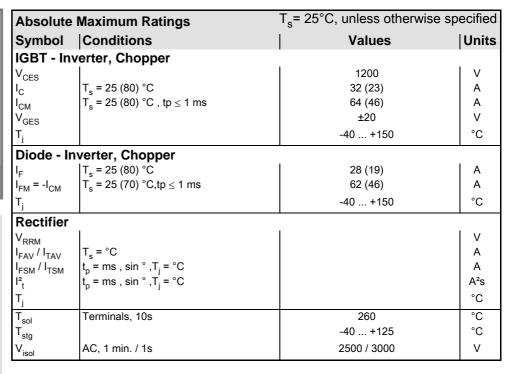


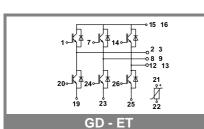
SEMITOP[®] 3

3-phase bridge inverter

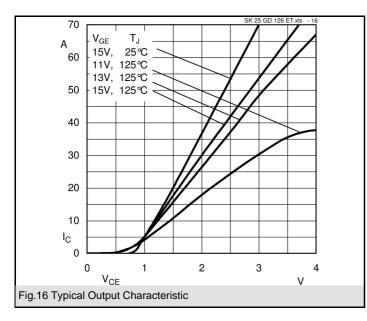
SK 25 GD 126 ET

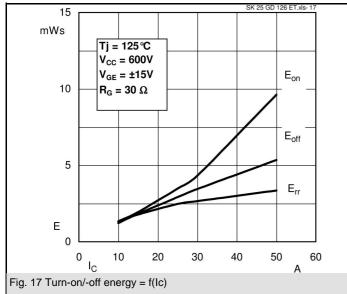

Preliminary Data

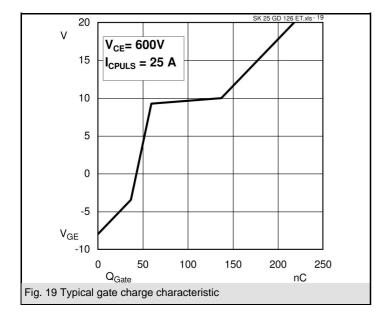
Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

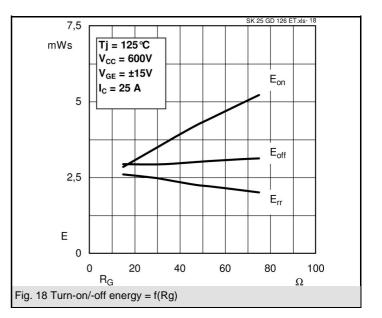
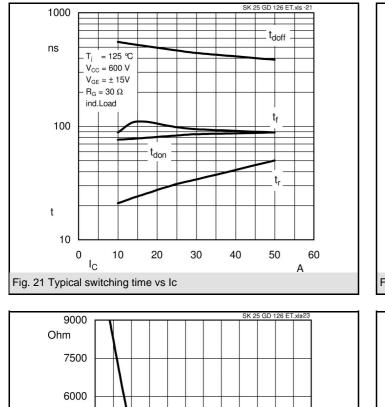
Typical Applications

