SONY # **ICX224AKF** #### Diagonal 8mm (Type 1/2) Frame Readout CCD Image Sensor with Square Pixel for Color Cameras #### Description The ICX224AKF is a diagonal 8mm (Type 1/2) interline CCD solid-state image sensor with a square pixel array and 2.02M effective pixels. Frame readout allows all pixels' signals to be output independently within approximately 1/7.5 second. Also, the adoption of high frame rate readout mode supports 30 frames per second which is four times the speed in frame readout mode. This chip features an electronic shutter with variable charge-storage time. Adoption of a design specially suited for frame readout ensures a saturation signal level equivalent to when using field readout. Ye, Cy, Mg, G complementary color mosaic filters are used as the color filters, and at the same time high sensitivity and low dark current are achieved through the adoption of Super HAD CCD technology. This chip is suitable for applications such as electronic still cameras, PC input cameras, etc. #### **Features** - Supports frame readout - · High horizontal and vertical resolution - Supports high frame rate readout mode: 30 frames/s - Square pixel - Horizontal drive frequency: 18MHz - No voltage adjustments (reset gate and substrate bias are not adjusted.) - Ye, Cy, Mg, G complementary color mosaic filters on chip - · High sensitivity, low smear - · Continuous variable-speed shutter - Low dark current, excellent anti-blooming characteristics - 20-pin high-precision plastic package (top/bottom dual surface reference possible) #### **Device Structure** - Interline CCD image sensor - Image size: Diagonal 8mm (Type 1/2) - Total number of pixels: 1688 (H) \times 1248 (V) approx. 2.11M pixels Number of effective pixels: 1636 (H) \times 1236 (V) approx. 2.02M pixels Number of active pixels: 1620 (H) \times 1220 (V) approx. 1.98M pixels - Chip size: 7.6mm (H) × 6.2mm (V) Unit cell size: 3.9μm (H) × 3.9μm (V) - Optical black: Horizontal (H) direction: Front 4 pixels, rear 48 pixels Vertical (V) direction: Front 10 pixels, rear 2 pixels - Number of dummy bits: Horizontal 28 - Vertical 1 (even fields only) - Substrate material: Silicon ## Super HAD CCD_® *Super HAD CCD is a registered trademark of Sony Corporation. Super HAD CCD is a CCD that drastically improves sensitivity by introducing newly developed semiconductor technology by Sony Corporation into Sony's high-performance HAD (Hole-Accumulation Diode) sensor Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. Optical black position (Top View) ### **Block Diagram and Pin Configuration** (Top View) #### **Pin Description** | Pin No. | Symbol | Description | Pin No. | Symbol | Description | |---------|--------|----------------------------------|---------|--------|------------------------------------| | 1 | Vф4 | Vertical register transfer clock | 11 | VDD | Supply voltage | | 2 | VфзA | Vertical register transfer clock | 12 | φRG | Reset gate clock | | 3 | Vфзв | Vertical register transfer clock | 13 | Нф2 | Horizontal register transfer clock | | 4 | Vф2 | Vertical register transfer clock | 14 | Нф1 | Horizontal register transfer clock | | 5 | Vф1A | Vertical register transfer clock | 15 | GND | GND | | 6 | Vф1B | Vertical register transfer clock | 16 | φSUB | Substrate clock | | 7 | GND | GND | 17 | Сѕив | Substrate bias*1 | | 8 | NC | | 18 | VL | Protective transistor bias | | 9 | GND | GND | 19 | Нф1 | Horizontal register transfer clock | | 10 | Vоит | Signal output | 20 | Нф2 | Horizontal register transfer clock | ^{*1} DC bias is generated within the CCD, so that this pin should be grounded externally through a capacitance of $0.1\mu F$. ### **Absolute Maximum