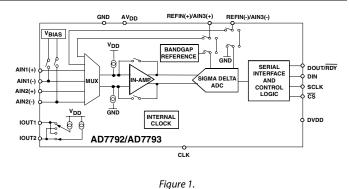
ANALOG Low Power, 16/24-Bit Sigma-Delta ADC with **DEVICES** Low-Noise In-Amp and Emhedded Reference

Preliminary Technical Data

FEATURES

Resolution: AD7792: 16-Bit AD7793: 24-Bit Low Noise Programmable Gain Instrumentation-Amp RMS noise: 80 nV (Gain = 64) Bandgap Reference with 5ppm/ C Drift typ Power Supply: 2.7 V to 5.25 V operation Normal: 400 µA typ Power-down: 1 µA max Update Rate: 4 Hz to 500 Hz Simultaneous 50 Hz/60 Hz Rejection **Internal Clock Oscillator** Programmable Current Sources (10 µA/200 µA/1 mA) **On-Chip Bias Voltage Generator 100 nA Burnout Currents** Independent Interface Power Supply 16-Lead TSSOP Package

INTERFACE


3-wire serial SPI®, QSPI™, MICROWIRE™, and DSP compatible Schmitt trigger on SCLK

APPLICATIONS

Thermocouple Measurements RTD Measurements Thermistor Measurements

FUNCTIONAL BLOCK DIAGRAM

AD7792/AD7793

GENERAL DESCRIPTION

The AD7792/AD7793 is a low power, complete analog front end for low frequency measurement applications. The AD7792/AD7793 contains a low noise 16/24-bit Σ - Δ ADC with three differential analog inputs. The on-chip low noise instrumentation amplifier means that signals of small amplitude can be interfaced directly to the ADC. With a gain setting of 64, the rms noise is 80 nV when the update rate equals 16.6 Hz.

The device contains a precision low noise, low drift internal bandgap reference for absolute measurements. An external reference can also be used if ratiometric measurements are required. On-chip programmable excitation current sources can be used to supply a constant current to RTDs and thermistors while the 100 nA burnout currents can be used to ensure that the sensors connected to the ADC are not burnt out. For thermocouple applications, the on-chip bias voltage generator steps up the common mode voltage from the thermocouple so that it is within the ADC's allowable range.

The device can be operated with the internal clock or, alternatively, an external clock can be used if synchronizing several devices. The output data rate from the part is software programmable and can be varied from 4 Hz to 500 Hz.

The part operates with a power supply from 2.7 V to 5.25 V. It consumes a current of 450 uA maximum and is housed in a 16lead TSSOP package.

REV.PrF

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

AD7792/AD7793—Specifications
Timing Characteristics [,]
Absolute Maximum Ratings
Pin Configuration and Function Descriptions9
Typical Performance Characteristics
On-chip Registers
Communications Register (RS2, RS1, RS0 = 0, 0, 0) 12
Status Register (RS2, RS1, RS0 = 0, 0, 0; Power-on/Reset = 0x80 (AD7792) / 0x88 (AD7793))13
Mode Register (RS2, RS1, RS0 = 0, 0, 1; Power-on/Reset = 0x000A)
Configuration Register (rs2, RS1, RS0 = 0, 1, 0; Power- on/Reset = 0x0710)
Data Register (RS2, RS1, RS0 = 0, 1, 1; Power-on/Reset = 0x0000(00))
ID Register (RS2, RS1, RS0 = 1, 0, 0; Power-on/Reset = 0xXA (ad7792) / 0xXB (ad7793))16
IO Register (RS2, RS1, RS0 = 1, 0, 1; Power-on/Reset = 0x00)
OFFSET Register (RS2, RS1, RS0 = 1, 1, 0; Power-on/Reset = 0x8000(AD7792)/ 0x800000(AD7793))17

FULL-SCALE Register (RS2, RS1, RS0 = 1, 1, 1; Power-

Preliminary Technical Data

REVISION HISTORY

REV.PrF, June 2004: Initial Version

AD7792/AD7793—SPECIFICATIONS¹

Table 1. (AV_{DD} = 2.7 V to 5.25 V; DV_{DD} = 2.7 V to 5.25 V; GND = 0 V; all specifications T_{MIN} to T_{MAX}, unless otherwise noted.)

