

SANYO Semiconductors DATA SHEET

CMOS IC FROM 32K byte, RAM 1024 byte on-chip 8-bit 1-chip Microcontroller

Overview

- The LC87F7032A is an 8-bit single chip microcontroller with the following on-chip functional blocks: • CPU: operable at a minimum bus cycle time of 250ns
- 32K bytes Flash ROM
- On-chip PAM: 1024 bytes
- LCD controller/driver
- 16bit timer \times 2ch + 8bit timer \times 1ch or more
- Synchronous serial I/O port (with automatic block transmit/receive function)
- Asynchronous/synchronous serial I/O port
- System clock divider
- 20-source 10-vectored interrupt system
- 8-bit AD converter \times 9-channel
- On chip debugger

All of the above functions are fabricated on a single chip.

Features

■Flash ROM

- Block-erasable in 128byte units
- 32768 × 8 bits (LC87F7032A)

■RAM

• 1024 × 9-bits (LC87F7032A)

* This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■Minimum Bus Cycle Time

- 250ns (4MHz) Note: Bus cycle time indicates the speed to read ROM.
- ■Minimum Instruction Cycle Time (tCYC)
 - 750ns (4MHz)
- ■Ports
 - Input/output ports
 Data direction programmable for each bit individually 12 (P1n, P70 to P73)
 Data direction programmable in nibble units 8 (P0n)
 (When N-channel open drain output is selected, data can be input in bit units.)
 Other function 3 (DBGP0, DBGP1, DBGP2)
 • PWM input/output port1 (PWM)
 - LCD ports Segment output 24 (S00 to S23) Common output 4 (COM0 to COM3) Bias terminals for LCD driver 5 (V1 to V3, CUP1, CUP2) Other functions Input/output ports 8 (PCn) • Oscillator pins 4 (CF1, CF2, XT1, XT2) • Reset pin 1 (RES) • Power supply 4 (V_{SS}1 to 2,V_{DD}1 to 2) 1 (VDC)

■LCD Controller

- Seven display modes are available
- Duty 1/3duty, 1/4duty
- Bias 1/2bias, 1/3bias
- Segment output can be switched to general purpose input/output ports.

■Timers

- Timer 0: 16-bit timer/counter with capture register
 - Mode 0: 2 channel 8-bit timer with programmable 8 bit prescaler and 8 bit capture register
 - Mode 1: 8 bit timer with 8 bit programmable prescaler and 8 bit capture register + 8 bit counter with 8-bit capture register
 - Mode 2: 16 bit timer with 8 bit programmable prescaler and 16 bit capture register
 - Mode 3: 16 bit counter with 16 bit capture register
- Timer1: PWM/16 bit timer/counter with toggle output function
 - Mode 0: 2 channel 8 bit timer/counter (with toggle output)
 - Mode 1: 2 channel 8 bit PWM

Mode 2: 16 bit timer/counter (with toggle output) toggle output from lower 8 bits is also possible.

- Mode 3: 16 bit timer (with toggle output) lower order 8 bits can be used as PWM.
- Timer4: 8-bit timer with 6-bit prescaler
- Timer5: 8-bit timer with 6-bit prescaler
- Timer6: 8-bit timer with 6-bit prescaler (with toggle output)
- Timer7: 8-bit timer with 6-bit prescaler (with toggle output)
- Base Timer
 - 1) The clock signal can be selected from any of the following:
 - Sub-clock (32.768kHz crystal oscillator), system clock, and prescaler output from timer 0
 - 2) Interrupts of five different time intervals are possible.

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first is selectable
 - 2) Internal 8 bit baud-rate generator (fastest clock period 4/3 tCYC)
 - 3) Consecutive automatic data communication (1 to 256 bits)
- SIO1: 8 bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8 bit serial IO (2-wire or 3-wire, transmit clock 2 to 512 tCYC)
 - Mode 1: Asynchronous serial IO (half duplex, 8 data bits, 1 stop bit, baud rate 8 to 2048 tCYC)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, transmit clock 2 to 512 tCYC)
 - Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)

■UART

- Full duplex
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator

■AD Converter

• 8-bit \times 9-channels

■PWM

- Multifrequency 12-bit PWM × 1-channels
- Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
 - Noise rejection function (noise rejection filter's time constant can be selected from 1/32/128 tCYC)

■Watchdog Timer

- Watchdog timer can produce interrupt or system reset.
- Watchdog timer has two types. Use an external RC circuit Use the microcontroller's basetimer

■Clock Output Function

- 1) Able to output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 as system clock.
- 2) Able to output oscillation clock of sub clock.

■Interrupts

- 20 sources, 10 vector addresses
 - 1) Three priority (low, high and highest) multiple interrupts are supported. During interrupt handling, an equal or lower priority interrupt request is postponed.
 - 2) If interrupt requests to two or more vector addresses occur at once, the higher priority interrupt takes precedence. In the case of equal priority levels, the vector with the lowest address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L
4	0001BH	H or L	INT3/base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART-send
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM

[•] Priority levels X > H > L

• For equal priority levels, vector with lowest address takes precedence.

