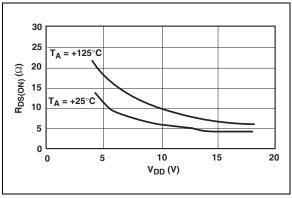


FIGURE 2-10: Low-State Output Resistance.

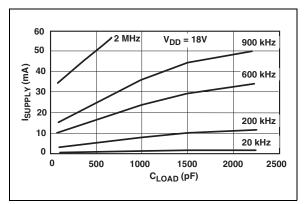


FIGURE 2-11: Supply Current vs. Capacitive Load.

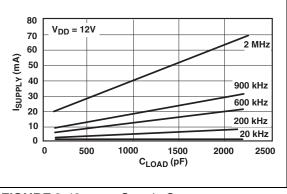
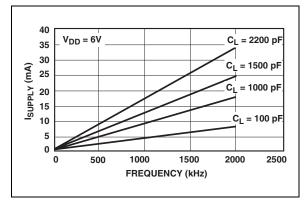




FIGURE 2-12: Supply Current vs. Capacitive Load.

Note: Unless otherwise indicated, over operating temperature range with 4.5V $\,\leq V_{DD} \,{\leq}\, 18V.$

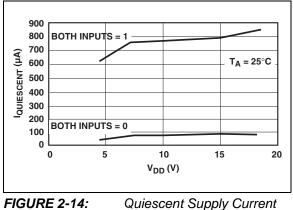


FIGURE 2-14: Qu vs. Voltage.

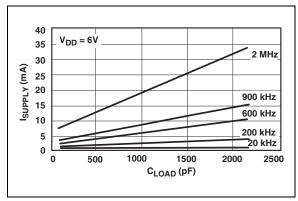
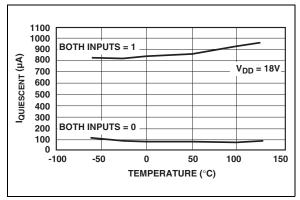



FIGURE 2-15: Supply Current vs. Capacitive Load.

FIGURE 2-16: Quiescent Supply Current vs. Temperature.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

IADLE 3-1:	FINTUNC	TION TABLE	
8-Pin PDIP/ MSOP/SOIC	8-Pin DFN	Symbol	Description
1	1	NC	No connection
2	2	IN A	Input A
3	3	GND	Ground
4	4	IN B	Input B
5	5	OUT B	Output B
6	6	V _{DD}	Supply input
7	7	OUT A	Output A
8	8	NC	No connection
	PAD	NC	Exposed Metal Pad

TABLE 3-1: PIN FUNCTION TABLE

Note 1: Duplicate pins must be connected for proper operation.

3.1 Inputs A and B

MOSFET driver inputs A and B are high-impedance, TTL/CMOS compatible inputs. These inputs also have 300 mV of hysteresis between the high and low thresholds that prevents output glitching, even when the rise and fall time of the input signal is very slow.

3.2 Ground (GND)

The ground pin is the return path for both the bias current and the high peak current that discharges the external load capacitance. The ground pin should be tied into a ground plane or have a very short trace to the bias supply source return.

3.3 Output A and B

MOSFET driver outputs A and B are low-impedance, CMOS push-pull style outputs. The pull-down and pullup devices are of equal strength, making the rise and fall times equivalent.

3.4 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V, with respect to the ground pin. The V_{DD} input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven.

3.5 Exposed Metal Pad

The exposed metal pad of the 6x5 DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board, to aid in heat removal from the package.