Ratings** | | Item | Ratings | Unit | Remarks | |--------------------------|--|--------------|------|---------| | | Vdd, Vout, фRG – фSUB | -40 to +12 | V | | | | Vφ1A, Vφ1B, Vφ3A, Vφ3B – φSUB | -50 to +15 | V | | | Against | Vφ2, Vφ4, VL – φSUB | -50 to +0.3 | V | | | | Hφ1, Hφ2, GND – φSUB | -40 to +0.3 | V | | | | Csub – ϕ SUB | –25 to | V | | | | Vdd, Vout, фRG, Csuв – GND | -0.3 to +22 | V | | | Against GND | Vφ1A, Vφ1B, Vφ2, Vφ3A, Vφ3B, Vφ4 – GND | -10 to +18 | V | | | | Hφ1, Hφ2 – GND | -10 to +6.5 | V | | | Against \/ | Vφ1A, Vφ1B, Vφ3A, Vφ3B — VL | -0.3 to +28 | V | | | Against V∟ | Vφ2, Vφ4, Hφ1, Hφ2, GND – VL | -0.3 to +15 | V | | | | Voltage difference between vertical clock input pins | to +15 | V | *2 | | Between input clock pins | Ηφ1 — Ηφ2 | -6.5 to +6.5 | V | | | | Ηφ1, Ηφ2 – Vφ4 | -10 to +16 | V | | | Storage temperature | | -30 to +80 | °C | | | Guaranteed temperatu | re of performance | -10 to +60 | °C | | | Operating temperature | 3 | -10 to +75 | °C | | $^{^{*2}}$ +24V (Max.) when clock width < 10 μ s, clock duty factor < 0.1%. ⁺¹⁶V (Max.) is guaranteed for turning on or off power supply. #### **Bias Conditions** | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | |----------------------------|--------|-------|------|-------|------|---------| | Supply voltage | VDD | 14.55 | 15.0 | 15.45 | V | | | Protective transistor bias | VL | | *1 | | | | | Substrate clock | φSUB | | *2 | | | | | Reset gate clock | φRG | | *2 | | | | ^{*1} VL setting is the V_{VL} voltage of the vertical transfer clock waveform, or the same voltage as the V_L power supply for the V driver should be used. #### **DC Characteristics** | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | |----------------|--------|------|------|------|------|---------| | Supply current | IDD | 4.0 | 7.0 | 10.0 | mA | | #### **Clock Voltage Conditions** | Item | Symbol | Min. | Тур. | Max. | Unit | Waveform diagram | Remarks | |-----------------------------------|---------------------------|-------|------|-------|------|------------------|--------------------------------------| | Readout clock voltage | Vvт | 14.55 | 15.0 | 15.45 | V | 1 | | | | Vvh1, Vvh2 | -0.05 | 0 | 0.05 | V | 2 | VvH = (VvH1 + VvH2)/2 | | | VvH3, VvH4 | -0.2 | 0 | 0.05 | V | 2 | | | | VVL1, VVL2,
VVL3, VVL4 | -8.0 | -7.5 | -7.0 | ٧ | 2 | VvL = (VvL3 + VvL4)/2 | | | Vφv | 6.8 | 7.5 | 8.05 | V | 2 | $V\phi V = VVHN - VVLN (n = 1 to 4)$ | | Vertical transfer clock | VvH3 – VvH | -0.25 | | 0.1 | V | 2 | | | voltage | Vvh4 – Vvh | -0.25 | | 0.1 | V | 2 | | | | Vvнн | | | 1.4 | V | 2 | High-level coupling | | | Vvhl | | | 1.3 | V | 2 | High-level coupling | | | Vvlh | | | 1.4 | V | 2 | Low-level coupling | | | Vvll | | | 0.8 | V | 2 | Low-level coupling | | | Vфн | 4.75 | 5.0 | 5.25 | V | 3 | | | Horizontal transfer clock voltage | VHL | -0.05 | 0 | 0.05 | V | 3 | | | olock voltago | Vcr | 0.5 | 1.65 | | V | 3 | Cross-point voltage | | | Vþrg | 3.0 | 3.3 | 5.25 | V | 4 | | | Reset gate clock voltage | Vrglh – Vrgll | | | 0.4 | V | 4 | Low-level coupling | | | VRGL - VRGLm | | | 0.5 | V | 4 | Low-level coupling | | Substrate clock voltage | Vфsuв | 21.5 | 22.5 | 23.5 | V | 5 | | ^{*2} Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD. #### **Clock Equivalent Circuit Constant** | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | |---|------------------|------|------|------|------|---------| | | Сф∨1А, Сф∨3А | | 390 | | pF | | | Capacitance between vertical transfer clock and GND | Сф∨1В, Сф∨3В | | 1800 | | pF | | | Sissivaria Grib | Сф∨2, Сф∨4 | | 1800 | | pF | | | | Сф∨1А2, Сф∨3А4 | | 220 | | pF | | | | СфV1В2, СфV3В4 | | 470 | | pF | | | | Сфу23А, Сфу41А | | 