Parameter	AD7792/AD7793B	Unit	Test Conditions/Comments
ADC CHANNEL SPECIFICATION			
Output Update Rate	4	Hz min nom	
	500	Hz max nom	
ADC CHANNEL			
No Missing Codes ²	24	Bits min	f _{ADC} <u><</u> 125 Hz. AD7793
	16	Bits min	
Resolution (pk – pk)	16	Bits p-p	Gain = 128, 16.6 Hz Update Rate, $V_{REF} = 2.5V$
	19	Bits p-p	Gain = 1, 16.6 Hz Update Rate, V _{REF} = 2.5V, AD7793
	16	Bits p-p	Gain = 1, 16.6 Hz Update Rate, V _{REF} = 2.5V, AD7792
Output Noise and Update Rates	See Tables in ADC Description		
Integral Nonlinearity	±15	ppm of FSR max	3.5 ppm of FSR typ, Gain = 1 to 32
	±25	ppm of FSR max	5 ppm of FSR typ, Gain = 64 and 128
Offset Error ³	±3	μV typ	
Offset Error Drift vs. Temperature ⁴	±10	nV/°C typ	
Full-Scale Error ^{3, 5}	±10	μV typ	
Gain Drift vs. Temperature ⁴	±0.5	ppm/°C typ	Gain = 1 or 2
	±3	ppm/°C typ	Gain = 4 to 128
Power Supply Rejection	90	dB min	100 dB typ, AIN = FS/2
ANALOG INPUTS			···
Differential Input Voltage Ranges	±REFIN/Gain	V nom	REFIN = REFIN(+) – REFIN(–) or Internal Reference, Gain = 1 to 128
Absolute AIN Voltage Limits ²			
Unbuffered Mode	GND – 30 mV	V min	Gain = 1 or 2
	$AV_{DD} + 30 \text{ mV}$	V max	
Buffered Mode	GND + 100 mV	V min	Gain = 1 or 2
	$AV_{DD} - 100 \text{ mV}$	V max	
In-Amp Enabled	GND + 300 mV	V min	Gain = 4 to 128
	AV _{DD} – 1.1	V max	
Common Mode Voltage	0.5	V min	Gain = 4 to 128
Analog Input Current			
Buffered Mode or In-Amp Enabled			
Average Input Current ²	±200	pA max	
Average Input Current Drift	±2	pA/°C typ	
Unbuffered Mode			Gain = 1 or 2. Input current varies with input voltage.
Average Input Current	±400	nA/V typ	
Average Input Current Drift	±50	pA/V/°C typ	
Normal Mode Rejection ²			
Internal Clock			
@ 50 Hz, 60 Hz	70	dB min	80 dB typ, 50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010 ⁶
@ 50 Hz	84	dB min	100 dB typ, 50 ± 1 Hz, FS[3:0] = 1001 ⁶
@ 60 Hz	90	dB min	100 dB typ, 60 ± 1 Hz, FS[3:0] = 1000 ⁶
External Clock			
@ 50 Hz, 60 Hz	80	dB min	90 dB typ, 50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010 ⁶
@ 50 Hz	94	dB min	$100 \text{ dB typ}, 50 \pm 1 \text{ Hz}, \text{FS}[3:0] = 1001^6$
@ 60 Hz	90	dB min	$100 \text{ dB typ}, 60 \pm 1 \text{ Hz}, \text{FS}[3:0] = 1000^{6}$
Common Mode Rejection			AIN = +FS/2
@DC	90	dB min	$100 \text{ dB typ}, \text{FS}[3:0] = 1010^6$
@ 50 Hz, 60 Hz ²	100	dB min	50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010 ⁶

Preliminary Technical Data

Parameter	AD7792/AD7793B	Unit	Test Conditions/Comments
@ 50 Hz, 60 Hz ²	100	dB min	50 ± 1 Hz (FS[3:0] = 1001 ⁶), 60 ± 1 Hz (FS[3:0] = 1000 ⁶)
REFERENCE			
Internal Reference Initial Accuracy	1.17 ±0.01%	V min/max	
Internal Reference Drift	5	ppm/°C typ	
	15	ppm/°C max	
Internal Reference Noise	2	μV RMS	Gain = 1, Update Rate = 16.6 Hz. Includes ADC Noise.
External REFIN Voltage	2.5	V nom	REFIN = REFIN(+) - REFIN(-)
Reference Voltage Range ²	0.1	V min	
	V dd	V max	
Absolute REFIN Voltage Limits ²	GND – 30 mV	V min	
	$AV_{DD} + 30 \text{ mV}$	V max	
Average Reference Input Current	400	nA/V typ	
Average Reference Input Current Drift	±0.03	nA/V/°C typ	
Normal Mode Rejection ²	Same as for Analog Inputs		
Common Mode Rejection	Same as for Analog Inputs		
EXCITATION CURRENT SOURCES			
(IEXC1 and IEXC2)			
Output Current	10/200/1000	μA nom	
Initial Tolerance at 25°C	±5	% typ	
Drift	200	ppm/°C typ	
Initial Current Matching at 25°C	±1	% typ	Matching between IEXC1 and EXC2. $V_{OUT} = 0 V$
Drift Matching	20	ppm/°C typ	
Line Regulation (V _{DD})	2.1	ppm/V max	$AV_{DD} = 5 V \pm 5\%$. Typically 1.25 ppm/V
Load Regulation	0.3	ppm/V typ	
Output Compliance	AV _{DD} - 0.6	V max	10 μA or 200 μA Currents Selected
	AV _{DD} – 1	V max	1 mA Currents Selected
	GND – 30 mV	V min	
TEMP SENSOR			
Accuracy	TBD	°C typ	
BIAS VOLTAGE GENERATOR			
V _{BIAS}	AV _{DD} /2	V nom	
VBIAS Generator Start-Up Time	TBD	ms/nF typ	Dependent on the Capacitance on the AIN pin
INTERNAL/EXTERNAL CLOCK			
Internal Clock			
Frequency	64 ±2%	KHz nom	
Duty Cycle	50:50	% typ	
Drift	0.01	%/°C typ	
External Clock			
Frequency	64	KHz nom	
Duty Cycle	45:55	% typ	
LOGIC INPUTS	1		
All Inputs Except SCLK, DIN and CLK ²			
V _{INL} , Input Low Voltage	0.8	V max	$DV_{DD} = 5 V$
	0.4	V max	$DV_{DD} = 3 V$
V _{INH} , Input High Voltage	2.0	V min	$DV_{DD} = 3 V \text{ or } 5 V$
SCLK and DIN (Schmitt-Triggered Input) ²			
V _T (+)	1.4/2	V min/V max	$DV_{DD} = 5 V$
			$DV_{DD} = 5 V$
V _T (–)	0.8/1.4	V min/V max	$Dv_{DD} = Jv$

