

350MHz PECL-output Oscillator ICs

OVERVIEW

The CF5034 series are differential LVPECL output oscillator ICs. They are made using a BiCMOS process which allows high-frequency oscillator circuits and differential LVPECL output circuits to be fabricated on a single chip. Two oscillator modes are supported—350MHz maximum fundamental oscillation mode, and 80MHz to 160MHz 3rd overtone oscillation mode.

The CF5034 series devices require only the connection of a crystal to realize a differential LVPECL output oscillator circuit.

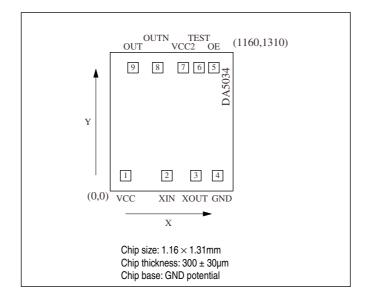
FEATURES

- 3.3 ± 0.3 V operating supply voltage
- Oscillator frequency range
 - 80MHz to 350MHz fundamental oscillation mode
 - 80MHz to 160MHz 3rd overtone oscillation mode
- 40MHz to 350MHz output frequency range
- Differential LVPECL output

- f_O (oscillator frequency) or f_O/2 output frequency, determined by internal connection
- $50 \pm 5\%$ output duty (measured at output crossing point)
- Standby function: outputs are high impedance when OE is LOW.
- Power-saving pull-up resistor built-in (pin OE)
- Chip form (CF5034××)

SERIES LINEUP

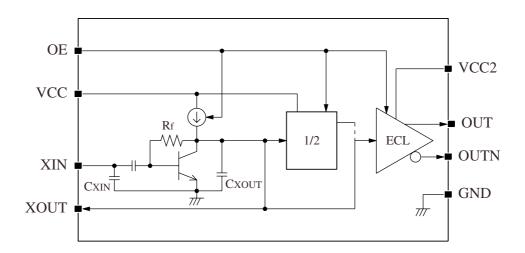
Version	Oscillation mode	Recommended oscillator frequency [MHz] ¹	Output frequency
CF5034AA		250 to 350	fo
CF5034AB	Fundamental	250 10 550	f _O /2
CF5034BA	- rundamentai	160 to 250	f _O
CF5034BB		100 to 230	f _O /2
CF5034DA		80 to 350	f _O
CF5034DB	_	(external capacitors required)	f _O /2
CF5034LA		125 to 160	fo
CF5034LB	Fundamental or 3rd overtone	125 to 160	f _O /2
CF5034MA		80 to 125	fo
CF5034MB		00 10 125	f _O /2


^{1.} The recommended oscillator frequency criteria is based on the negative resistance characteristics and cutoff frequency. Note that this may change depending on the crystal characteristics, thus sufficient allowance should be made.

ORDERING INFORMATION

Device	Package		
CF5034××-1	Chip form		

PAD LAYOUT


(Unit: µm)

PAD DESCRIPTION AND DIMENSIONS

Pad No. Name		1/0	Function	Pad dimensions [µm]		
Pau No.	Name	1/0	Function	Х	Υ	
1	VCC	-	Supply pin	146	145	
2	XIN	I	Oscillator input pin	536	145	
3	XOUT	0	Oscillator output pin	809	145	
4	GND	-	Ground pin	1015	145	
5	OE	I	Output enable pin. Outputs are high impedance when LOW (oscillator stopped). Power-saving pull-up resistor built-in.	979	1165	
6	TEST	I	IC test pin. Leave open circuit for normal operation.	839	1165	
7	VCC2	-	Output buffer supply pin	690	1165	
8	OUTN	0	Output pin (complementary)	449	1165	
9	OUT	0	Output pin (true)	216	1165	

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V _{CC}		-0.5 to 7.0	V
Input voltage range	V _{IN}		GND – 0.5 to V _{CC} + 0.5	٧
Output voltage range	V _{OUT}		GND – 0.5 to V _{CC} + 0.5	V
Storage temperature range	T _{STG}		-65 to 150	°C

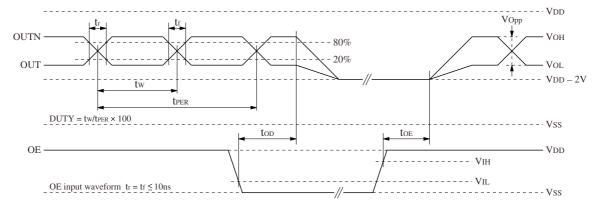
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol Conditions	Conditions	Rating			Unit
		Conditions	Min	Тур	Max	Oilit
Operating supply voltage	V _{CC}		3.0	3.3	3.6	V
Input voltage	V _{IN}		GND	-	V _{CC}	V
Operating temperature	T _{OPR}		-40	25	85	°C
Output load	RL	Terminated to V _{CC} – 2V	-	50	-	Ω
Output frequency	f _{OUT}		40	-	350	MHz

ELECTRICAL CHARACTERISTICS

DC Characteristics

Recommended operating conditions unless otherwise noted.


