Power MOSFET

7.0 A, 20 V, Common Drain, Dual N-Channel, TSSOP-8

Features

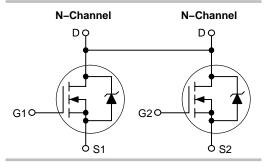
- Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- 3 mm Wide TSSOP-8 Surface Mount Package
- High Speed, Soft Recovery Diode
- TSSOP-8 Mounting Information Provided

Applications

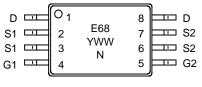
• Battery Protection Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	Vdc
Gate-to-Source Voltage - Continuous	V_{GS}	±12	Vdc
Drain Current – Continuous @ T _A 25°C (Note 1) – Continuous @ T _A 70°C (Note 1) – Pulsed (Note 3)	I _D I _{DM}	7.0 5.6 20	Adc
Total Power Dissipation @ T _A 25°C (Note 1)	P _D	1.81	W
Drain Current – Continuous @ T _A 25°C (Note 2) – Continuous @ T _A 70°C (Note 2) – Pulsed (Note 3)	I _D I _D I _{DM}	6.2 4.9 18	Adc
Total Power Dissipation @ T _A 25°C (Note 2)	P _D	1.39	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Thermal Resistance – Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2)	$R_{ hetaJA}$	69 90	°C/W
Maximum Lead Temperature for Soldering Purposes for 10 seconds	TL	260	°C


- 1. Mounted onto a 2" square FR-4 Board (1" sq. 2 oz. Cu 0.06" thick single sided), t \leq 10 sec.
- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz. Cu 0.06" thick single sided), Steady State.
- 3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2%.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX		
20 V	17 mΩ @ 4.5 V	7.0 A		

MARKING DIAGRAM & PIN ASSIGNMENT

Top View

E68 = Device Code
Y = Year
WW = Work Week
N = MOSFET

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTQD6968NR2	TSSOP-8	4000/Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)		V _{(BR)DSS}	20 -	_ 16	_ _	Vdc mV/°C
Zero Gate Voltage Collector Current ($V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 25^{\circ}\text{C}$) ($V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C}$)		I _{DSS}	_ _	- -	1.0 10	μAdc
Gate-Body Leakage Current (V _{GS} = ±12 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	-	±100	nAdc	
ON CHARACTERISTICS						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \mu\text{Adc})$ Temperature Coefficient (Negative)	V _{GS(th)}	0.6	0.75 3.0	1.2	Vdc mV/°C	
Static Drain-to-Source On-State F ($V_{GS} = 4.5 \text{ Vdc}$, $I_D = 7.0 \text{ Adc}$) ($V_{GS} = 2.5 \text{ Vdc}$, $I_D = 7.0 \text{ Adc}$) ($V_{GS} = 2.5 \text{ Vdc}$, $I_D = 3.5 \text{ Adc}$)	R _{DS(on)}	- - -	0.017 0.022 0.022	0.022 0.030 0.030	Ω	
Forward Transconductance (V _{DS} =	9FS	-	19.2	_	Mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	630	-	pF
Output Capacitance	$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	Coss	-	260	_	
Transfer Capacitance	,	C _{rss}	-	95	_	
SWITCHING CHARACTERISTICS	(Notes 4 and 5)			_		
Turn-On Delay Time		t _{d(on)}	-	8.0	_	ns
Rise Time	$(V_{DD} = 16 \text{ Vdc}, I_D = 7.0 \text{ Adc},$	t _r	-	25	-	
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ Vdc}, \bar{R}_{G} = 6.0 \Omega)$	t _{d(off)}	-	60	_	
Fall Time		t _f	-	65	-	
Gate Charge	$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 4.5 \text{ Vdc}, I_{D} = 7.0 \text{ Adc})$	Q _{tot}	-	12.5	17	nC
		Q_gs	-	1.0	-	
		Q_{gd}	-	5.0	-	
BODY-DRAIN DIODE RATINGS (N	Note 4)					
Forward On-Voltage	$(I_S = 7.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	V _{SD}	-	0.82	1.2	Vdc
Reverse Recovery Time	(I _S = 7.0 Adc, V _{GS} = 0 Vdc, dl _S /dt = 100 A/μs)	t _{rr}	_	35	-	ns
		t _a	-	15	-	
		t _b	-	20	-	
Reverse Recovery Stored Charge	tored Charge		_	0.02	_	μC

Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperature.