Preliminary Technical Data

AD7792/AD7793

Parameter	AD7792/AD7793B	Unit	Test Conditions/Comments
V _T (+)	0.9/2	V min/V max	$DV_{DD} = 3 V$
V⊤(–)	0.4/1.1	V min/V max	$DV_{DD} = 3 V$
V⊤(+) - V⊤(−)	0.3/0.85	V min/V max	$DV_{DD} = 3 V$
CLK ²			
V _{INL} , Input Low Voltage	0.8	V max	$DV_{DD} = 5 V$
V _{INL} , Input Low Voltage	0.4	V max	$DV_{DD} = 3 V$
V _{INH} , Input High Voltage	3.5	V min	$DV_{DD} = 5 V$
V _{INH} , Input High Voltage	2.5	V min	$DV_{DD} = 3 V$
Input Currents	±1	μA max	$V_{IN} = DV_{DD}$ or GND
Input Capacitance	10	pF typ	All Digital Inputs
LOGIC OUTPUTS (Including CLK)			
V _{OH} , Output High Voltage ²	DV _{DD} - 0.6	V min	$DV_{DD} = 3 V$, $I_{SOURCE} = 100 \mu A$
VoL, Output Low Voltage ²	0.4	V max	$DV_{DD} = 3 V$, $I_{SINK} = 100 \mu A$
V _{он} , Output High Voltage ²	4	V min	$DV_{DD} = 5 V$, $I_{SOURCE} = 200 \mu A$
VoL, Output Low Voltage ²	0.4	V max	$DV_{DD} = 5 V, I_{SINK} = 1.6 \text{ mA} (DOUT/\overline{RDY})/800 \mu A$
			(CLK)
			(CLK)
Floating-State Leakage Current	±1	μA max	
Floating-State Output Capacitance	10	pF typ	
Data Output Coding	Offset Binary		
SYSTEM CALIBRATION ²			
Full-Scale Calibration Limit	1.05 x FS	V max	
Zero-Scale Calibration Limit	-1.05 x FS	V min	
Input Span	0.8 x FS	V min	
	2.1 x FS	V max	
POWER REQUIREMENTS ⁷			
Power Supply Voltage			
AV _{DD} – GND	2.7/5.25	V min/max	
DV _{DD} – GND	2.7/5.25	V min/max	
Power Supply Currents			
I _{DD} Current	150	μA max	125 μA typ, Unbuffered Mode, Ext. Reference
	175	μA max	150 μA typ, Buffered Mode, In-Amp Bypassed, Ext Ref
	380	μA max	330 μA typ, In-Amp used, Ext. Ref
	450	μA max	400 μA typ, In-Amp used, Int Ref
I _{DD} (Power-Down Mode)	1	µA max	

³ Following a self-calibration, this error will be in the order of the noise for the programmed gain and update rate selected. A system calibration will completely remove this error.

⁶FS[3:0] are the four bits used in the mode register to select the output word rate.

 7 Digital inputs equal to $\mathsf{DV}_{\mathsf{DD}}$ or GND.

¹ Temperature Range –40°C to +105°C. ² Specification is not production tested but is supported by characterization data at initial product release.

 ⁴ Recalibration at any temperature will remove these errors.
 ⁵ Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions (AV_{DD} = 4 V).

TIMING CHARACTERISTICS^{4, 5}

Table 2. $(AV_{DD} = 2.7 \text{ V to } 5.25 \text{ V}; DV_{DD} = 2.7 \text{ V to } 5.25 \text{ V}; GND = 0 \text{ V}, Input Logic 0 = 0 \text{ V}, Input Logic 1 = DV_{DD}, unless otherwise noted.)$

Parameter	Limit at T _{MIN} , T _{MAX} (B Version)	Unit	Conditions/Comments
t ₃	100	ns min	SCLK High Pulsewidth
t ₄	100	ns min	SCLK Low Pulsewidth
Read Operation			
t ₁	0	ns min	CS Falling Edge to DOUT/RDY Active Time
	60	ns max	$DV_{DD} = 4.75 V \text{ to } 5.25 V$
	80	ns max	DV _{DD} = 2.7 V to 3.6 V
t ₂ ⁶	0	ns min	SCLK Active Edge to Data Valid Delay ⁷
	60	ns max	$DV_{DD} = 4.75 V \text{ to } 5.25 V$
	80	ns max	DV _{DD} = 2.7 V to 3.6 V
t ₅ ^{8, 9}	10	ns min	Bus Relinquish Time after CS Inactive Edge
	80	ns max	
t ₆	100	ns max	SCLK Inactive Edge to CS Inactive Edge
t ₇	10	ns min	SCLK Inactive Edge to DOUT/RDY High
Write Operation			
t ₈	0	ns min	CS Falling Edge to SCLK Active Edge Setup Time ⁷
t9	30	ns min	Data Valid to SCLK Edge Setup Time
t ₁₀	25	ns min	Data Valid to SCLK Edge Hold Time
t ₁₁	0	ns min	CS Rising Edge to SCLK Edge Hold Time

⁴ Sample tested during initial release to ensure compliance. All input signals are specified with $t_R = t_F = 5$ ns (10% to 90% of DV_{DD}) and timed from a voltage level of 1.6 V. ⁵ See Figure 3 and Figure 4.