120 | | pF | | | | Сфу23В, Сфу41В | | 330 | | pF | | | Capacitance between vertical transfer clocks | Сф∨1АЗА | | 120 | | pF | | | | Сф∨1В3В | | 120 | | pF | | | | Сф∨1АЗВ, Сф∨1ВЗА | | 270 | | pF | | | | Сф∨24 | | 330 | | pF | | | | Сфутатв, Сфузазв | | 180 | | pF | | | Capacitance between horizontal transfer | Сфн1 | | 120 | | pF | | | clock and GND | Сфн2 | | 120 | | pF | | | Capacitance between horizontal transfer clocks | Сфнн | | 30 | | pF | | | Capacitance between reset gate clock and GND | Сфкс | | 8 | | pF | | | Capacitance between substrate clock and GND | Сфѕив | | 820 | | pF | | | | R1A, R3A | | 75 | | Ω | | | Vertical transfer clock series resistor | R1B, R3B | | 100 | | Ω | | | | R2, R4 | | 120 | | Ω | | | Vertical transfer clock ground resistor | RGND | | 30 | | Ω | | | Horizontal transfer clock series resistor | Rфн | | 5 | | Ω | | Vertical transfer clock equivalent circuit Horizontal transfer clock equivalent circuit #### **Drive Clock Waveform Conditions** #### (1) Readout clock waveform #### (2) Vertical transfer clock waveform $$V_{VL} = (V_{VL3} + V_{VL4})/2$$ $$V_{\phi V} = V_{VH} n - V_{VL} n \ (n = 1 \text{ to } 4)$$ VVL VVLL V_{VLH} VVL #### (3) Horizontal transfer clock waveform Cross-point voltage for the H ϕ 1 rising side of the horizontal transfer clocks H ϕ 1 and H ϕ 2 waveforms is Vcr. The overlap period for twh and twl of horizontal transfer clocks H ϕ 1 and H ϕ 2 is two. VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG. In addition, VRGL is the average value of VRGLH and VRGLL. $$V_{RGL} = (V_{RGLH} + V_{RGLL})/2$$ Assuming VRGH is the minimum value during the interval twh, then: $$V\phi RG = VRGH - VRGL$$ Negative overshoot level during the falling edge of RG is VRGLm. ### (5) Substrate clock waveform ### Clock Switching Characteristics (Horizontal drive frequency: 18MHz) | | Item | Symbol | | twh | | | twl | | | tr | | | tf | | Unit | Remarks | |------------------------------|---------------------------|--|------|------|------|------|------|------|------|------|------|------|------|------|-------|----------------------| | | пеш | Symbol | Min. | Тур. | Мах. | Min. | Тур. | Max. | Min. | Тур. | Max. | Min. | Тур. | Max. | Offic | Remains | | Rea | dout clock | Vт | 1.36 | 1.56 | | | | | | 0.5 | | | 0.5 | | μs | During readout | | Vert | ical transfer
k | Vф1A, Vф1B,
Vф2, Vф3A,
Vф3B, Vф4 | | | | | | | | | | 15 | | 250 | ns | When using CXD1267AN | | S | During | Нф1 | 14 | 19.5 | | 14 | 19.5 | | | 8.5 | 14 | | 8.5 | 14 | ns | tf ≥ tr – 2ns | | Horizontal
transfer clock | imaging | Нф2 | 14 | 19.5 | | 14 | 19.5 | | | 8.5 | 14 | | 8.5 | 14 | 115 | u | | rizo | During
parallel-serial | Нф1 | | 5.56 | | | | | | 0.01 | | | 0.01 | | 116 | | | Fa | conversion | Нф2 | | | | | 5.56 | | | 0.01 | | | 0.01 | | μs | | | Res | et gate clock | фRG | 7 | 10 | | | 37 | | | 4 | | | 5 | | ns | | | Sub | strate clock | фSUB | 1.7 | 3.6 | | | | | | | 0.5 | | | 0.5 | μs | During drain charge | | Item | Symbol | | two | | Unit | Remarks | |---------------------------|--------------------------|------|------|------|-------|---------| | item | Symbol | Min. | Тур. | Мах. | Offic | Remarks | | Horizontal transfer clock | Н ф1, Н ф2 | 12 | 19.5 | | ns | | ### Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics) #### **Image Sensor Characteristics** $(Ta = 25^{\circ}C)$ | Item | Symbol | Min. | Тур. | Max. | Unit | Measurement method | Remarks | |------------------------|--------|------|-------|--------|------|--------------------|------------------------------| | Sensitivity | S | 280 | 350 | | mV | 1 | 1/30s accumulation | | Canaitivity comparison | RмgG | 0.75 | | 1.17 | | 2 | | | Sensitivity