Subroutine Stack Levels

- 512 levels maximum (the stack is allocated in RAM)
- ■High-speed Multiplication/Division Instructions
 - 16-bits \times 8-bits (5 tCYC execution time)
 - 24-bits \times 16-bits (12 tCYC execution time)
 - 16-bits ÷ 8-bits (8 tCYC execution time)
 - 24-bits ÷ 16-bits (12 tCYC execution time)
- ■Oscillation Circuits
 - On-chip RC oscillation for system clock use.
 - CF oscillation (4MHz) for system clock use. (Rf built in, Rd external)
 - Crystal oscillation (32.768kHz) low speed system clock use. (Rf built in, Rd external)
 - On-chip frequency variable RC oscillation circuit for system clock use.

System Clock Divider Function

- Low power consumption operation is available
- Minimum instruction cycle time (750ns, 1.5µs, 3.0µs, 6.0µs, 12µs, 24µs, 48µs, 96µs, 192µs can be switched by program (when using 4MHz main clock)
- ■Standby Function
 - HALT mode:

HALT mode is used to reduce power consumption. During the HALT mode, program execution is stopped but peripheral circuits keep operating (some parts of serial transfer operation stop.)

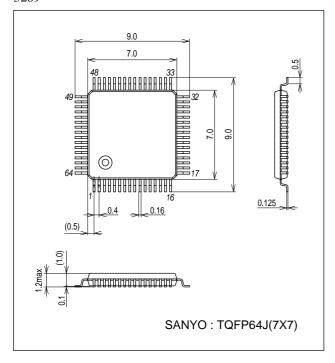
- 1) Oscillation circuits are not stopped automatically.
- 2) Released by the system reset or interrupts.
- HOLD mode
 - HOLD mode is used to reduce power consumption. Program execution and peripheral circuits are stopped.
 - 1) CF, RC and crystal oscillation circuits stop automatically.
 - 2) Released by any of the following conditions.
 - (1) Low level input to the reset pin
 - (2) Specified level input to one of INT0, INT1, INT2.
 - (3) Port 0 interrupt
- X'tal HOLD mode

X'tal HOLD mode is used to reduce power consumption. Program execution is stopped.

All peripheral circuits except the base timer are stopped.

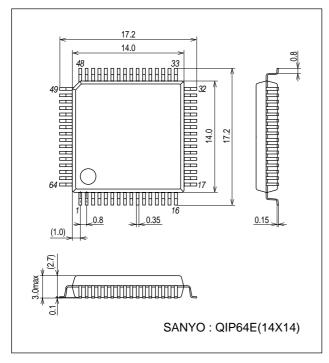
- 1) CF and RC oscillation circuits stop automatically.
- 2) Crystal oscillator operation is kept in its state at HOLD mode inception.
- 3) Released by any of the following conditions
 - (1) Low level input to the reset pin
 - (2) Specified level input to one of INT0, INT1, INT2.
 - (3) Port 0 interrupt
 - (4) Base-timer interrupt

■ROM Correct Function

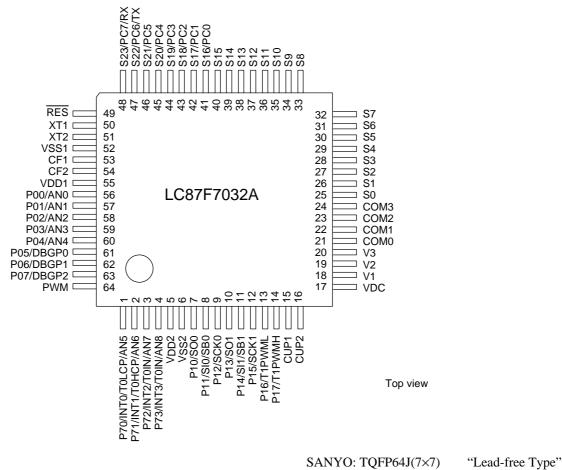

- ROM correct program is executed by checking the program counter.
- ROM correct program area: 128byte
- ■On-chip Debugger Function
 - Software debug is available on the target board.
- ■Package Form
 - TQFP64J(7×7) :Lead-free type
 - QIP64E(14×14) :Lead-free type
- ■Development Tool
 - On-chip Debugger: TCB87 TypeB+LC87F7032A