⁶ These numbers are measured with the load circuit of Figure 2 and defined as the time required for the output to cross the V_{OL} or V_{OH} limits.

⁷ SCLK active edge is falling edge of SCLK.

⁸ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of Figure 2. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.

⁹ RDY returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while RDY is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

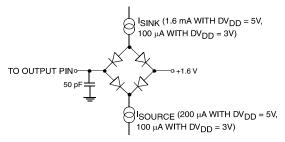
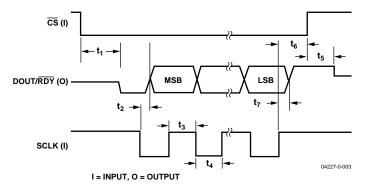



Figure 2. Load Circuit for Timing Characterization

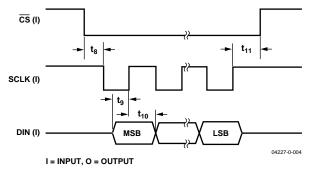


Figure 4. Write Cycle Timing Diagram

Preliminary Technical Data

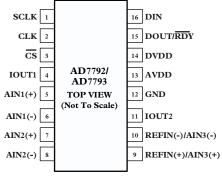

ABSOLUTE MAXIMUM RATINGS

Table 3. ($T_A = 25^{\circ}C$, unless otherwise noted.)

Parameter	Rating
AV _{DD} to GND	–0.3 V to +7 V
DV _{DD} to GND	–0.3 V to +7 V
Analog Input Voltage to GND	-0.3 V to AV_{\text{DD}}+0.3 V
Reference Input Voltage to GND	-0.3 V to AV_{\text{DD}}+0.3 V
Digital Input Voltage to GND	-0.3 V to AV_{\text{DD}}+0.3 V
Digital Output Voltage to GND	-0.3 V to AV_{\text{DD}}+0.3 V
AIN/Digital Input Current	10 mA
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	–65°C to +150°C
Maximum Junction Temperature	150°C
TSSOP	
θ _{JA} Thermal Impedance	128°C/W
θ _{JC} Thermal Impedance	14°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
InfraRed (15 sec(220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Function			
1	SCLK	Serial Clock Input for Data Transfers to and from the ADC. The SCLK has a Schmitt-triggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data.			
2	CLK	Clock In/Clock Out. The internal clock can be made available at this pin. Alternatively, the internal clock can be disabled and the ADC can be driven by an external clock. This allows several ADCs to be driven from a common clock, allowing simultaneous conversions to be performed.			
3	<u>c</u> s	Chip Select Input. This is an active low logic input used to select the ADC. \overline{CS} can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. \overline{CS} can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.			
4	IOUT1	Output of Internal Excitation Current Source. The internal excitation current source can be made available at this pin. The excitation current source is programmable so that the current can be 10 uA, 200 uA or 1 mA. Either IEXC1 or IEXC2 can be switched to this output.			
5	AIN1(+)	Analog Input. AIN1(+) is the positive terminal of the differential analog input pair AIN1(+)/AIN1(-).			
6	AIN1(-)	Analog Input. AIN1(-) is the negative terminal of the differential analog input pair AIN1(+)/AIN1(-).			
7	AIN2(+)	Analog Input. AIN2(+) is the positive terminal of the differential analog input pair AIN2(+)/AIN2(-).			
8	AIN2(-)	Analog Input. AIN2(-) is the negative terminal of the differential analog input pair AIN2(+)/AIN2(-).			
9	REFIN(+)/AIN3(+)	Positive Reference Input/Analog Input.			
		An external reference can be applied between REFIN(+) and REFIN(-). REFIN(+) can lie anywhere between AV_{DD} and GND + 0.1 V. The nominal reference voltage (REFIN(+) – REFIN(–)) is 2.5 V, but the part functions with a reference from 0.1 V to AV_{DD} .			
		Alernatively, this pin can function as AIN3(+) where AIN3(+) is the positive terminal of the differential analog input pair AIN3(+)/AIN3(-).			
10	REFIN(-)/AIN3(-)	Negative Reference Input/Analog Input.			
		REFIN(-) is the negative reference input for REFIN. This reference input can lie anywhere between GND and AV_{DD} – 0.1 V.			
		This pin also functions as AIN3(-) which is the negative terminal of the differential analog input pair AIN3(+)/AIN3(-).			
11	IOUT2	Output of Internal Excitation Current Source.			
		The internal excitation current source can be made available at this pin. The excitation current source is programmable so that the current can be 10 uA, 200 uA or 1 mA. Either IEXC1 or IEXC2 can be switched to this output			
12	GND	Ground Reference Point.			
13	AV _{DD}	Supply Voltage, 2.7 V to 5.25 V.			
14	DV _{DD}	Digital Interface Supply Voltage. The logic levels for the serial interface pins are related to this supply, which is between 2.7 V and 5.25 V. The D V _{DD} voltage in independent of the voltage on AV _{DD} so, AV _{DD} can equal 3V with			