comparison | RYeCy | 1.15 | | 1.48 | | 2 | | | Saturation signal | Vsat | 500 | | | mV | 3 | Ta = 60°C | | Cmaar | C | | 0.001 | 0.0025 | 0/ | 4 | Frame readout mode, *1 | | Smear | Sm | | 0.004 | 0.01 | % | 4 | High frame rate readout mode | | Video signal sheding | CLI | | | 20 | % | - | Zone 0 and I | | Video signal shading | SH | | | 25 | % | 5 | Zone 0 to II' | | Dark signal | Vdt | | | 8 | mV | 6 | Ta = 60°C, 7.5frame/s | | Dark signal shading | ΔVdt | | | 4 | mV | 7 | Ta = 60°C, 7.5frame/s, *2 | | Lag | Lag | | | 0.5 | % | 8 | | ^{*1} After closing the mechanical shutter, the smear can be reduced to below the detection limit by performing vertical register sweep operation. #### **Zone Definition of Video Signal Shading** #### **Measurement System** Note) Adjust the amplifier gain so that the gain between [*A] and [*B], and between [*A] and [*C] equals 1. ^{*2} Excludes vertical dark signal shading caused by vertical register high-speed transfer. #### **Image Sensor Characteristics Measurement Method** #### Measurement conditions - 1) In the following measurements, the device drive conditions are at the typical values of the bias and clock voltage conditions, and the frame readout mode is used. - 2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of the G/Ye channel signal output or the Mg/Cy channel signal output of the measurement system. #### O Color coding of this image sensor & Composition of luminance (Y) and chroma (color difference) signals The complementary color filters of this image sensor are arranged in the layout shown in the figure on the left. For frame readout, the A1 and A2 lines are output as signals in the A field, and the B1 and B2 lines in the B field. **Color Coding Diagram** These signals are processed to form the Y signal and chroma (color difference) signal as follows. The approximation: $$Y = {G + Mg + Ye + Cy} \times 1/4$$ = 1/4 {2B + 3G + 2R} is used for the Y signal, and the approximation: $$R - Y = \{(Mg + Ye) - (G + Cy)\}$$ $$= \{2R - G\}$$ $$B - Y = \{(Mg + Cy) - (G + Ye)\}$$ $$= \{2B - G\}$$ are used for the chroma (color difference) signal. #### Readout modes The diagram below shows the output methods for the following two readout modes. Note) Blacked out portions in the diagram indicate pixels which are not read out. Output starts from the line 5 in high frame rate readout mode. #### 1. Frame readout mode In this mode, all pixel signals are divided into two fields and output. All pixel signals are read out independently, making this mode suitable for high resolution image capturing. #### 2. High frame rate readout mode All effective area signals are output in 1/4 the period for frame readout mode by reading out two lines for every eight lines. The number of output lines is 325 lines. This readout mode emphasizes processing speed over vertical resolution. #### Definition of standard imaging conditions #### 1) Standard imaging condition I: Use a pattern box (luminance: 706cd/m², color temperature of 3200K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity. #### 2) Standard imaging condition II: Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm. #### 1. Sensitivity Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of 1/100s, measure the signal outputs (V_G, V_{Mg}, V_{Ye} and V_{Cy}) at the center of each G, Mg, Ye and Cy channel screen, and substitute the values into the following formulas. $$V = (V_G + V_{Mg} + V_{Ye} + V_{Cy})/4$$ $S = V \times \frac{100}{30} [mV]$ #### 2. Sensitivity comparison Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the G/Mg/Ye/Cy channel signal output is 150mV, and then measure the Mg signal output (S_{Mg} [mV]) and G