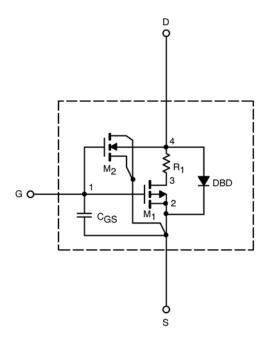


SPICE Device Model SUD19P06-60L Vishay Siliconix

P-Channel 60-V (D-S) 175°C MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

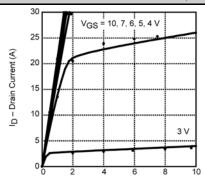
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 73154 www.vishay.com 29-Sep-04 1

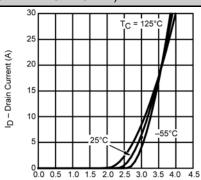
SPICE Device Model SUD19P06-60L

Vishay Siliconix

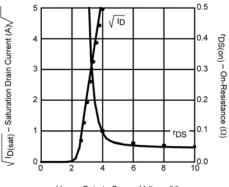
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = $-250 \mu A$	2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	104		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -10 \text{ A}$	0.047	0.047	Ω
		$V_{GS} = -10 \text{ V}, I_D = -10 \text{ A}, T_J = 125^{\circ}\text{C}$	0.083		
		$V_{GS} = -10 \text{ V}, I_D = -10 \text{ A}, T_J = 175^{\circ}\text{C}$	0.102		
		$V_{GS} = -4.5 \text{ V}, I_D = -5 \text{ A}$	0.060	0.061	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -15 \text{ V}, I_{D} = -10 \text{ A}$	20	22	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = -10 \text{ A}, V_{GS} = 0 \text{ V}$	- 0.87	– 1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = -25 V, f = 1 MHz	1430	1140	pF
Output Capacitance	C _{oss}		130	130	
Reverse Transfer Capacitance	C _{rss}		84	90	
Total Gate Charge ^c	Q_g	$V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -10 \text{ A}$	25	26	nC
Gate-Source Charge ^c	Q_{gs}		4.5	4.5	
Gate-Drain Charge ^c	Q_{gd}		7	7	

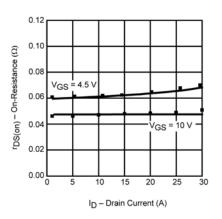

www.vishay.com Document Number: 73154

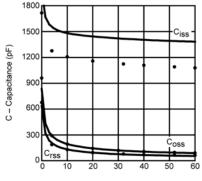
a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.



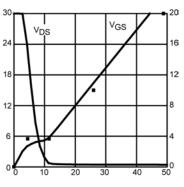
SPICE Device Model SUD19P06-60L Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


V_{DS} – Drain-to-Source Voltage (V)



V_{GS} – Gate-to-Source Voltage (V)



V_{GS} - Gate-to-Source Voltage (V)

Q_g – Total Gate Charge (nC)

Note: Dots and squares represent measured data

Document Number: 73154 www.vishay.com 29-Sep-04 3