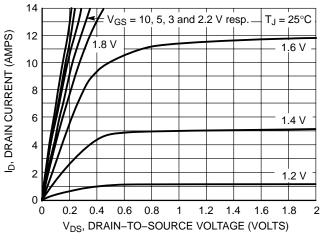
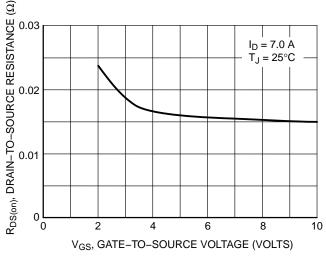



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

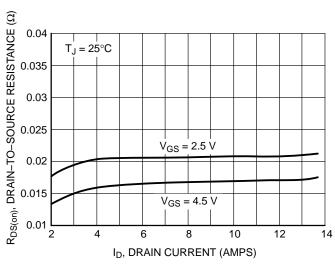
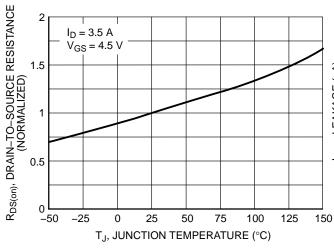



Figure 3. On–Resistance versus Gate–to–Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

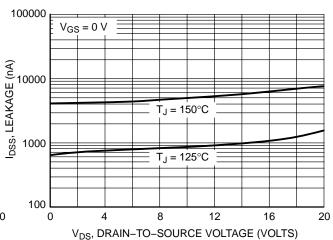
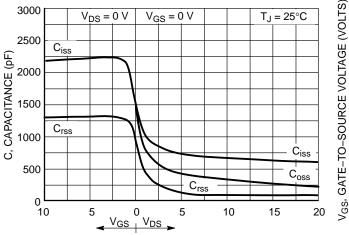



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

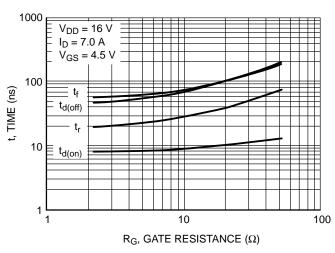


Figure 9. Resistive Switching Time Variation versus Gate Resistance

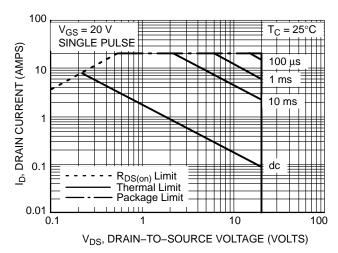


Figure 11. Maximum Rated Forward Biased Safe Operating Area

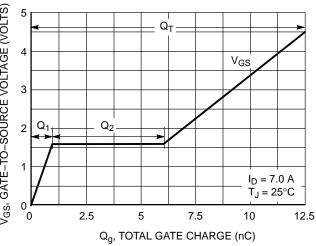


Figure 8. Gate-to-Source Voltage versus Total Charge

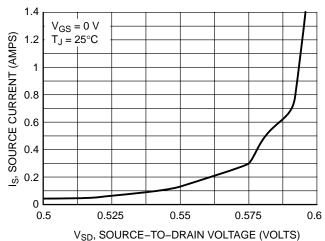


Figure 10. Diode Forward Voltage versus
Current

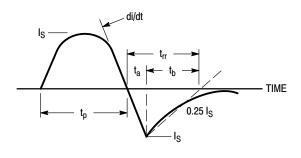


Figure 12. Diode Reverse Recovery Waveform

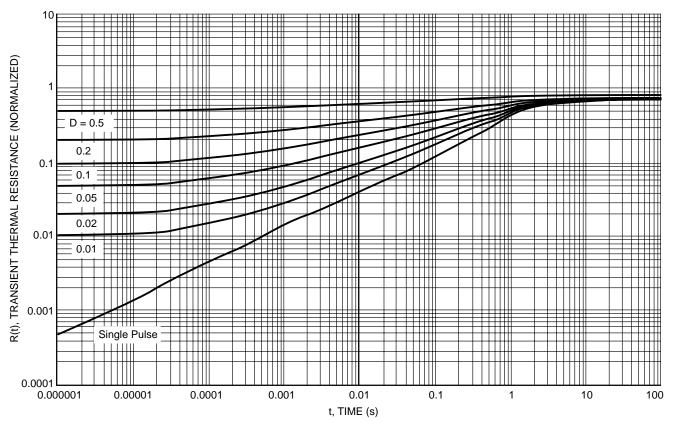
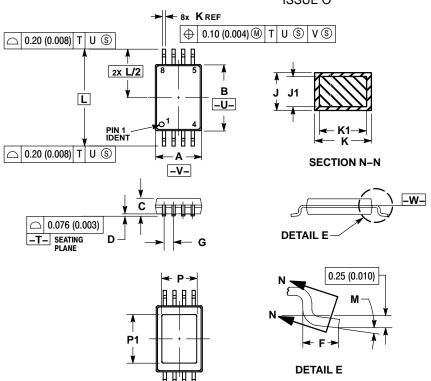



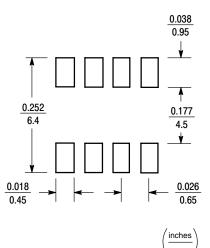
Figure 13. Thermal Response

PACKAGE DIMENSIONS

TSSOP-8

CASE 948S-01 **PLASTIC ISSUE O**

- DIMENSIONING AND TOLERANCING PER ANSI


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 2.5 (0.010) PER SIDE. EXCEED 225 (0.010) PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-.

			_		
	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	4.30	4.50	0.169	0.177	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65 BSC		0.026 BSC		
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
M	0°	8°	0°	8°	
Р		2.20		0.087	
P1		3.20		0.126	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.