

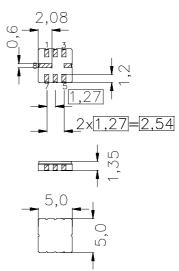
Data Sheet B4934

B4934

Low Loss Filter for Mobile Communication

210,38 MHz

Data Sheet


Features

- IF filter for mobile telephone
- Channel selection in CDMA systems
- Low insertion attenuation
- Extremely high rejection
- Single-ended/single-ended, balanced/single-ended and balanced/balanced operation possible
- Optimized for single-ended/balanced operation
- Very small size
- Package for Surface Mounted Technology (SMT)

Terminals

■ Ni, gold plated

Ceramic package QCC8C

Dimensions in mm, approx. weight 0,07 g

Pin configuration

2	Input

1+3 Input ground or balanced input

6 Output

5 Output ground or balanced output

7 to be grounded

4, 8 Case ground

Device is reciprocal, i.e. inputs can be used as outputs and vice versa

1,30	06
r00	4 ,8

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B4934	B39211-B4934-U310	C61157-A7-A53	F61074-V8070-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

•			
Operable temperature range	T	- 30/+ 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	13	V
Source power	$P_{\rm s}$	10	dBm

B4934

Low Loss Filter for Mobile Communication

210,38 MHz

Data Sheet

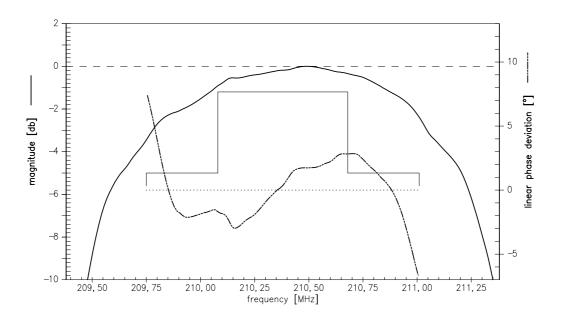
Characteristics single-ended/balanced

Operating temperature: $T = -30 \,^{\circ}\text{C} \dots +80 \,^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 980 \,\Omega \parallel 64 \,\text{nH}$ Terminating load impedance: $Z_{\text{L}} = 570 \,\Omega \parallel 61 \,\text{nH}$

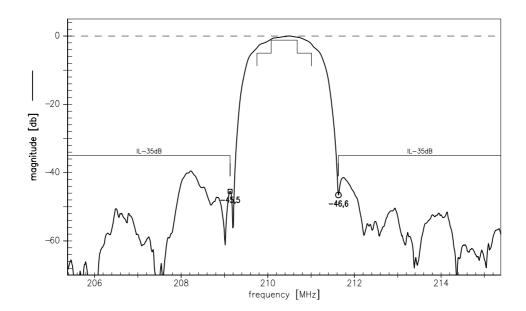
			min.	typ.	max.	
Nominal frequency		f_{N}	_	210,38	_	MHz
$\label{eq:loss_state} \begin{array}{l} \textbf{Insertion attenuation at } f_{\textbf{N}} \\ \text{(including loss in matching network without in baluns)} \end{array}$	loss	α_{fN}	_	8,7	10,0	dB
Amplitude ripple (p-p)		$\Delta \alpha$				
$f_{\rm N} - 0.30 \dots f_{\rm N} + 0.30$	MHz		_	0,7	1,2	dB
Phase linearity (rms deviation)		Δφ				
$f_{\rm N} - 0.63 \dots f_{\rm N} + 0.63$	MHz		_	2,5	3,5	۰
Relative attenuation (relative to α_{fN}) $f_N - 0.63 \dots f_N + 0.63$	MHz	α_{rel}	_	3,5	5,0	dB
$\begin{split} f_{N} - 100, 0 & \dots & f_{N} - 50, 0 \\ f_{N} - 50, 0 & \dots & f_{N} - 30, 0 \\ f_{N} - 30, 0 & \dots & f_{N} - 10, 0 \\ f_{N} - 10, 0 & \dots & f_{N} - 1, 25 \\ & & f_{N} - 1, 25 \\ & & f_{N} + 1, 25 \\ & & f_{N} + 10, 0 \\ f_{N} + 10, 0 & \dots & f_{N} + 30, 0 \\ f_{N} + 30, 0 & \dots & f_{N} + 50, 0 \\ f_{N} + 50, 0 & \dots & f_{N} + 100, 0 \\ \end{split}$	MHz MHz MHz MHz MHz MHz MHz MHz MHz		60,0 50,0 40,0 35,0 41,0 41,0 35,0 40,0 50,0 60,0	73,0 70,0 64,0 39,0 45,0 41,0 61,0 72,0 77,0	- - - - - - -	dB dB dB dB dB dB dB dB
Temperature coefficient of frequency 1) Frequency inversion point		TC_{f} T_0	_ 	-0,036 30		ppm/K ²

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4934


Low Loss Filter for Mobile Communication

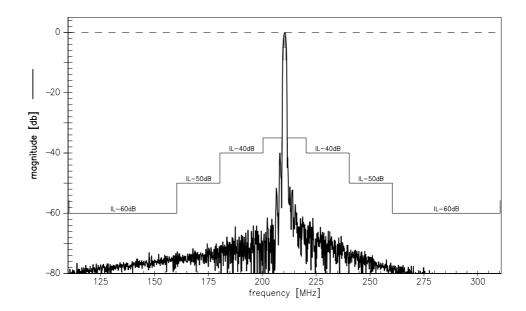
210,38 MHz


Data Sheet

Transfer function (passband, single-ended/balanced):

Transfer function (narrowband, single-ended/balanced):

B4934


Low Loss Filter for Mobile Communication

210,38 MHz

Data Sheet

Transfer function (wideband, single-ended/balanced):

Low Loss Filter for Mobile Communication

210,38 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT PD P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.