

- Designed for 303.875 MHz SAW Resonator
- Low Series Resistance
- **Quartz Stability**
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)



The RO2043 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode quartz frequency stabilization of fixed-frequency transmitters operating at 303.825 MHz. The RO2043-1 is designed specitically for low-power AM transmitters on remote-control and wireless alarm applications operating in the USA under FCC Part15, in Japan, in Australia, in Korea, and elsewhere.

#### Absolute Maximum Ratings

| Rating                                                 | Value      | Units |
|--------------------------------------------------------|------------|-------|
| CW RF Power Dissipation                                | +5         | dBm   |
| DC Voltage Between Terminals (Observe ESD Precautions) | ±30        | VDC   |
| Case Temperature                                       | -40 to +85 | °C    |

## **RO2043**

# 303.875 MHz SAW Resonator

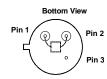


#### **Electrical Characteristics**

| Characteristic                                                       |                                      | Sym               | Notes      | Minimum | Typical             | Maximum | Units               |
|----------------------------------------------------------------------|--------------------------------------|-------------------|------------|---------|---------------------|---------|---------------------|
| Frequency (+25 °C)                                                   | Nominal Frequency                    | f <sub>C</sub>    | 2, 3, 4, 5 | 303.775 |                     | 303.975 | MHz                 |
|                                                                      | Tolerance from 303.875 MHz           | $\Delta f_{C}$    | 2, 3, 4, 3 |         |                     | ±100    | kHz                 |
| Insertion Loss                                                       |                                      | IL                | 2, 5, 6    |         | 4.8                 | 7.0     | dB                  |
| Quality Factor                                                       | Unloaded Q                           | Q <sub>U</sub>    | 5, 6, 7    |         | 11300               |         |                     |
|                                                                      | 50 $\Omega$ Loaded Q                 | $Q_L$             | 5, 0, 7    |         | 4600                |         |                     |
| Temperature Stability                                                | Turnover Temperature                 | T <sub>O</sub>    |            | 37      | 52                  | 67      | °C                  |
|                                                                      | Turnover Frequency                   | f <sub>O</sub>    | 6, 7, 8    |         | f <sub>C</sub> +8.2 |         | kHz                 |
|                                                                      | Frequency Temperature Coefficient    | FTC               |            |         | 0.037               |         | ppm/°C <sup>2</sup> |
| Frequency Aging                                                      | Absolute Value during the First Year | fA                | 1, 6       |         | 10                  |         | ppm/yr              |
| DC Insulation Resistance between Any Two Pins                        |                                      |                   | 5          | 1.0     |                     |         | MΩ                  |
| RF Equivalent RLC Model                                              | Motional Resistance                  | $R_{M}$           |            |         | 74                  | 124     | Ω                   |
|                                                                      | Motional Inductance                  | $L_M$             | 5, 6, 7, 9 |         | 437.961             |         | μH                  |
|                                                                      | Motional Capacitance                 | $C_{M}$           |            |         | .626346             |         | fF                  |
|                                                                      | Pin 1 to Pin 2 Static Capacitance    | Co                | 5, 6, 9    | 1.5     | 1.8                 | 2.1     | pF                  |
|                                                                      | Transducer Static Capacitance        | C <sub>P</sub>    | 5, 6, 7, 9 |         | 1.5                 |         | pF                  |
| Test Fixture Shunt Inductance                                        |                                      | L <sub>TEST</sub> | 2, 7       |         | 150                 |         | nH                  |
| Lid Symbolization (in addition to Lot and/or Date Codes)  RFM RO2043 |                                      | •                 | •          |         |                     |         |                     |

#### CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

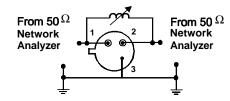
- Frequency aging is the change in  $f_C$  with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, f<sub>C</sub>, is measured at the minimum insertion loss point, IL<sub>MIN</sub>, with the resonator in the 50  $\Omega$  test system (VSWR  $\leq$  1.2:1). The shunt inductance, L<sub>TEST</sub>, is tuned for parallel resonance with C<sub>O</sub> at f<sub>C</sub>. Typically, f<sub>OSCILLA</sub>-TOR or f<sub>TRANSMITTER</sub> is less than the resonator f<sub>C</sub>.
- One or more of the following United States patents apply: 4,454,488 and
- 4,616,197 and others pending.


  Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature  $T_C = +25^{\circ}C \pm 2^{\circ}C$ .
- The design, manufacturing process, and specifications of this device are subject to change without notice.

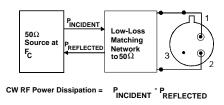
- Derived mathematically from one or more of the following directly measured parameters: f<sub>C</sub>, IL, 3 dB bandwidth, f<sub>C</sub> versus T<sub>C</sub>, and C<sub>O</sub>.
- Turnover temperature, T<sub>O</sub>, is the temperature of maximum (or turnover) frequency,  $f_{\text{O}}$ . The nominal frequency at any case temperature,  $T_{\text{C}}$ , may be calculated from: f =  $f_0$  [1 - FTC  $(T_0 - T_C)^2$ ]. Typically, oscillator  $T_0$  is 20°C less than the specified resonator To.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to Co.

### **Electrical Connections**

This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.

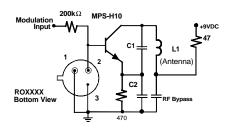

| Pin | Connection  |  |  |
|-----|-------------|--|--|
| 1   | Terminal 1  |  |  |
| 2   | Terminal 2  |  |  |
| 3   | Case Ground |  |  |



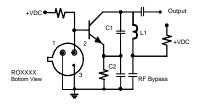

## **Typical Test Circuit**

The test circuit inductor,  $L_{\text{TEST}},$  is tuned to resonate with the static capacitance,  $C_{\text{O}}$  at  $F_{\text{C}}.$ 

#### **Electrical Test:**

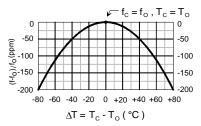



#### Power Test:



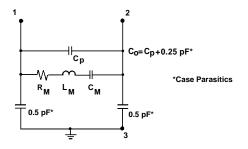

## **Typical Application Circuits**

**Typical Low-Power Transmitter Application:** 

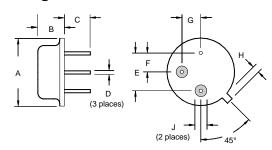



#### **Typical Local Oscillator Application:**




## **Temperature Characteristics**

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.




## **Equivalent LC Model**

The following equivalent LC model is valid near resonance:



## **Case Design**



| Dimensions | Millim       | neters | Inches        |       |  |
|------------|--------------|--------|---------------|-------|--|
|            | Min          | Max    | Min           | Max   |  |
| A          |              | 9.40   |               | 0.370 |  |
| В          |              | 3.18   |               | 0.125 |  |
| С          | 2.50         | 3.50   | 0.098         | 0.138 |  |
| D          | 0.46 Nominal |        | 0.018 Nominal |       |  |
| Е          | 5.08 Nominal |        | 0.200 Nominal |       |  |
| F          | 2.54 Nominal |        | 0.100 Nominal |       |  |
| G          | 2.54 Nominal |        | 0.100 Nominal |       |  |
| Н          |              | 1.02   |               | 0.040 |  |
| J          | 1.40         |        | 0.055         |       |  |