signal output (S_G [mV]), and the Ye signal output (S_{Ye} [mV]) and Cy signal output (S_{Cy} [mV]) at the center of the screen. Substitute the values into the following formulas. $$R_{MgG} = S_{Mg}/S_{G}$$ $R_{YeCy} = S_{Ye}/S_{Cy}$ #### Saturation signal Set to standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with the average value of the G/Mg/Ye/Cy channel signal output, 150mV, measure the minimum values of the G, Mg, Ye and Cy signal outputs. #### 4. Smear Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the luminous intensity to 500 times the intensity with the average value of the G/Mg/Ye/Cy channel signal output, 150mV. After the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value (Vsm [mV]) independent of the G, Mg, Ye and Cy signal outputs, and substitute the values into the following formula. Sm = $$\frac{\text{Vsm}}{150} \times \frac{1}{500} \times \frac{1}{10} \times 100$$ [%] (1/10V method conversion value) #### 5. Video signal shading Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the G/Mg/Ye/Cy channel signal output is 150mV. Then measure the maximum (Vmax [mV]) and minimum (Vmin [mV]) values of the G/Mg/Ye/Cy channel signal output and substitute the values into the following formula. $$SH = (Vmax - Vmin) / 150 \times 100 [\%]$$ #### 6. Dark signal Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature 60°C and the device in the light-obstructed state, using the horizontal idle transfer level as a reference. #### 7. Dark signal shading After measuring 6, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output and substitute the values into the following formula. $$\Delta Vdt = Vdmax - Vdmin [mV]$$ #### 8. Lag Adjust the G/Mg/Ye/Cy channel signal output generated by strobe light to 150mV. After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula. $$Lag = (Vlag/150) \times 100 [\%]$$ Substrate bias control 1. The saturation signal level decreases when exposure is performed using the mechanical shutter, so control the substrate bias. Internally generated value Vsub tr≥2ms ff≥ 10ms GND Mechanical shutter mode Substrate bias control signal Vsub Cont. 2200p 2. A saturation signal level equivalent to that for continuous exposure can be assured by connecting a 4.7kQ grounding resistor to the CCD CsuB pin. Drive timing precautions - 1. Blooming occurs in modes (monitoring, etc.) that do not use the mechanical shutter, so do not ground the connected 4.7kΩ resistor. - tf is slow, so the internally generated voltage Vsus may not drop to a sufficiently low level if the substrate bias control signal is not set to high level $20 \mathrm{ms}$ before entering the exposure period and the $4.7 \mathrm{k}\Omega$ resistor connected to the Csub pin is not grounded. ď - register high-speed sweep transfer from the time the mechanical shutter closes until sensor readout is performed. However, note that the VL potential The blooming signal generated during exposure in mechanical shutter mode is swept by providing one field or more of idle transfer through vertical and the \$UB pin DC voltage sag at this time. რ Drive Timing Chart (Vertical Sequence) High Frame Rate Readout Mode → Frame Readout Mode/Electronic Shutter Normal Operation Note) The B output signal contains a blooming component and should therefore not be used. #### **Notes on Handling** #### 1) Static charge prevention CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures. - a) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes. - b) When handling directly use an earth band. - c) Install a conductive mat on the floor or working table to prevent the generation of static electricity. - d) Ionized air is recommended for