4.0 APPLICATIONS INFORMATION

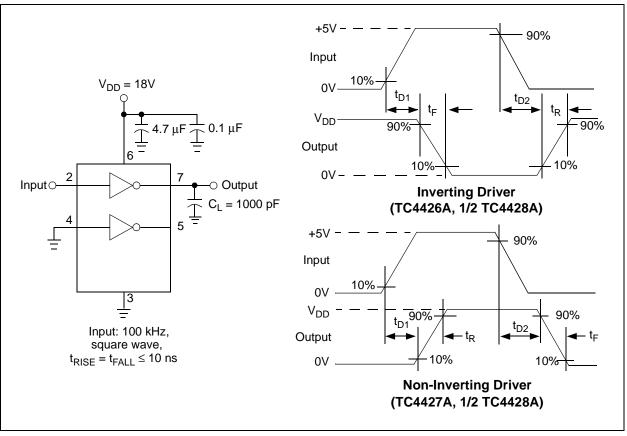
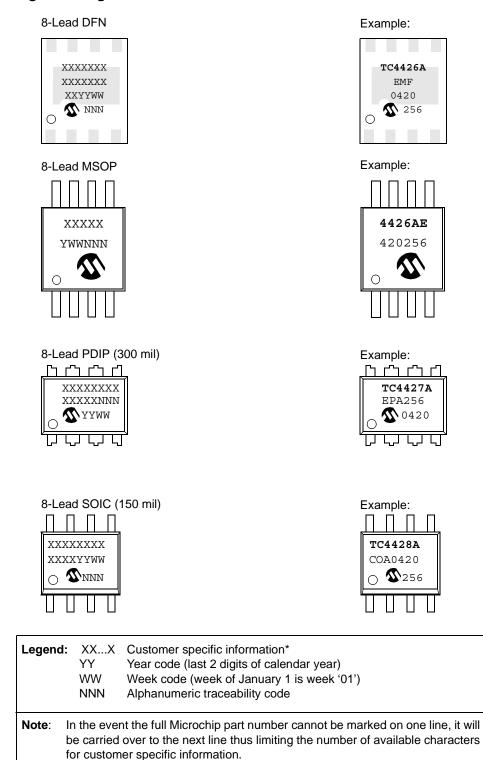
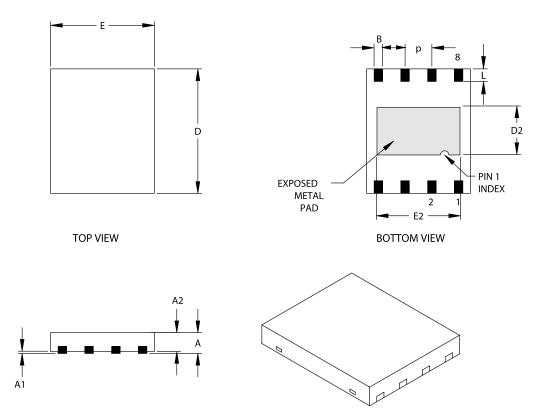



FIGURE 4-1: Switching Time Test Circuit.

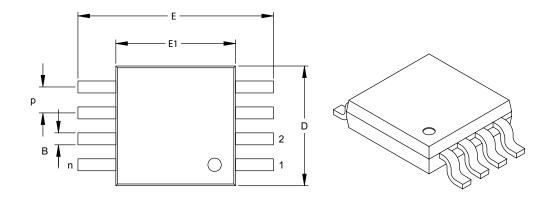

5.0 PACKAGING INFORMATION

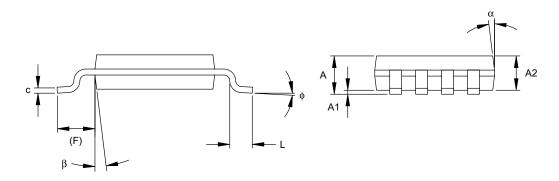
5.1 Package Marking Information

* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code).

8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated

	Units		INCHES		М	ILLIMETERS*	
Dimension Li	mits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050 BSC		1.27 BSC		
Overall Height	A	.033	.035	.037	0.85	0.90	0.95
Package Thickness	A2	.031	.035	.037	0.80	0.89	0.95
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3	.007	.008	.009	0.17	0.20	0.23
Overall Length	E	.195	.197	.199	4.95	5.00	5.05
Exposed Pad Length	E2	.152	.157	.163	3.85	4.00	4.15
Overall Width	D	.234	.236	.238	5.95	6.00	6.05
Exposed Pad Width	D2	.089	.091	.093	2.25	2.30	2.35
Lead Width	В	.014	.016	.019	0.35	0.40	0.47
Lead Length	L	.024		.026	0.60		0.65


Notes:


JEDEC equivalent: MO-220

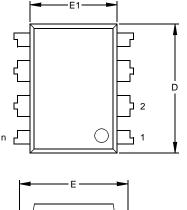
Drawing No. C04-122

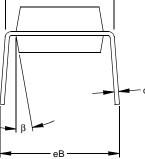
Revised 11/3/03

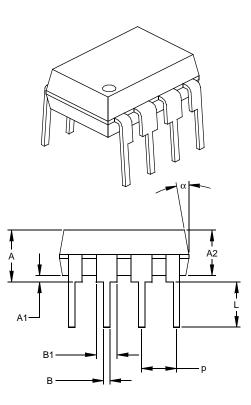
8-Lead Plastic Micro Small Outline Package (UA) (MSOP)