■Flash ROM Programming boards

Package	Programming Boards
TQFP64J(7×7)	W87F70256TQ7
QIP64E(14×14)	W87F70256Q

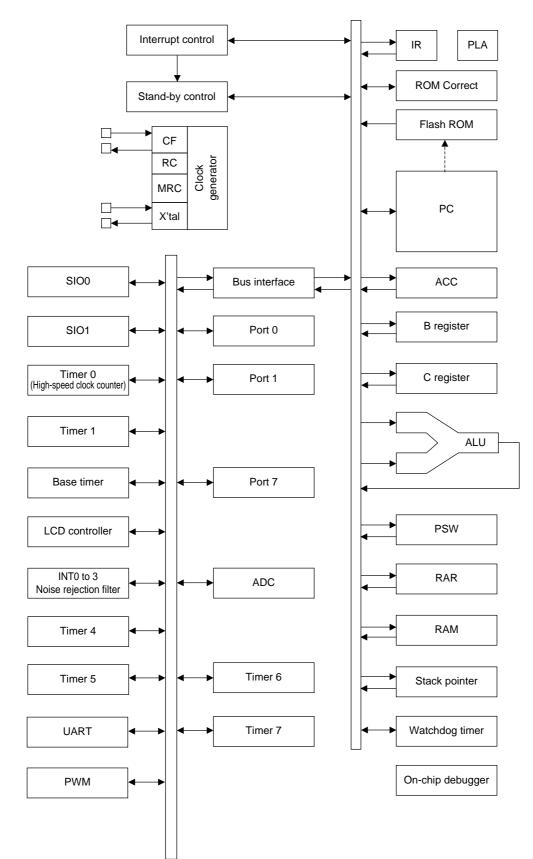

Package Dimensions

unit : mm (typ) 3289



Package Dimensions

unit : mm (typ) 3159A



Pin Assignment

SANYO: QIP64E(14×14) "Lead-free Type"

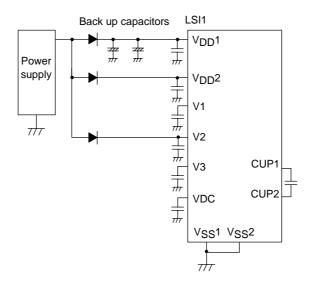
System Block Diagram

Pin Description

Pin name	I/O			Fur	nction			Option
V _{SS} 1,V _{SS} 2	-	• Power supply (-)	1					No
V _{DD} 1,V _{DD} 2	-	Power supply (+)					No
VDC	-	Power supply (+)					No
CUP1,CUP2	-	Capacitor conner	cting terminals	for step-up/step-	down			No
PWM	I/O	PWM input/outp	ut port					No
PORT0	I/O	8bit input/output	port					Yes
P00 to P07		Data direction pr		nibble units				
		• Use of pull-up re	esistor can be sp	pecified in nibble	units			
		Input for HOLD	release					
		 Input for port 0 in 	nterrupt					
		Input for AD Cor		, , ,				
		On chip debugg		, P06, P07)				
PORT1	I/O	8bit input/output	•	r agab bit				Yes
P10 to P17		Data direction pr Use of pull-up re	-		bit individually			
		Other pin function	-		bit mainlaadiy			
		P10 SIO0 data d						
		P11 SIO0 data i	nput or bus inpu	ıt/output				
		P12 SIO0 clock	input/output					
		P13 SIO1 data o	output					
		P14 SIO1 data i		it/output				
		P15 SIO1 clock						
		P16: Timer 1 PV	•					
PORT7	I/O	P17: Timer 1 PV • 4bit Input/output	-	zer output				No
P70 to P73	1/0	Data direction ca	•	for each hit				INO
11010110		Use of pull-up re	-		bit individually			
		 Input for AD Cor 	-		, , , , , , , , , , , , , , , , , , ,			
		Other functions						
		P70: INT0 input/	HOLD release	nput/timer0L cap	oture input/output	for watchdog ti	mer/AN5	
		P71: INT1 input/		-	-			
				-	nt input/timer0L c			
				filter attached)/t	imer 0 event inpu	/timer0H captu	ire input/AN8	
		Interrupt detection	Shection		Rising and			
			Rising	Falling	falling	H level	L level	
		INTO	enable	enable	disable	enable	enable	
		INT1	enable	enable	disable	enable	enable	
		INT2	enable	enable	enable	disable	disable	
		INT3	enable	enable	enable	disable	disable	
S0 to S15	0	Segment output	for LCD					No
S16/PC0 to	I/O	Segment output						No
		Can be used as	general purpos	e input/output po	ort (PC)			
S23/PC7								
		• UART terminal (
COM0 to	0	UART terminal (Common output						No
COM0 to COM3		Common output	for LCD					
COM0 to COM3 V1 to V3	I/O	Common output LCD output bias	for LCD					No
COM0 to COM3 V1 to V3 RES	I/O I	Common output LCD output bias Reset terminal	for LCD power supply					No No
COM0 to COM3 V1 to V3 RES	I/O	Common output LCD output bias Reset terminal Input for 32.768	for LCD power supply kHz crystal osci					No
COM0 to COM3 V1 to V3 RES XT1	I/O I I	Common output LCD output bias Reset terminal Input for 32.768 When not in use	for LCD power supply kHz crystal osci , connect to V _D	D ¹				No No No
COM0 to COM3 V1 to V3 RES	I/O I	Common output LCD output bias Reset terminal Input for 32.768 When not in use Output for 32.76	for LCD power supply kHz crystal osci , connect to V _D 8kHz crystal os	D ¹ cillation				No No
COM0 to COM3 V1 to V3 RES XT1 XT2	/O /O	Common output LCD output bias Reset terminal Input for 32.768 When not in use Output for 32.76 When not in use	for LCD power supply kHz crystal osci , connect to V _D 8kHz crystal os , set to oscillatio	D ¹ cillation on mode and lea	ve open			No No No No
COM0 to COM3 V1 to V3 RES XT1	I/O I I	Common output LCD output bias Reset terminal Input for 32.768 When not in use Output for 32.76 When not in use Input terminal for	for LCD power supply kHz crystal osci , connect to V _D 8kHz crystal os , set to oscillation r ceramic oscillation	D ¹ cillation on mode and lea ator	ve open			No No No
COM0 to COM3 V1 to V3 RES XT1 XT2	/O /O	Common output LCD output bias Reset terminal Input for 32.768 When not in use Output for 32.76 When not in use	for LCD power supply kHz crystal osci , connect to V _D 8kHz crystal os , set to oscillation r ceramic oscillation , connect to V _D	D1 cillation on mode and lea ator D1	ve open			No No No No

