

CYT8117

Description

The CYT8117 series of high performance low dropout voltage regulators are designed for applications that require efficient conversion and fast transient response.

Pin Configuration

Features

- Low Dropout Performance.
- Guaranteed 1A Output Current.
- Wide Input Supply Voltage Range.
- Over-temperature and Over-current Protection.
- Fixed or Adjustable Output Voltage.
- Rugged 3KV ESD withstand capability.
- > Available in SOT-223 Packages.

Application

- Active SCSI Terminators.
- High Efficiency Linear Regulators.
- > 5V to 3.3V Linear Regulators
- Motherboard Clock Supplies.

Ordering Information

Device	Package	V _{OUT} Volts		
CYT8117TXX		Fixed output voltages; XX denotes voltage options (1.5V, 1.8V, 2.5V,		
	SOT-223	3.0V, and 3.3V).		
CYT8117TA		Adjustable output voltage.		
CYT8117TXXLF	SOT-223 (Lead-free)	Fixed output voltages; XX denotes voltage options (1.5V, 1.8V, 2.5V,		
		3.0V, and 3.3V).		
CYT8117TALF		Adjustable output voltage.		

Absolute Maximum Rating

	•		
Symbol	Parameter	Maximum	Units
V _{IN}	Input Supply Voltage	9	V
θ_{JA}	Thermal Resistance Junction to Ambient SOT-223	60	°C/W
TJ	Operating Junction Temperature Range	0 to 125	°C
T _{STG}	Storage Temperature Range	-40 to 150	°C
T _{LEAD}	Lead Temperature (Soldering 10 Sec)	260	°C

CYT8117

Electrical Characteristic

 $V_{IN,MAX} \leq 8V, \ V_{IN,MIN} - V_{OUT} = 1.5V, \ I_{OUT} = 10 mA, \ C_{IN} = 10 \mu F, \ C_{OUT} = 22 \mu F, \ T_{J} = 0 - 125 ^{\circ}C, \ unless \ otherwise \ specified.$

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
Vo	Output Voltage ⁽¹⁾	$(V_{IN} - V_{OUT}) = 1.5V, I_{OUT} = 10mA,$ $T_A = 25^{\circ}C,$ $CYT8117T15$ $CYT8117T18$ $CYT8117T25$ $CYT8117T30$ $CYT8117T33$	(-2%)	1.5 1.8 2.5 3.0 3.3	(+2%)	V
V_{REF}	Reference Voltage (1) (Adj. Voltage Version)	$(V_{IN} - V_{OUT}) = 1.5V$ $I_{OUT} = 10mA$	(-2%)	1.250	(+2%)	V
V_{SR}	Line Regulation (1)	$V_{OUT} + 1.5V < V_{IN} < 8V$ $I_{OUT} = 10mA$	-	0.3		%
V_{LR}	Load Regulation ⁽¹⁾	$(V_{IN} - V_{OUT}) = 1.5V$ $10mA \le I_{OUT} \le 1A$		0.4	-	%
IQ	Quiescent Current	Fixed Output Version		10		mA
I_{ADJ}	Adjust Pin Current		-	48		μΑ
ΔI_{ADJ}	Adjust Pin Current Change	$V_{OUT} + 1.5V < V_{IN} < 8V$ $10mA \le I_{OUT} \le 1A$		0.2		μΑ
V_D	Dropout Voltage (2)	ΔV_{REF} = 1%, I_{OUT} = 1A	1	1.1		٧
I _O	Minimum Load Current			4		mA
I _{CL}	Current Limit		1	1.8		Α
T _C	Temperature Coefficient			0.07		%/°C
ОТР	Thermal Protection			175		°C
V_N	RMS Output Noise	T _A = 25°C, 10Hz ≤ f ≤ 10kHz		0.003		%V _O
R_A	Ripple Rejection Ratio	f = 120Hz, C_{OUT} = 22 μ F (Tantalum), $(V_{IN} - V_{OUT})$ = 3V, I_{OUT} = 1A		35		dB

Notes:

- 1. Low duty cycle pulse testing with which $T_{\rm J}$ remains unchanged.
- 2. ΔV_{OUT} , $\Delta V_{REF} = 1\%$.

CYT8117

Typical Application

Adjustable Voltage Regulator

Fixed Voltage Regulator

CYT8117

Application Hints

Like any linear voltage regulator, CYT8117 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $22\mu\text{F}$ but may be increase without limit.

Thermal Considerations

It is important that the thermal limit of the package is not exceeded. The CYT8117 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 60°C/W for CYT8117.CYT8117 is designed to enter thermal protection at 175°C. For example, if T_A is 25°C then the maximum P_D is limited to about 2.5W. In other words, if $I_{OUT(MAX)} = 1A$, then $[V_{IN} - V_{OUT}]$ cannot exceed 2.5V.

Typical Performance Characteristics

Output Voltage vs Junction Temperature

Load Transients

CYT8117

Outline Drawing for SOT-223