Davanatas	Cumbal	O a m elité		Rating			Unit
Parameter	Symbol Conditions		Min	Тур	Max		
Current consumption 1	I _{EE1}	Measurement cct. 1, O	E = open	_	55	88	mA
Current consumption 2	I _{EE2}	Measurement cct. 1, O	E = LOW	_	ı	30	μA
OUT/OUTN HIGH-level output voltage	V	V _{OH} Measurement cct. 4, V _{CC} = 3.3V, OE = open	Ta = 0 to 85°C	2.275	2.350	2.420	٧
	VOH		Ta = - 40°C	2.215	2.295	2.420	٧
OUT/OUTNI OWN I I I I	V _{OL}		Ta = 0 to 85°C	1.490	1.600	1.680	٧
OUT/OUTN LOW-level output voltage			Ta = - 40°C	1.470	1.605	1.745	٧
OUT/OUTN output leakage current	I _Z	Measurement cct. 2, OE = LOW		_	-	10	μA
OE HIGH-level input voltage	V _{IH}	Measurement cct. 1		0.7V _{CC}	ı	-	٧
OE LOW-level input voltage	V _{IL}	Measurement cct. 1		_	ı	0.3V _{CC}	٧
OE LOW-level input current 1	I _{IL1}	Measurement cct. 2, V _{IL} = 0V		-2	-	-20	μA
OE LOW-level input current 2	I _{IL2}	Measurement cct. 2, V _{IL} = 0.7V _{CC}		-20	-	-200	μA

AC Characteristics

Recommended operating conditions unless otherwise noted.

Parameter	Cumbal	vmbol Conditions		Unit		
	Symbol	Conditions	Min	Тур	Max	O.IIIC
Output duty cycle 1	Duty 1	Measurement cct. 3, measured at output crossing point, Ta = 25°C, V _{CC} = 3.3V	45	_	55	%
Output duty cycle 2	Duty 2	Measurement cct. 3, measured at 50% output swing, Ta = 25°C, V _{CC} = 3.3V	45	_	55	%
Output swing ¹	V _{Opp}	Measurement cct. 1, Ta = T _{OPR} , f = 350MHz, Peak to peak of output waveform	0.4	-	-	V
Output rise time	t _r	Measurement cct. 3, 20 to 80% output swing	-	0.5	1	ns
Output fall time	t _f	Measurement cct. 3, 80 to 20% output swing	-	0.5	1	ns
Output enable time ²	t _{OE}	Measurement cct. 1, Ta = 25°C	-	-	200	ns
Output disable time ²	t _{OD}	Measurement cct. 1, Ta = 25°C	-	-	200	ns

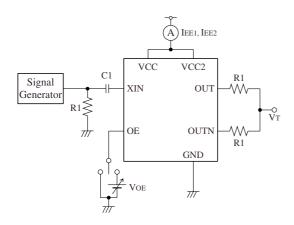
- 1. The said values are measured by using the NPC standard jig.
- 2. The built-in oscillator stop function does not operate with normal output immediately when OE goes HIGH. Instead, normal output occurs after the oscillator startup time has elapsed.

Timing chart

FUNCTIONAL DESCRIPTION

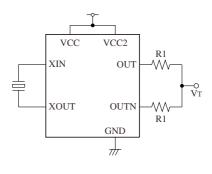
Standby Function

When OE goes LOW, the oscillator stops and the output pins (OUT, OUTN) become high impedance.

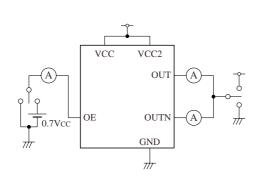

OE	OUT, OUTN	Oscillator
HIGH (or open)	Either f _O or f _O /2	Normal operation
LOW	High impedance	Stopped

Power-saving Pull-up Resistor

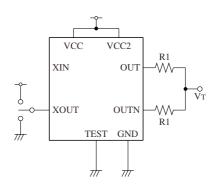
The OE pin pull-up resistance changes in value in response to the input level (HIGH or LOW). When OE is LOW (standby state), the pull-up resistance increases, thereby decreasing the current consumption.


MEASUREMENT CIRCUITS

Measurement Circuit 1


XIN input signal 500mVp-p, sine wave C1: $0.001\mu F$ R1: 50Ω V_T: V_{CC} - 2V V_{OE}: V_{CC}, V_{IH}, V_{IL}

Measurement Circuit 3



 $R1{:}~50\Omega,~V_T{:}~V_{CC}-2V$

Measurement Circuit 2

Measurement Circuit 4

$$\begin{split} \text{R1: 50} &\Omega, \, \text{V}_{\text{T}}\text{:} \, \text{V}_{\text{CC}} - 2\text{V} \\ \text{XOUT} &= \text{HIGH: OUT pin is fixed HIGH (V}_{\text{OH}}\text{)}. \\ &\text{OUTN pin is fixed LOW (V}_{\text{OL}}\text{)}. \\ \text{XOUT} &= \text{LOW: OUT pin is fixed LOW (V}_{\text{OL}}\text{)}. \\ &\text{OUTN pin is fixed HIGH (V}_{\text{OH}}\text{)}. \end{split}$$

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0116CE 2003.04