Port Output Configuration

Port form and pull-up resistor options are shown in the following table. Port status can be read even when port is set to output mode.


Terminal	Option applies to:	Options	Output Form	Pull-up resistor
P00 to P07	each bit	1	CMOS	Programmable
				(Note 1)
		2	Nch-open drain	None
P10 to P17	each bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	None	Nch-open drain	Programmable
P71 to P73	-	None	CMOS	Programmable
S16(PC0) to	each bit	1	CMOS	None
S23(PC7)		2	P-ch Open Drain	1
		3	N-ch Open Drain	1

Note 1: Attachment of Port0 programmable pull-up resistors is controllable in nibble units (P00 to 03, P04 to 07).

- * 1: Connect as follows to reduce noise on VDD.
- VSS1 and VSS2 must be connected together and grounded.

* 2: The power supply for the internal memory is V_{DD}1. V_{DD}1 and V_{DD}2 are used as the power supply for ports. When V_{DD}1 and V_{DD}2 are not backed up, the port level does not become "H" even if the port latch is in the "H" level. Therefore, when V_{DD}1 and V_{DD}2 are not backed up and the port latch is "H" level, the port level is unstable in the HOLD mode, and the back up time becomes shorter because the through current runs from V_{DD} to GND in the input buffer.

If V_{DD1} and V_{DD2} are not backed up, output "L" by the program or pull the port to "L" by the external circuit in the HOLD mode so that the port level becomes "L" level and unnecessary current consumption is prevented.

	Deremeter	Cumhal	Pins	Conditions			Speci	fication	
	Parameter	Symbol	Pins	Conditions	V _{DD} [V]	min	typ	max	unit
Sι	ipply voltage	V _{DD} max	V _{DD} 1,V _{DD} 2,V2	V _{DD} 1=V _{DD} 2=V2		-0.3		+4.6	
Su	ipply voltage	VLCD	V1			-0.3		1/2 V _{DD}	
Fo	r LCD		V2			-0.3		V _{DD}	
			V3			-0.3		3/2 V _{DD}	V
Inp	out voltage	VI	XT1,CF1, RES			-0.3		V _{DD} +0.3	
Inp	out/Output voltage	V _{IO} (1)	Ports 0, 1, 7Port C, PWM			-0.3		V _{DD} +0.3	
current	Peak output current	IOPH(1)	Ports 0, 1, 7, C, PWM	CMOS output selected Current at each pin		-4			
output	Total output current	ΣIOAH(1)	Port 7, PWM	Total of all pins		-10			
High level output current		ΣIOAH(2)	Port 0	Total of all pins		-25			
		ΣIOAH(3)	Port 1	Total of all pins		-25			
Ι		ΣIOAH(4)	Port C	Total of all pins		-15			mA
Low level output current	Peak output current	IOPL(1)	Ports 02 to 07 Ports 1, 7, C, PWM	Current at each pin				6	
ut cu		IOPL(2)	Ports 00, 01	Current at each pin				15	
outpr	Total output	ΣIOAL(1)	Port 7, PWM	Total of all pins				10	
velo	current	ΣIOAL(2)	Port 0	Total of all pins				35	
≷ N		ΣIOAL(3)	Port 1	Total of all pins				25	
2		ΣIOAL(4)	Port C	Total of all pins				15	
All	owable power	Pd max	TQFP64J(7×7)	Ta=-20 to +70°C				185	
dis	ssipation		QIP64E(14 ×14)					410	mW
	perating ambient	Topr				-20		+70	°C
	orage ambient nperature	Tstg				-55		+125	-0