Pin		
No.	Mnemonic	Function
		D V _{DD} at 5V or vice versa.
15	DOUT/RDY	Serial Data Output/Data Ready Output. DOUT/RDY serves a dual purpose . It functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/RDY operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin will go high before the next update occurs.The DOUT/RDY falling edge can be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/RDY pin. With CS low, the data/control word informa-tion is placed on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge. The end of a conversion is also indicated by the RDY bit in the status register. When CS is high, the DOUT/RDY pin is three-stated but the RDY bit remains active.
16	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC, the register selection bits of the communications register identifying the appropriate register.

TYPICAL PERFORMANCE CHARACTERISTICS

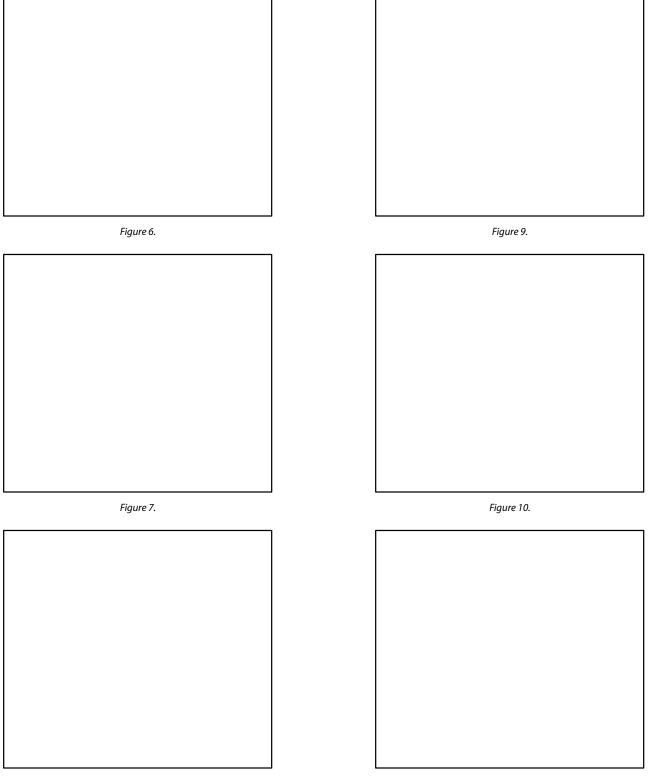


Figure 8.

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers, which are described on the following pages. In the following descriptions, *set* implies a Logic 1 state and *cleared* implies a Logic 0 state, unless otherwise stated.

COMMUNICATIONS REGISTER (RS2, RS1, RS0 = 0, 0, 0)

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 5 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
WEN(0)	R/ W (0)	RS2(0)	RS1(0)	RS0(0)	CREAD(0)	0(0)	0(0)

Table 5. Communications Register Bit Designations

Bit Location	Bit Name	Description
CR7	WEN	Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part will not clock on to subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0 is written to the WEN bit, the next seven bits will be loaded to the communications register.
CR6	R/W	A 0 in this bit location indicates that the next operation will be a write to a specified register. A 1 in this position indicates that the next operation will be a read from the designated register.
CR5–CR3	RS2-RS0	Register Address Bits. These address bits are used to select which of the ADC's registers are being selected during this serial interface communication. See Table 6.
CR2	CREAD	Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read, i.e., the contents of the data register are placed on the DOUT pin automatically when the SCLK pulses are applied. The communications register does not have to be written to for data reads. To enable continuous read mode, the instruction 01011100 must be written to the communications register. To exit the continuous read mode, the instruction 01011000 must be written to the communications register while the RDY pin is low. While in continuous read mode, the ADC monitors activity on the DIN line so that it can receive the instruction to exit continuous read mode. Additionally, a reset will occur if 32 consecutive 1s are seen on DIN. Therefore, DIN should be held low in continuous read mode until an instruction is to be written to the device.
CR1–CR0	0	These bits must be programmed to logic 0 for correct operation.

Table 6. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications Register during a Write Operation	8-Bit
0	0	0	Status Register during a Read Operation	8-Bit
0	0	1	Mode Register	16-Bit
0	1	0	Configuration Register	16-Bit
0	1	1	Data Register	16 / 24-Bit
1	0	0	ID Register	8-Bit
1	0	1	IO Register	8-Bit
1	1	0	Offset Register	16-Bit (AD7792)/24-Bit (AD7793)
1	1	1	Full-Scale Register	16-Bit (AD7792)/24-Bit (AD7793)

STATUS REGISTER (RS2, RS1, RS0 = 0, 0, 0; POWER-ON/RESET = 0x80 (AD7792) / 0x88 (AD7793))

The status register is an 8-bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be a read, and load bits RS2, RS1 and RS0 with 0. Table 7 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, SR denoting the bits are in the status register. SR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SRO
RDY(1)	ERR(0)	0(0)	0(0)	0/1	CH2(0)	CH1(0)	CH0(0)

