MP7613

Octal 12-Bit DAC ArrayTM D/A Converter with Output Amplifier and Parallel Data/Address μP Control Logic

FEATURES

- Eight Independent Channel 12-Bit DACs with Output Amplifiers
- Low Power 320 mW (typ.)
- Parallel Digital Data and Address Port
- Double Buffered Data Interface
- Readback of DAC Latches
- Zero Volt Output Preset (Data = 10 .. 00)
- 12-Bit Resolution, 11-Bit Accuracy
- Extremely Well Matched DACs
- Extremely Low Analog Ground Current (<60µA/Channel)

- <u>+</u>10 V Output Swing with <u>+</u>11.4 V Supplies
- Rugged Construction Latch-Up Proof
- Serial Version: MP7612

APPLICATIONS

- Data Acquisition Systems
- ATE
- Process Control
- Self-Diagnostic Systems
- Logic Analyzers
- Digital Storage Scopes
- PC Based Controller/DAS

GENERAL DESCRIPTION

The MP7613 provides eight independent 12-bit resolution Digital-to-Analog Converters with voltage output amplifiers and a parallel digital address and data port.

Built on using an advanced linear BiCMOS, these devices offer rugged solutions that are latch-up free, and take advantage of EXAR's patented thin-film resistor process which exhibits excellent long term stability and reliability.

A standard μ -processor and TTL/CMOS compatible 12-bit in-

put data port loads the data into the pre-selected DACS.

This device can easily be interfaced to a data bus, and digital readback of each channel is available.

Typical DAC matching is 0.7 LSB across all codes. Accuracy of \pm 0.75 LSB for DNL and \pm 1 LSB for INL is achieved for B grade versions. The output amplifier is capable of sinking and sourcing 5mA, and the output voltage settles to 12-bits in less than 30µs (typ.).

SIMPLIFIED BLOCK DIAGRAM

ORDERING INFORMATION

Package Type	Temperature Range	Part No.	Res. (Bits)	INL (LSB)	DNL (LSB)	FSE (LSB)
PQFP	–40 to +85°C	MP7613BE	12	±1	±0.75	±6
PQFP	–40 to +85°C	MP7613AE	12	±2	±1	±8
PGA	–40 to +85°C	MP7613BG	12	±1	±0.75	±6
PGA	–40 to +85°C	MP7613AG	12	±2	±1	±8
PLCC	–40 to +85°C	MP7613BP	12	±1	±0.75	±6
PLCC	–40 to +85°C	MP7613AP	12	±2	±1	±8

PIN OUT DEFINITIONS

PLCC PIN NO.	PQFP & PGA PIN NO.	NAME	DESCRIPTION
29	1	N/C	No Connection
30	2	VO3	DAC 3 Output
31	3	V _{EE}	Analog Negative Power Supply (–12 V)
32	4	V _{CC}	Analog Positive Power Supply (+12 V)
33	5	DGND	Digital Ground (0 V)
34	6	V _{REF}	Analog Positive Voltage Reference Input (+5 V)
35	7	V_{REFN}	Analog Negative Voltage Reference Output (–2.5 V)
36	8	V _{CC}	Analog Positive Power Supply (+12 V)
37	9	V _{EE}	Analog Negative Power Supply (–12 V)
38	10	VO4	DAC 4 Output
39	11	N/C	No Connection
40	12	VO5	DAC 5 Output
41	13	VO6	DAC 6 Output
42	14	VO7	DAC 7 Output
43	15	AGND	Analog Ground (0 V)
44	16	CS	Chip Select Enable
1	17	RD	Read Back Enable
2	18	R2	Second–Latch-Bank Reset Enable
3	19	R1	First–Latch-Bank Reset Enable
4	20	LD2	Second–Latch-Bank Load Enable
5	21	LD1	First–Latch-Bank Load Enable
6	22	A2	Digital Address Bit 2
7	23	A1	Digital Address Bit 1
8	24	A0	Digital Address Bit 0
9	25	N/C	No Connection
10	26	N/C	No Connection
10	20	DB0	Digital Input Data Bit 0 (LSB)
12	28	DB0 DB1	Digital Input Data Bit 1
12	29	DB1 DB2	Digital Input Data Bit 1
13	30	DB2 DB3	Digital Input Data Bit 2
14	31	DB3 DB4	Digital Input Data Bit 3
16	32	DB5	Digital Input Data Bit 5
17	33	DB6	Digital Input Data Bit 6
18	34	DB7	Digital Input Data Bit 7
19	35	DB8	Digital Input Data Bit 8
20	36	DB9	Digital Input Data Bit 9
21	37	DB10	Digital Input Data Bit 10
22	38	DB11	Digital Input Data Bit 11 (MSB)
23	39	DVDD	Digital Positive Power Supply (+5 V)
24	40	DGND	Digital Ground (0 V)
25	41	AGND	Analog Ground (0 V)
26	42	VO0	DAC 0 Output
27	43	VO1	DAC 1 Output
28	44	VO2	DAC 2 Output