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

LC87F7032A

Parameter	Symbol	Pins	Conditions			Specifi	cation	
Parameter	Symbol	Pins	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V2	0.75μs≤tCYC≤200μs		3.0		3.6	
supply voltage range	V _{DD} (2)		0.75µs≤tCYC≤200µs expect on-board write		2.4		3.6	
Supply voltage range in hold mode	VHD	V _{DD} 1	Keep RAM and register data in HOLD mode.		2.2		3.6	
Input high voltage	V _{IH} (1)	 Ports 1, 71 to 73 Port 70 input/interrupt 	Output disable	2.4 to 3.6	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0, CPWM	Output disable	2.4 to 3.6	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	Port 70 Watchdog timer	Output disable	2.4 to 3.6	0.9V _{DD}		V _{DD}	V
	V _{IH} (4)	XT1, CF1, RES		2.4 to 3.6	0.75V _{DD}		V _{DD}	
Input low Voltage	V _{IL} (1)	Ports 1, 71 to 73 Port 70 input/interrupt	Output disable	2.4 to 3.6	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0, C PWM	Output disable	2.4 to 3.6	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 Watchdog timer	Output disable	2.4 to 3.6	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	XT1, CF1, RES		2.4 to 3.6	VSS		0.25V _{DD}	
Operation cycle time	tCYC			2.4 to 3.6	0.75		200	μs
External	FEXCF(1)	CF1	CF2 open	2.4 to 3.6	0.1		4	
system clock frequency			system clock divider: 1/1 external clock DUTY=50±5%	2.4 to 3.6	0.1		8	MHz
Oscillation frequency range	FmCF	CF1, CF2	4MHz ceramic resonator oscillation See Fig. 1.	2.4 to 3.6		4		171172
(Note2-1)	FmRC		RC oscillation target: V _{DD} =3.00V, Ta=25°C	2.4 to 3.6	0.3	0.5	0.7	
	FsX'tal	XT1, XT2	32.768kHz crystal resonator oscillation See Fig. 2.	2.4 to 3.6		32.768		KHz

Recommended Operating Range at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 2-1: The parts value of oscillation circuit is shown in table 1 and table 2.

LC87F7032A

Electrical Characteristics at Ta = -20° C to $+70^{\circ}$ C, V_{SS}1 = V_{SS}2=0V

Parameter	Symbol	Pins	Conditions			Specific	ation	
Falameter	Symbol	F IIIS	Conditions	V _{DD} [V]	min	typ	max	uni
High level input current	I _{IH} (1)	Ports 0, 1, 7 Port C, PWM RES	Output disabled Pull-up resister OFF. VIN=VDD (Including OFF state leak current of the output Tr.)	2.4 to 3.6			1	
	I _{IH} (2)	XT1, XT2	When configured as an input port VIN=VDD	2.4 to 3.6			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.4 to 3.6			8	
Low level input current	I _{IL} (1)	Ports 0, 1, 7 Port C, PWM RES	Output disabled Pull-up resister OFF. VIN=VSS (Including OFF state leak current of the output Tr.)	2.4 to 3.6	-1			μA
	I _{IL} (2)	XT1, XT2	When configured as an input port $V_{IN}=V_{SS}$	2.4 to 3.6	-1			
	I _{IL} (3)	CF1	VIN=VSS	2.4 to 3.6	-8			
High level output voltage	V _{OH} (1)	Ports 0, 1, 7 CMOS	I _{OH} =-0.4mA	3.0 to 3.6	V _{DD} -0.4			
	V _{OH} (2)	output option	I _{OH} =-0.2mA	2.4 to 3.6	V _{DD} -0.4			
	V _{OH} (3)	Port C	I _{OH} =-0.1mA	2.4 to 3.6	V _{DD} -0.4			
	V _{OH} (4)	PWM	I _{OH} =-1.6mA	3.0 to 3.6	V _{DD} -0.4			
			I _{OH} =-0.8mA	2.4 to 3.6	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 7,PWM	I _{OL} =1.6mA	3.0 to 3.6			0.4	v
voltage	V _{OL} (2)	-	I _{OL} =0.8mA	2.4 to 3.6			0.4	
	V _{OL} (3)	P00, P01	I _{OL} =5.0mA	3.0 to 3.6			0.4	
	V _{OL} (4)	-	I _{OL} =2.5mA	2.4 to 3.6			0.4	
	V _{OL} (5)	Port C	I _{OL} =0.1mA	2.4 to 3.6			0.4	1
LCD output voltage regulation	VODLS	S0 to S23	I _O =0mA V1, V2, V3 LCD level output	2.4 to 3.6	0		±0.2	
	VODLC	COM0 to COM3	I _O =0mA V1, V2, V3 LCD level output	2.4 to 3.6	0		±0.2	
Resistance of pull-up MOS Tr.	Rpu	• Ports 0, 1, 7	V _{OH} =0.9V _{DD}	2.4 to 3.6	25	50	200	kΩ
Hysterisis voltage	VHYS(1)	• Ports 1, 7 • RES		2.4 to 3.6		0.1V _{DD}		v
Pin capacitance	СР	All pins	All other terminals connected to V _{SS} . f=1MHz Ta=25°C	2.4 to 3.6		10		pF