Bit Location	Bit Name	Description
SR7	RDY	Ready bit for ADC. <i>Cleared</i> when data is written to the ADC data register. The RDY bit is <i>set</i> automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also <i>set</i> when the part is placed in power-down mode. The end of a conversion is indicated by the DOUT/RDY pin also. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC Error Bit. This bit is written to at the same time as the RDY bit. <i>Set</i> to indicate that the result written to the ADC data register has been clamped to all 0s or all 1s. Error sources include overrange, underrange. <i>Cleared</i> by a write operation to start a conversion.
SR5-SR4	0	These bits are automatically <i>cleared</i> .
SR3	0/1	This bit is automatically <i>cleared</i> on the AD7792 and is automatically <i>set</i> on the AD7793.
SR2–SR0	CH2–CH0	These bits indicate which channel is being converted by the ADC.

Table 7. Status Register Bit Designations

MODE REGISTER (RS2, RS1, RS0 = 0, 0, 1; POWER-ON/RESET = 0x000A)

The mode register is a 16-bit register from which data can be read or to which data can be written. This register is used to select the operating mode, update rate and clock source. Table 8 outlines the bit designations for the mode register. MR0 through MR15 indicate the bit locations, MR denoting the bits are in the mode register. MR15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter and sets the <u>RDY</u> bit.

MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
MD2(0)	MD1(0)	MD0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
CLK1(0)	CLK0(0)	0(0)	0(0)	FS3(1)	FS2(0)	FS1(1)	FS0(0)

Table 8. Mode Register Bit Designations

Bit Location	Bit Name	Descrip	Description						
MR15-MR13	MD2-MD0	Mode Se	Mode Select Bits. These bits select the operational mode of the AD7792/AD7793 (See						
		Table 9)	Table 9).						
MR12-MR8	0	These bi	ts must	be programmed with a Logic 0 for correct operation.					
MR7-MR6	CLK1-CLK0	These bits are used to select the clock source for the AD7792/AD7793. Either on on-chip 64 kHz clocan be used or an external clock can be used. The ability to override use an external clock is useful allows several AD7792/AD7793 devices to be synchronised. Also, 50 Hz/60 Hz is improved when a accurate external clock drives the AD7792/AD7793.							
	CLK1 CLK0 ADC Clock Source		ADC Clock Source						
		0	0	Internal 64 kHz Clock, Internal Clock is not available at the CLK pin					
		0	1	Internal 64 kHz Clock. This clock is made available at the CLK pin					
		1	0	External 64 kHz Clock used. An Exernal clock gives better 50 Hz/60 Hz rejection. The external clock can have a 45:55 duty cycle.					
		1	1	External Clock used. This external clock is divided by 2 within the AD7792/AD7793. This allows the user to supply a clock which has a duty cycle worse than a 45:55 duty cycle to the AD7792/AD7793, for example, a 128 kHz clock.					
MR5-MR4	0	These bi	ts must	be programmed with a Logic 0 for correct operation.					

Bit Location	Bit Name	Description
MR3-MR0	FS3-FS0	Filter Update Rate Select Bits (see Table 10).

MD2	MD1	MD0	Mode
0	0	0	Continuous Conversion Mode (Default).
-			In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. RDY goes low when a conversion is complete. The user can read these conversions by placing the
			device in continuous read mode whereby the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output the conversion by writing to the communications register. After power-on, a channel change or a write to the Mode, Configuration or IO Registers, the first conversion is available after a period 2/ f_{ADC} while subsequent conversions are available at a frequency of f_{ADC} .
0	0	1	Single Conversion Mode.
			In single conversion mode, the ADC is placed in power-down mode when conversions are not being performed. When single conversion mode is selected, the ADC powers up and performs a single conversion, which occurs after a period 2/f _{ADC} . The conversion result in placed in the data register, RDY goes low, and the ADC returns to power-down mode. The conversion remains in the data register and RDY remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle Mode.
			In Idle Mode, the ADC Filter and Modulator are held in a reset state although the modulator clocks are still provided
0	1	1	Power-Down Mode.
			In power down mode, all the AD7792/AD7793 circuitry is powered down including the current sources, burnout currents, bias voltage generator and CLKOUT circuitry.
1	0	0	Internal Zero-Scale Calibration.
			An internal short is automatically connected to the enabled channel. A calibration takes 2 conversion cycles to complete. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal Full-Scale Calibration.
			The fullscale input voltage is automatically connected to the selected analog input for this calibration.
			The full-scale error of the AD7792/AD7793 is calbrated at a gain of 1 using the internal reference in the factory. When a channel is operated with a gain of 1 and the internal reference is selected, this factory-calibrated value is loaded into the full-scale register when a full-scale calibration is initiated. When the gain equals 1 and the external reference is selected, a calibration takes 2 conversion cycles to complete.
			Internal full-scale calibrations cannot be performed when the gain equals 128. With this gain setting, a system full-scale calibration can be performed.
			For other gains, 4 conversion cycles are required to perform the fullscale calibration.
			RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured fullscale coefficient is placed in the fullscale register of the selected channel.
			A fullscale calibration is required each time the gain of a channel is changed.
1	1	0	System Offset Calibration.
			User should connect the system zero-scale input to the .channel input pins as selected by the CH2-CH0 bits. A system offset calibration takes 2 conversion cycles to complete. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	1	1	System Full-Scale Calibration.
			User should connect the system full-scale input to the .channel input pins as selected by the CH2-CH0 bits.
			A calibration takes 2 conversion cycles to complete RDY goes high when the calibration is initiated and
			returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured fullscale coefficient is placed in the fullscale register of the selected channel.
			A fullscale calibration is required each time the gain of a channel is changed.