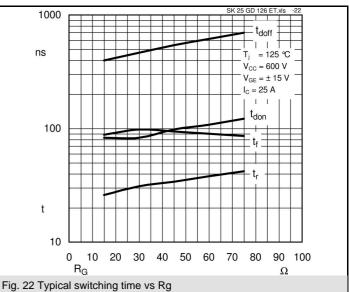

Inverter

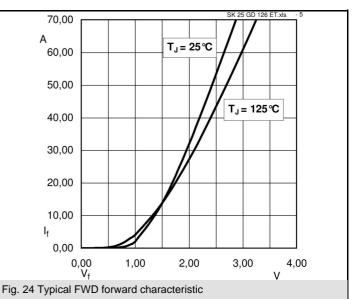


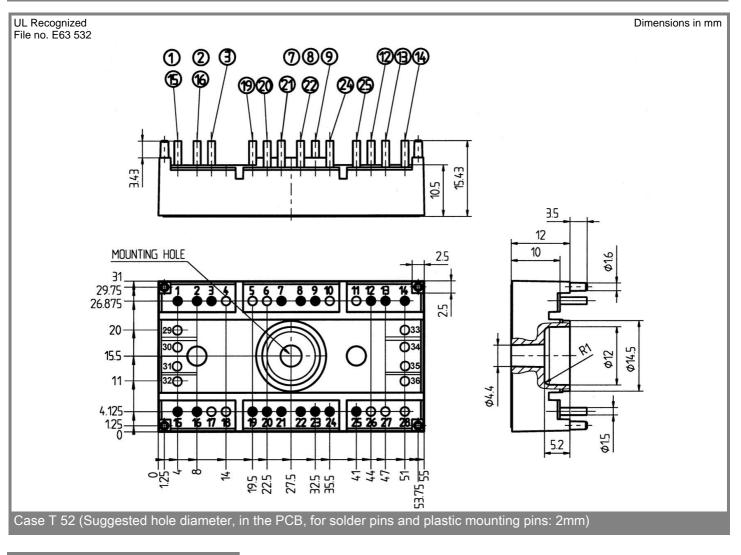

Characteristics		T _s = 25°C	T_s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - Inv	verter, Chopper					
V_{CEsat} $V_{GE(th)}$ $V_{CE(TO)}$ r_{T} C_{ies} C_{res} $R_{th(j-s)}$	$ I_{c} = 25 \text{ A}, T_{j} = 25 (125) \text{ °C}$ $V_{GE} = V_{CE}, I_{c} = 1 \text{ mA}$ $T_{j} = 25 \text{ °C} (125) \text{ °C}$ $T_{j} = 25 \text{ °C} (125) \text{ °C}$ $V_{CE} = 25 \text{ V}_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $P_{CE} = 25 \text{ V}_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $P_{CE} = 10 \text{ GBT}$	5	1,7 (2,2) 5,8 1 (0,9) 28 (44) 1,9 0,4 0,4	2,1 6,5 1,2 36	V V mΩ nF nF K/W	
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	under following conditions $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 25 \text{ A}, T_{j} = 125 ^{\circ}\text{C}$ $R_{Gon} = R_{Goff} = 25 \Omega$ inductive load		85 30 430 90 3,3 3,1		ns ns ns ns mJ mJ	
-	verter, Chopper		-, -			
$V_{F} = V_{EC}$ $V_{(TO)}$ r_{T} $R_{th(j-s)}$ I_{RRM} Q_{rr} E_{rr}	$\begin{split} & I_{F} = 25 \; A, \; T_{j} = 25 \; (125) \; ^{\circ}C \\ & T_{j} = 25 \; ^{\circ}C \; (125) \; ^{\circ}C \\ & T_{j} = 25 \; ^{\circ}C \; (125) \; ^{\circ}C \\ & per \; diode \\ \\ & under \; following \; conditions \\ & I_{F} = 25 \; A, \; V_{R} = 600 \; V \\ & V_{GE} = 0 \; V, \; T_{j} = 125 \; ^{\circ}C \end{split}$		1,8 (1,8) 1 (0,8) 32 (40) 31 5 2,1	1,1 42 1,9	V V K/W Α μC mJ	
	di _{F/dt} = 950 A/µs					
Diode red V _F V _(TO) r _T R _{th(j-s)}	$I_{F} = A, T_{j} = 25 °C$ $T_{j} = °C$ $T_{j} = °C$ per diode				V V mΩ K/W	
-	tur sensor	I			i	
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω	
Mechanic	cal data					
w M _s	Mounting torque		30	2,5	g Nm	

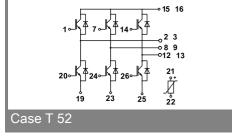
13-04-2005 SCT


Fig. 23 Typical NTC characteristic


0 T_{DBC}


°C


R

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.