Serial I/O Characteristics at Ta = -20°C to +70°C, $V_{SS}1 = V_{SS}2 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	D	a ra mata r	Symbol	Pin/Remarks	Conditions			Specifi	cation	
	Pi	arameter	Symbol	Pin/Remarks	Conditions	V _{DD}	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
	×	Low level pulse width	tSCKL(1)				1			
	nput clock	High level pulse width	tSCKH(1)			2.4 to 3.6	1			tCYC
Serial clock	Ē		tSCKHA(1)		Continuous data transmission/ reception mode See Fig. 6. (Note 4-1-2)		4			
Serial	Seria Output clock	Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4/3			
		Low level pulse width	tSCKL(2)					1/2		tSCK
		High level tSCKH(2)			2.4 to 3.6		1/2		ISCK	
	Õ		tSCKHA(2)		 Continuous data transmission/ reception mode CMOS output selected See Fig. 6. 		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	 Must be specified with respect to rising edge of SIOCLK. See Fig. 6. 	2.4 to 3.6	0.03			
Serial	Da	ta hold time	thDI(1)			2.4 to 3.6	0.03			
	clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/ reception mode (Note 4-1-3)	2.4 to 3.6			(1/3)tCYC +0.05	μs
al output	Serial output Output clock Input clock		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.4 to 3.6			1tCYC +0.05	
Seria		tdD0(3)			(Note 4-1-3)	2.4 to 3.6			(1/3)tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	Б	arameter	Symbol	Pin/Remarks	Conditions			Specif	cation	
	Р	arameter	Symbol	Pin/Remarks	Conditions	V _{DD}	min	typ	max	unit
	¥	Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.4 to 3.6	1			
clock	ľu	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	с К	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 6.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.4 to 3.6		1/2		tSCK
	no	High level pulse width	tSCKH(4)					1/2		ISCK
Serial input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of SIOCLK. See Fig. 6. 	2.4 to 3.6	0.03			
Serial	Da	ata hold time	thDI(2)			2.4 to 3.6	0.03			
Serial output	Ou	utput delay ne	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6. 	2.4 to 3.6			(1/3)tCYC +0.05	μs

 Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Deremeter	Cumbal	Pins	Conditions			Specif	ication	
Parameter	Symbol	PINS	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72)	 Condition that interrupt is accepted Condition that event input to timer 0 is accepted 	2.4 to 3.6	1			
	tPIH(2) tPIL(2)	INT3(P73) (Noise rejection ratio is 1/1.)	 Condition that interrupt is accepted Condition that event input to timer 0 is accepted 	2.4 to 3.6	2			1010
	tPIH(3) tPIL(3)	INT3(P73) (Noise rejection ratio is 1/32.)	 Condition that interrupt is accepted Condition that event input to timer 0 is accepted 	2.4 to 3.6	64			tCYC
	tPIH(4) tPIL(4)	INT3(P73) (Noise rejection ratio is 1/128.)	 Condition that interrupt is accepted Condition that event input to timer 0 is accepted 	2.4 to 3.6	256			
	tPIL(6)	RES	Condition that reset is accepted	2.4 to 3.6	200			μs

.....

....

٦

AD Conve	rter Cha	aracteristics a	at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, V	$V_{SS} I = V$	SS2=0V	/	
Deremeter	Symphol	Din/Domostro	Conditions			Spec	cifica
Parameter	Symbol	Pin/Remarks	Conditions				

...

Parameter	Symbol	Pin/Remarks	Conditions			Spec	cification	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
Resolution	Ν	AN0(P00) to				8		bit
Absolute accuracy	ET	AN4(P04), AN5(P70) to	(Note 6-1)				±1.5	LSB
Conversion time	tCAD	AN8(P73)	AD conversion time=32×tCYC (When ADCR2=0) (Note 6-2) AD conversion time 64×tCYC		24 (tCYC= 0.75μs) 48		320 (tCYC= 10µs) 640	μs
			(When ADCR2=1) (Note 6-2)		(tCYC= 0.75μs)		(tCYC= 10μs)	
Analog input voltage range	VAIN				V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}				1	
input current	IAINL		VAIN=V _{SS}		-1			μA

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy value.

Note 6-2: The conversion time refers to the interval from the time the instruction for starting the converter is issued till the complete digital value corresponding to the analog input value is loaded in the required register.

Consumption Current Characteristics at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Parameter	Symbol	Pins	Conditions		Specification				
Parameter			Conditions	V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current (Note 7-1)	IDDOP(1)	V _{DD} 1= V _{DD} 2= V2	 FmCF=4MHz ceramic resonator oscillation FmX'tal=32.768kHz crystal oscillation System clock: CF 4MHz oscillation Internal RC oscillation stopped. Divider: 1/1 	2.4 to 3.6		1.7	4.2		
	IDDOP(2)		FmCF=1MHz ceramic resonator oscillation FmX'tal=32.768kHz crystal oscillation System clock: CF 1MHz oscillation Internal RC oscillation stopped. Divider: 1/1	2.4 to 3.6		0.6	1.4	mA	
	IDDOP(3)		 FmCF=0Hz (No oscillation) FmX'tal=32.768kHz crystal oscillation System clock: RC oscillation Divider: 1/1 	2.4 to 3.6		0.4	0.9		
	IDDOP(4)		 FmCF=0Hz (No oscillation) FmX'tal=32.768kHz crystal oscillation System clock: RC oscillation Divider: 1/2 	2.4 to 3.6		0.3	0.6		
	IDDOP(5)		FmCF=0Hz (No oscillation) FmX'tal=32.768kHz crystal oscillation System clock: variable RC oscillation 1MHz Divider: 1/1	2.4 to 3.6		20	59		
	IDDOP(6)		 FmCF=0Hz (No oscillation) FmX'tal=32.768kHz crystal oscillation System clock: 32.768kHz Internal RC oscillation stopped. Divider: 1/2 	2.4 to 3.6		15	45	μΑ	

Note 7-1: The currents through the output transistors and the pull-up MOS transistors are ignored.