	-				Teettle	
					Tsettle	
FS3	FS2	FS1	FS0	f _{ADC} (Hz)	(ms)	Rejection@ 50 Hz / 60 Hz (Internal Clock)
0	0	0	0	х	х	
0	0	0	1	500	5	
0	0	1	0	250	8	
0	0	1	1	125	16	
0	1	0	0	62.5	32	
0	1	0	1	50	40	
0	1	1	0	41.6	48	
0	1	1	1	33.3	60	
1	0	0	0	19.6	101	90 dB (60 Hz only)
1	0	0	1	16.6	120	84 dB (50 Hz only)
1	0	1	0	16.6	120	70 dB (50 Hz and 60 Hz)
1	0	1	1	12.5	160	67 dB (50 Hz and 60 Hz)
1	1	0	0	10	200	69 dB (50 Hz and 60 Hz)
1	1	0	1	8.33	240	73 dB (50 Hz and 60 Hz)
1	1	1	0	6.25	320	74 dB (50 Hz and 60 Hz)
1	1	1	1	4.17	480	79 dB (50 Hz and 60 Hz)

Table 10. Update Rates Available

CONFIGURATION REGISTER (RS2, RS1, RS0 = 0, 1, 0; POWER-ON/RESET = 0x0710)

The configuration register is a 16-bit register from which data can be read or to which data can be written. This register is used to configure the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain and select the analog input channel. Table 11 outlines the bit designations for the filter register. CON0 through CON15 indicate the bit locations, CON denoting the bits are in the configuration register. CON15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
VBIAS1(0)	VBIASO(0)	BO(0)	U/B (0)	0(0)	G2(1)	G1(1)	G0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
REFSEL(0)	0(0)	0(0)	BUF(1)	0(0)	CH2(0)	CH1(0)	CH0(0)

Table 11. Configuration Register Bit Designations

Bit Location	Bit Name	Description					
CON15-CON14	VBIAS1-VBIAS0	Bias Voltage Enable. The bias voltage generator applies a bias voltage of VDD/2 to the selected negative analog input terminals.					
		VBIAS1	VBIASO	Bias Voltage			
		0	0	Bias Voltage Generator Disabled			
		0	1	Bias Voltage connected to AIN1(-)			
		1	0	Bias Voltage connected to AIN2(-)			
		1	1	Reserved			
CON13	во	signal path	are enabled.	Bit. When this bit is set to 1 by the user, the 100 nA current sources in the When BO = 0, the burnout currents are disabled. The burnout currents en the buffer or In-Amp is active.			
CON12	U/B	Unipolar/Bipolar Bit. <i>Set</i> by user to enable unipolar coding, i.e., zero differential input will result in 0x000000 output and a full-scale differential input will result in 0xFFFFFF output. <i>Cleared</i> by the user to enable bipolar coding. Negative full-scale differential input will result in an output code of 0x000000, zero differential input will result in an output code of 0x800000, and a positive full-scale differential input code of 0xFFFFF.					
CON11	0	This bit mus	st be progran	nmed with a Logic 0 for correct operation.			
CON10-CON8	G2-G0	Gain Select	Bits.				

Bit Location	Bit Name	Description						
		Written	n by th	ne user	to select the ADC input	range as follows		
		G2	G1	G0	Gain	ADC Input Range (2.5V Reference)		
		0	0	0	1 (In-Amp not used)	2.5 V		
		0	0	1	2 (In-Amp not used)	1.25 V		
		0	1	0	4	625 mV		
		0	1	1	8	312.5 mV		
		1	0	0	16	156.2 mV		
		1	0	1	32	78.125 mV		
		1	1	0	64	39.06 mV		
		1	1	1	128	19.53 mV		
CON7	REFSEL	Referer	nce Se	elect Bi	t. The reference source f	for the ADC is selected using this bit.		
		REFS			rence Source	5		
		0		Exte	rnal Reference applied b	etween REFIN(+) and REFIN(-)		
		1		Inter	nal Reference Selected			
CON4 CON3 CON2-CON0	BUF 0 CH2-CH0	unbuffe buffere contrib The but automa This bit Channe	ered n d mo uting ffer ca aticall must el Sele	node, l de, allo gain e an be d yenabl be pro ect bits	owering the power consoving the user to place some rrors to the system. lisabled when the gain e ed. ogrammed with a Logic			
		Written by the user to select the active analog input channel to the ADC.						
		CH2	СН	1	CH0 Channel	Calibration Pair		
		0	0		0 AIN1(+) – AIN1	I(-) 0		
		0	0		1 AIN2(+) – AIN2			
		0	1		0 AIN3(+) – AIN3			
		0	1		1 AIN1(-) – AIN1	(-) 0		
		1	0		0 Reserved			
		1	0		1 Reserved			
		1	1		0 Temp Sensor	Automatically Selects Gain = 1 and Internal Reference		
		1	1		1 VDD Monitor	Automatically Selects Gain = 1/6 and 1.17 V Reference		

DATA REGISTER (RS2, RS1, RS0 = 0, 1, 1; POWER-ON/RESET = 0x0000(00))

The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from this register, the $\overline{\text{RDY}}$ bit/pin is set.

