CYT8117 ## **Description** The CYT8117 series of high performance low dropout voltage regulators are designed for applications that require efficient conversion and fast transient response. ### **Pin Configuration** #### **Features** - Low Dropout Performance. - Guaranteed 1A Output Current. - Wide Input Supply Voltage Range. - Over-temperature and Over-current Protection. - Fixed or Adjustable Output Voltage. - Rugged 3KV ESD withstand capability. - > Available in SOT-223 Packages. ## **Application** - Active SCSI Terminators. - High Efficiency Linear Regulators. - > 5V to 3.3V Linear Regulators - Motherboard Clock Supplies. ## **Ordering Information** | Device | Package | V _{OUT} Volts | | | |--------------|------------------------|--|--|--| | CYT8117TXX | | Fixed output voltages; XX denotes voltage options (1.5V, 1.8V, 2.5V, | | | | | SOT-223 | 3.0V, and 3.3V). | | | | CYT8117TA | | Adjustable output voltage. | | | | CYT8117TXXLF | SOT-223
(Lead-free) | Fixed output voltages; XX denotes voltage options (1.5V, 1.8V, 2.5V, | | | | | | 3.0V, and 3.3V). | | | | CYT8117TALF | | Adjustable output voltage. | | | ### **Absolute Maximum Rating** | | • | | | |-------------------|--|------------|-------| | Symbol | Parameter | Maximum | Units | | V _{IN} | Input Supply Voltage | 9 | V | | θ_{JA} | Thermal Resistance Junction to Ambient SOT-223 | 60 | °C/W | | TJ | Operating Junction Temperature Range | 0 to 125 | °C | | T _{STG} | Storage Temperature Range | -40 to 150 | °C | | T _{LEAD} | Lead Temperature (Soldering 10 Sec) | 260 | °C | **CYT8117** ## **Electrical Characteristic** $V_{IN,MAX} \leq 8V, \ V_{IN,MIN} - V_{OUT} = 1.5V, \ I_{OUT} = 10 mA, \ C_{IN} = 10 \mu F, \ C_{OUT} = 22 \mu F, \ T_{J} = 0 - 125 ^{\circ}C, \ unless \ otherwise \ specified.$ | Symbol | Parameter | Test Condition | Min | Тур | Max | Units | |------------------|---|--|-------|---------------------------------|-------|-----------------| | Vo | Output Voltage ⁽¹⁾ | $(V_{IN} - V_{OUT}) = 1.5V, I_{OUT} = 10mA,$ $T_A = 25^{\circ}C,$ $CYT8117T15$ $CYT8117T18$ $CYT8117T25$ $CYT8117T30$ $CYT8117T33$ | (-2%) | 1.5
1.8
2.5
3.0
3.3 | (+2%) | V | | V_{REF} | Reference Voltage (1)
(Adj. Voltage Version) | $(V_{IN} - V_{OUT}) = 1.5V$
$I_{OUT} = 10mA$ | (-2%) | 1.250 | (+2%) | V | | V_{SR} | Line Regulation (1) | $V_{OUT} + 1.5V < V_{IN} < 8V$
$I_{OUT} = 10mA$ | - | 0.3 | | % | | V_{LR} | Load Regulation ⁽¹⁾ | $(V_{IN} - V_{OUT}) = 1.5V$
$10mA \le I_{OUT} \le 1A$ | | 0.4 | - | % | | IQ | Quiescent Current | Fixed Output Version | | 10 | | mA | | I_{ADJ} | Adjust Pin Current | | - | 48 | | μΑ | | ΔI_{ADJ} | Adjust Pin Current
Change | $V_{OUT} + 1.5V < V_{IN} < 8V$
$10mA \le I_{OUT} \le 1A$ | | 0.2 | | μΑ | | V_D | Dropout Voltage (2) | ΔV_{REF} = 1%, I_{OUT} = 1A | 1 | 1.1 | | ٧ | | I _O | Minimum Load Current | | | 4 | | mA | | I _{CL} | Current Limit | | 1 | 1.8 | | Α | | T _C | Temperature Coefficient | | | 0.07 | | %/°C | | ОТР | Thermal Protection | | | 175 | | °C | | V_N | RMS Output Noise | T _A = 25°C, 10Hz ≤ f ≤ 10kHz | | 0.003 | | %V _O | | R_A | Ripple Rejection Ratio | f = 120Hz,
C_{OUT} = 22 μ F (Tantalum),
$(V_{IN} - V_{OUT})$ = 3V, I_{OUT} = 1A | | 35 | | dB | #### Notes: - 1. Low duty cycle pulse testing with which $T_{\rm J}$ remains unchanged. - 2. ΔV_{OUT} , $\Delta V_{REF} = 1\%$. **CYT8117** ## **Typical Application** ## Adjustable Voltage Regulator ## Fixed Voltage Regulator **CYT8117** #### **Application Hints** Like any linear voltage regulator, CYT8117 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance. ### **Input Capacitor** An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increase without upper limit. #### **Output Capacitor** An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $22\mu\text{F}$ but may be increase without limit. #### **Thermal Considerations** It is important that the thermal limit of the package is not exceeded. The CYT8117 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following: The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$ The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 60°C/W for CYT8117.CYT8117 is designed to enter thermal protection at 175°C. For example, if T_A is 25°C then the maximum P_D is limited to about 2.5W. In other words, if $I_{OUT(MAX)} = 1A$, then $[V_{IN} - V_{OUT}]$ cannot exceed 2.5V. ## **Typical Performance Characteristics** #### Output Voltage vs Junction Temperature #### Load Transients **CYT8117** ## **Outline Drawing for SOT-223**