Continued on next page.

LC87F7032A

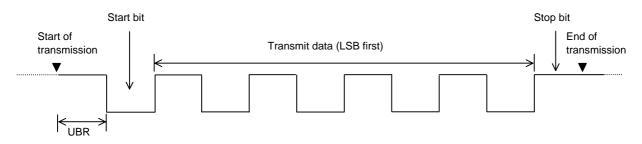
Parameter	Symbol	Pins	Conditions		Specification				
Falameter	Symbol	FIIIS	Conditions	V _{DD} [V]	min	typ	max	unit	
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V _{DD} 1= V _{DD} 2=V2	HALT mode • FmCF=4MHz Ceramic resonator oscillation • FmX'tal=32.768kHz crystal oscillation • System clock: CF 4MHz oscillation • Internal RC oscillation stopped. • Divider: 1/1	2.4 to 3.6		0.8	2.1		
	IDDHALT(2)		HALT mode • FmCF=1MHz Ceramic resonator oscillation • FmX'tal=32.768kHz crystal oscillation • System clock:CF 1MHz oscillation • Internal RC oscillation stopped. • Divider: 1/1	2.4 to 3.6		0.3	1.4	mA	
	IDDHALT(3)		HALT mode • FmCF=0Hz(Oscillation stop) • FmX'tal=32.768kHz crystal oscillation • System clock: RC oscillation • Divider: 1/1	2.4 to 3.6		0.20	0.5		
	IDDHALT(4)		HALT mode • FmCF=0Hz(Oscillation stop) • FmX'tal=32.768kHz crystal oscillation • System clock: RC oscillation • Divider: 1/2	2.4 to 3.6		0.16	0.4		
	IDDHALT(5)		HALT mode • FmCF=0Hz(Oscillation stop) • FmX'tal=32.768kHz crystal oscillation • System clock: variable RC oscillation 1MHz • Divider: 1/1	2.4 to 3.6		7.5	32		
	IDDHALT(6)		HALT mode • FmCF=0Hz(Oscillation stop) • FmX'tal=32.768kHz crystal oscillation • System clock: 32.768kHz • Internal RC oscillation stopped. • Divider: 1/2	2.4 to 3.6		5.5	27	μΑ	
HOLD mode consumption current	IDDHOLD(1)		HOLD mode • CF1=V _{DD} or open (when using external clock)	2.4 to 3.6		0.03	10		
Timer HOLD mode consumption current	IDDHOLD(2)		Date/time clock HOLD mode • CF1=V _{DD} or open (when using external clock) • FmX'tal=32.768kHz crystal oscillation	2.4 to 3.6		3.8	24		

Note 7-1: The currents through the output transistors and the pull-up MOS transistors are ignored.

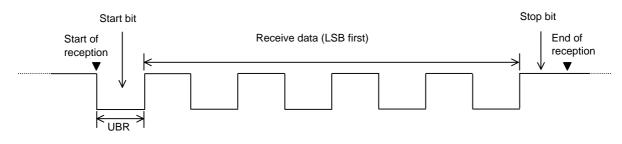
DM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Doromotor	Symbol	Pin/Remarks	Conditions		Specification				
Parameter Symbol		FIN/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard programming current	IDDFW(1)	V _{DD} 1	128-byte programmingErasing current included	3.0 to 3.6		15	40	mA	
Programming time	tFW(1)		 128-byte programming Erasing current included Time for setting up 128-byte data is excluded. 	3.0 to 3.6		20	40	ms	

UART (Full Duplex) Operating Conditions at $Ta = +20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$


D	O math al				Specification				
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	max.	unit	
Transfer rate	UBR	UTX(S22), URX(S23)		2.4 to 3.6	16/3		8192/3	tCYC	

Data length: 7, 8, and 9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of 8-bit Data Transmission Mode Processing (Transmit Data=55H)

Example of 8-bit Data Reception Mode Processing (Receive Data=55H)

Main System Clock Oscillation Circuit Characteristics

The characteristics in the table bellow is based on the following conditions:

Use the standard evaluation board SANYO has provided.

Use the peripheral parts with indicated value externally.

The peripheral parts value is a recommended value of oscillator manufacturer

Frequency		-	0	Circuit parameters			Operating supply voltage	Oscillation stabilizing time		
	Manufacturer	Туре	Oscillator	C1 [pF]	C2 [pF]	Rd1 [Ω]	range [V]	typ [ms]	max [ms]	Notes
4.001411-			CSTCR4M00G53-R0	(15)	(15)	1k	2.4 to 3.6	0.2	0.6	Built in
4.00MHz	Murata	Lead	CSTLS4M00G53-B0	(15)	(15)	2.2k	2.4 to 3.6	0.2	0.6	C1, C2

Table 1. Main system clock oscillation circuit characteristics using ceramic resonator

The oscillation stabilizing time is a period until the oscillation becomes stable after V_{DD} becomes higher than minimum operating voltage. (See Fig. 4.)