	Units		INCHES		М	ILLIMETERS	*
Dimension Li	mits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α	-	-	.043	-	-	1.10
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95
Standoff	A1	.000	-	.006	0.00	-	0.15
Overall Width	E		.193 TYP.			4.90 BSC	
Molded Package Width	E1		.118 BSC			3.00 BSC	
Overall Length	D		.118 BSC			3.00 BSC	
Foot Length	L	.016	.024	.031	0.40	0.60	0.80
Footprint (Reference)	F		.037 REF			0.95 REF	
Foot Angle	φ	0°	-	8°	0°	-	8°
Lead Thickness	С	.003	.006	.009	0.08	-	0.23
Lead Width	В	.009	.012	.016	0.22	-	0.40
Mold Draft Angle Top	α	5°	-	15°	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°	5°	-	15°
*Controlling Doromotor	-						

*Controlling Parameter

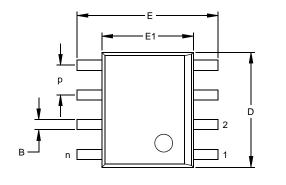

Notes:

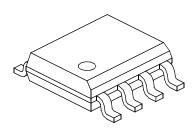

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

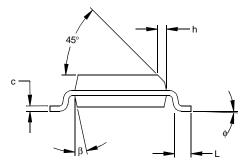

JEDEC Equivalent: MO-187

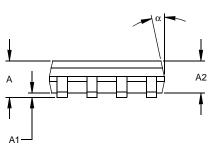
Drawing No. C04-111

8-Lead Plastic Dual In-line (PA) – 300 mil (PDIP)


	Units	s INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018

8-Lead Plastic Small Outline (OA) - Narrow, 150 mil (SOIC)

	Units	Units INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012

Drawing No. C04-057

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X	<u>xx</u>	<u>xxx</u>	×	Examples:	
Device Temper Rang	rature Package	 Tape & Reel	PB Free	a) TC4426ACOA:	1.5A Dual Inverting MOSFET driver, 0°C to +70°C, 8LD SOIC package.
Device:	TC4426A: 1.5A Dual TC4427A: 1.5A Dual TC4428A: 1.5A Dual	MOSFET Driver,	Non-Inverting	b) TC4426AEOA:	1.5A Dual Inverting MOSFET driver, -40°C to +85°C, 8LD SOIC package.
Temperature Range:	$\begin{array}{rcl} C & = & 0^{\circ}C \text{ to } +70^{\circ}C \\ E & = & -40^{\circ}C \text{ to } +85^{\circ} \\ V & = & -40^{\circ}C \text{ to } +125 \end{array}$		nly)	c) TC4426AEMF:	1.5A Dual Inverting MOSFET driver, -40°C to +85°C, 8LD DFN package.
Package:	MF713 = Dual, Flat, (Tape and		m Body), 8-lead	a) TC4427ACPA:	1.5A Dual Non-Inverting MOSFET driver, 0°C to +70°C, 8LD PDIP package.
	OA = Plastic SO OA713 = Plastic SO (Tape and UA = Plastic Mic	IC, (150 mil Body IC, (150 mil Body Reel) ro Small Outline (), 8-lead), 8-lead (MSOP), 8-lead	b) TC4427AEPA:	1.5A Dual Non-Inverting MOSFET driver, -40°C to +85°C, 8LD PDIP package.
	UA713 = Plastic Micro Small Outline (MSOP), 8-lead (Tape and Reel)		c) TC4427AVMF713:	1.5A Dual Non-Inverting MOSFET driver, -40°C to +125°C, 8LD DFN package,	
				a) TC4428AEPA:	Tape and Reel. 1.5A Dual Complementary MOSFET driver, -40°C to +85°C, 8LD PDIP package.
				b) TC4428ACOA713:	1.5A Dual Complementary MOSFET driver, 0°C to +70°C 8LD SOIC package, Tape and Reel.
				c) TC4428AVMF:	1.5A Dual Complementary MOSFET driver, -40°C to +125°C, 8LD DFN package.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Note the following details of the code protection feature on Microchip devices:

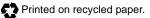
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and Zena are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820