- Ideal for European Superhet Receivers at 433.92 MHz
- Extremely Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
 - Complies with Directive 2002/95/EC (RoHS)

The RO2102 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at approximately 393.26 MHz. The RO2102 is designed for 433.92 MHz superhet receivers (with 10.7 MHz IF) in remote-control and wireless security applications operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Any Two Pins	±30	VDC
Case Temperature	-40 to +85	°C

Electrical Characteristics

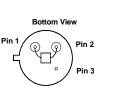
Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	cy (+25 °C) Absolute Frequency f _C	0 0 4 5	423.145		423.295	MHz	
	Tolerance from 423.220 MHz	Δf_C	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.4	2.0	dB
Quality Factor	Unloaded Q	QU	F 6 7		12,300		
	50 Ω Loaded Q	QL	5, 6, 7		1,900		
Temperature Stability	Turnover Temperature	т _о		10	25	40	°C
	Turnover Frequency	f _O	6, 7, 8		f _c		kHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			18	26	Ω
	Motional Inductance	L _M	5, 7, 9		82.9978		μH
	Motional Capacitance	CM			1.70389		fF
	Pin 1 to Pin 2 Static Capacitance	CO	5, 6, 9	1.8	2.1	2.4	pF
	Transducer Static Capacitance	CP	5, 6, 7, 9		1.8		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		67		nH
Lid Symbolization (in Addition	n to Lot and/or Date Codes)	RFM RO2102					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C . Typically, $f_{OSCILLA-TOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- 3. One or more of the following United States patents apply: 4,454,488 and
- 4,616,197 and others pending.Typically, equipment designs utilizing this device require emissions testing and
- government approval, which is the responsibility of the equipment manufacturer. 5. Unless noted otherwise, case temperature $T_{\rm C}$ = +25°C±2°C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- 7. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 8. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$. Typically, *oscillator* T_O is 20°C less than the specified *resonator* T_O .
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_0 .

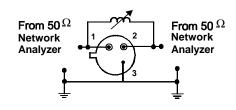
RO2102

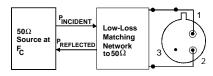


TO39-3 Case

Electrical Connections

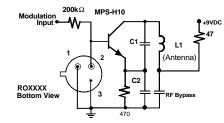
This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.

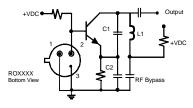

Pin	Connection		
1	Terminal 1		
2	Terminal 2		
3	Case Ground		


Typical Test Circuit

The test circuit inductor, $L_{\text{TEST}},$ is tuned to resonate with the static capacitance, C_O at $F_C.$

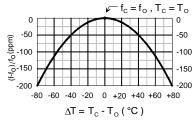
Electrical Test:


Power Test:

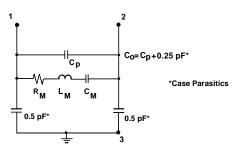

CW RF Power Dissipation = PINCIDENT PREFLECTED

Typical Application Circuits

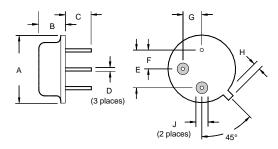
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millin	neters	Inches		
	Min	Max	Min	Max	
A		9.40		0.370	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		