Subsystem Clock Oscillator Circuit Characteristics

The characteristics in the table bellow is based on the following conditions:

Use the standard evaluation board SANYO has provided.

Use the peripheral parts with indicated value externally.

The peripheral parts value is a recommended value of oscillator manufacturer

Table 2 Subsystem Clock Oscillation Circuit Characteristics Using Crystal Oscillator

Frequency	Manufacturer	Manufactura	Ossillator		Circuit C	Constant		Operating supply	Oscil Stabilizat	lation tion Time	Notos
		Oscillator	C3 [pF]	C4 [pF]	Rf [Ω]	Rd2 [Ω]	voltage range [V]	typ [s]	max [s]	Notes	
32.768kHz	Epson Toyocom	MC-146	3	3	Open	0	2.4 to 3.6	1	3	Applicable CL value=7.0pF	

The oscillation stabilizing time is a period until the oscillation becomes stable after executing the instruction which starts the sub-clock oscillation or after releasing the HOLD mode. (See Fig. 4.)

Note: Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.

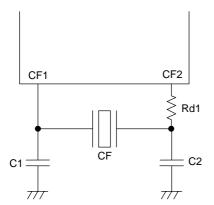


Figure 1 Ceramic Oscillator Circuit

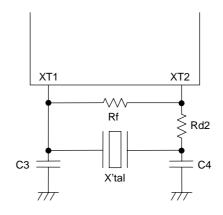


Figure 2 Crystal Oscillator Circuit

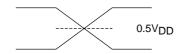
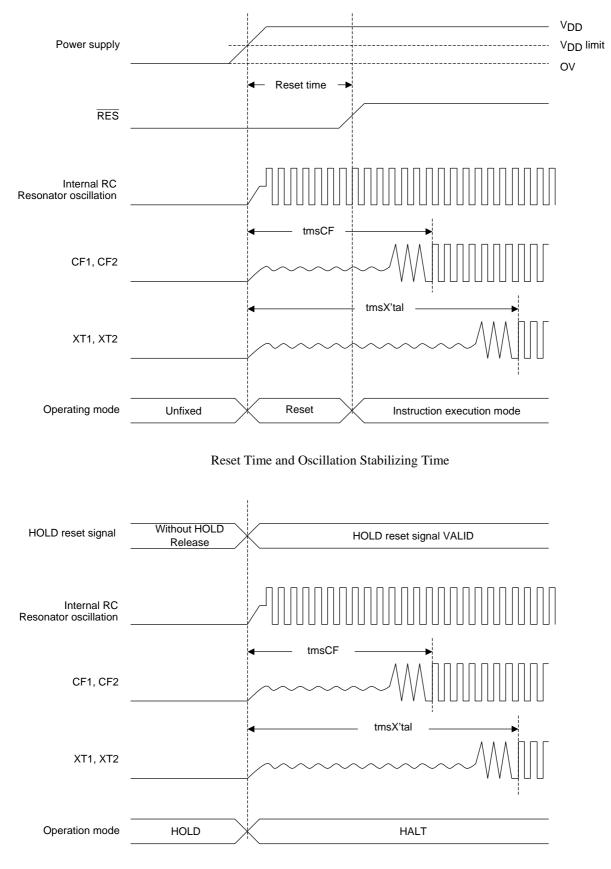
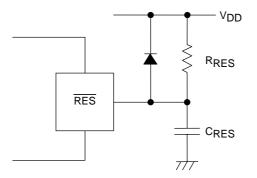




Figure 3 AC Timing Measurement Point

HOLD Release Signal and Oscillation Stable Time

Figure 4 Oscillation Stabilizing Time

Note:

Select C_{RES} and R_{RES} value to assure that at least 200 μ s reset time is generated after the V_{DD} becomes higher than the minimum operating voltage.

Figure 5 Reset Circuit

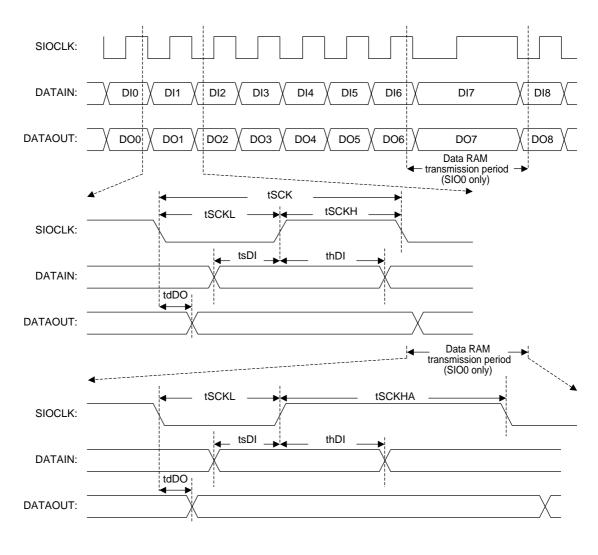


Figure 6 Serial Input/Output Wave Form

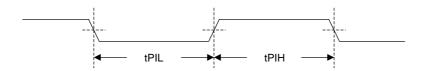


Figure 7 Pulse Input Timing Condition

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2007. Specifications and information herein are subject to change without notice.