discharge when handling CCD image sensors. - e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges. #### 2) Soldering - a) Make sure the package temperature does not exceed 80°C. - b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently. - c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero-cross On/Off type and connect it to ground. #### 3) Dust and dirt protection Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operations as required, and use them. - a) Perform all assembly operations in a clean room (class 1000 or less). - b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.) - c) Clean with a cotton bud and ethyl alcohol if grease stained. Be careful not to scratch the glass. - d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences. - e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape. #### 4) Installing (attaching) a) Remain within the following limits when applying a static load to the package. Do not apply any load more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.) b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive. - c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area, and indicated values should be transferred to other locations as a precaution. - d) The notch of the package is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch of the package. - e) If the leads are bent repeatedly and metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin. - f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference) #### 5) Others - a) Do not expose to strong light (sun rays) for long periods, as color filters will be discolored. When high luminous objects are imaged with the exposure level controlled by the electronic iris, the luminance of the image-plane may become excessive and discoloring of the color filter will possibly be accelerated. In such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the poweroff mode should be properly arranged. For continuous using under cruel condition exceeding the normal using condition, consult our company. - b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions. - c) Brown stains may be seen on the bottom or side of the package. But this does not affect the CCD characteristics. Unit: mm Package Outline 0.15 0 to 10° (0.0) 0.25 20pin SOP 31.0 ± 0.41 12.0 ± 0.21 9.01 Ø 13.8 ± 0.1 12.7 20 6.9 0.8 **2.5** 0.6 **2.5** 3.0 7.1 "A" is the center of the effective image area. 21.0 ± 6.2 3.0 8.0 10.0 1.0 ± 0.1 B The two points "B" of the package are the horizontal reference. The point "B" of the package is the vertical reference. ς. The bottom "**C**" of the package, and the top of the cover glass "**D**" are the height reference. რ 2.4 0.3 1.27 (\mathbf{z}) 0.3 \oplus The center of the effective image area relative to "**B**" and "**B**" is $(H, V) = (6.9, 6.0) \pm 0.15$ mm. 4. The rotation angle of the effective image area relative to H and V is \pm 1°. 5 The height from the bottom "**C**" to the effective image area is 1.41 ± 0.10 mm. The height from the top of the cover glass "**D**" to the effective image area is 1.49 ± 0.15 mm. 9 The tilt of the effective image area relative to the top "D" of the cover glass is less than 50µm. The tilt of the effective image area relative to the bottom "C" is less than 50µm. ۲. The thickness of the cover glass is 0.5mm, and the refractive index is 1.5. ω. The notches on the bottom of the package are used only for directional index, they must not be used for reference of fixing. 6 PACKAGE STRUCTURE | PACKAGE MATERIAL | Plastic | |------------------|--------------| | LEAD TREATMENT | GOLD PLATING | | LEAD MATERIAL | 42 ALLOY | | PACKAGE MASS | 0.95g | | DRAWING NUMBER | AS-B7(E) |