ID REGISTER (RS2, RS1, RS0 = 1, 0, 0; POWER-ON/RESET = 0xXA (AD7792) / 0xXB (AD7793))

The Identification Number for the AD7792/AD7793 is stored in the ID register. This is a read-only register.

IO REGISTER (RS2, RS1, RS0 = 1, 0, 1; POWER-ON/RESET = 0x00)

The I/O register is an 8-bit register from which data can be read or to which data can be written. This register is used to enable the excitation currents and select the value of the excitation currents. Table 12 outlines the bit designations for the IO register. IO0 through IO7 indicate the bit locations, IO denoting the bits are in the IO register. IO7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

Preliminary Technical Data

AD7792/AD7793

107	106	105	104	103	102	IO1	100
0(0)	0(0)	0(0)	0(0)	IEXCDIR1(0)	IEXCDIR0(0)	IEXCEN1(0)	IEXCEN0(0)

Bit Location	Bit Name	Description		Description					
107-104	0	These bits m	These bits must be programmed with a Logic 0 for correct operation.						
103-102	IEXCDIR1- IEXCDIR0	Direction of	Direction of Current Sources Select bits.						
		IEXCDIR1	IEXCDIR0	Current Source Direction					
		0	0	Current Source IEXC1 connected to pin IOUT1, Current Source IEXC2 connected to pin IOUT2					
		0	1	Current Source IEXC1 connected to pin IOUT2, Current Source IEXC2 connected to pin IOUT1					
		1	0	Both Current Sources connected to pin IOUT1. Permitted when the current sources are set to 10 uA or 200 uA only.					
		1	1	Both Current Sources connected to pin IOUT2. Permitted when the current sources are set to 10 uA or 200 uA only.					
IO1-IO0	IEXCEN1– IEXCEN0	Direction of	Current Sourc	es Select bits.					
		IEXCEN1	IEXCEN0	Current Source Value					
		0	0	Excitation Currents Disabled					
		0	1	10 uA					
		1	0	200 uA					
		1	1	1 mA					

Table 12 Filter Register Bit Designations

OFFSET REGISTER (RS2, RS1, RS0 = 1, 1, 0; POWER-ON/RESET = 0x8000(AD7792)/ 0x800000(AD7793))

Each analog input channel has a dedicated offset register that holds the offset calibration coefficient for the channel. This register is 16 bits wide on the AD7792 and 24 bits wide on the AD7793 and, its power-on/reset value is 8000(00) hex. The offset register is used in conjunction with its associated full-scale register to form a register pair. The power-on-reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user. The offset register is a read/write register. However, the AD7792/AD7793 must be in idle mode or power down mode when writing to the offset register.

FULL-SCALE REGISTER (RS2, RS1, RS0 = 1, 1, 1; POWER-ON/RESET = 0x5XX5(AD7792)/ 0x5XXXX5(AD7793))

The full-scale registers is a 16-bit register on the AD7792 and a 24-bit register on the AD7793. The full-scale register holds the full-scale calibration coefficient for the ADC. The AD7792/AD7793 has 3 full-scale registers, each channel having a dedicated full-scale register. The full-scale registers are read/write registers, However, when writing to the full-scale registers, the ADC must be placed in power down mode or idle mode. These registers are configured on power-on with factory-calibrated internal full-scale calibration coefficients, the factory calibration being performed with the gain set to 1 and using the internal reference. Therefore, every device will have different default coefficients. These default values are used when the device is operated with a gain of 1 and when the internal reference is selected. For other gains or when the external reference is used at a gain of 1, these default coefficients will be automatically overwritten if an internal or system full-scale calibration is initiated by the user. A full-scale calibration should be performed when the gain is changed.

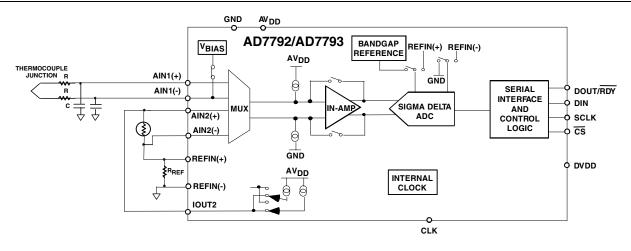


Figure 12. Thermocouple Application using the AD7792/AD7793

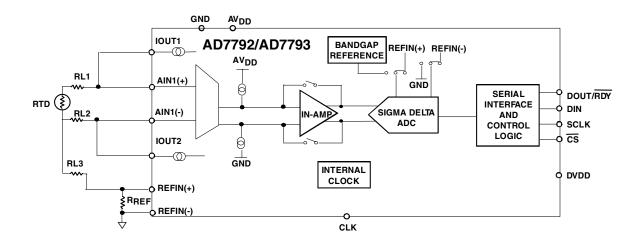


Figure 13. RTD Application using the AD7792/AD7793