Rev. 2.00

ELECTRICAL CHARACTERISTICS

 V_{CC} = +12 V, V_{EE} = -12 V, V_{REF} = 5 V, DV_{DD} = 5.0 V, T = 25°C, Output Load = 5k Ω (unless otherwise noted)

Parameter	Symbol	Min	25°С Тур	Max	Tmin to Min	Tmax Max	Units	Test Conditions/Comments
STATIC PERFORMANCE								
Resolution (All Grades)	N	12					Bits	
Integral Non-Linearity (Relative Accuracy) A B	INL			土2 土1		土2 土1	LSB	End Point Linearity Spec
Differential Non-Linearity A B	DNL			土1 土0.75		土1 土0.75	LSB	
Positive Full Scale Error A B	+FSE		6 4	土8 土6		土8 土6	LSB	
Negative Full Scale Error A B	-FSE		6 4	土8 土6		土8 土6	LSB	
Bipolar Zero Offset A B	ZOFS			$^{\pm4}_{\pm3}$		土4 土3	LSB	
INL Matching A B	ΔINL			土2 土1.5		土2 土1.5	LSB	
All Channels Maximum Error with DAC 0 adjusted to minimum error A B	ME			±4 ±2		±4 ±2	LSB	
Bipolar Zero Matching A B	∆ZUFS			± 4 ± 3		± 4 ± 3	LSB	
Full Scale Error Matching A B	ΔFSE			$^{\pm4}_{\pm3}$		土4 土3	LSB	
DYNAMIC PERFORMANCE								
Voltage Settling from LD to VDAC Out ¹ Channel-to-Channel Crosstalk ^{1, 6} Digital Feedthrough ^{1, 6} Power Supply Rejection Ratio	t _{sd} CT Q PSRR		30 0.04 –70	50 5		50	μs LSB dB ppm/%	ZS to FS (20 V Step) DC CLK and Data to V _{OUTi} $\Delta V_{EE} \& \Delta V_{CC} = \pm 5\%$, ppm of FS
REFERENCE INPUTS								
Impedance of V _{REF} V _{REF} Voltage ^{1, 2}	REF V _{REF}	350 3.5	700	1.05k 6	350	1.05k	Ω V	See Application Hints for driving the reference input

ELECTRICAL CHARACTERISTICS (CONT'D)

			25°C		Turin to	T		
Parameter	Symbol	Min	Тур	Max	Tmin to Min	Max	Units	Test Conditions/Comments
DIGITAL INPUTS ³								
Logic High Logic Low Input Current Input Capacitance ¹	V _{IH} V _{IL} I _L C _L	2.4		0.8 <u>+</u> 10 8			V V μA pF	
ANALOG OUTPUTS								
Output Swing Output Drive Current V _{REFN} Output Drive Current Output Impedance Output Short Circuit Current	R _O I _{SC}	-V _{EE} +1.4 -5 -10	V _{CC} 1 25 30 40 55	-1.4 5 +10			V mA μA Ω mA mA mA	For test purposes only +FS to AGND +FS to V _{EE} -FS to AGND -FS to V _{CC}
DIGITAL OUTPUTS								
Output High Voltage Output Low Voltage	V _{OH} V _{OL}		4.5 0.5				V V	
POWER SUPPLIES								
V _{CC} Voltage ⁵ V _{EE} Voltage ⁵ DV _{DD} Voltage Positive Supply Current Negative Supply Current Digital Supply Current Power Dissipation	V _{CC} V _{EE} DV _{DD} I _{CC} I _{EE} I _{DD} PD _{ISS}	V _{REF} +1.5 –12.75 4.5	12 -12 5 8 15 320	12.75 -5 5.5 10 20 2 420	V _{REF} +1.5 -12.75 4.5	12.75 -5 5.5 10 20 2 450	V V mA mA mA mW	Bipolar zero Bipolar zero Bipolar zero Bipolar zero
ANALOG GROUND CURRENT								
Per Channel ¹	I _{AGND}		±60				μΑ	See Application Notes
DIGITAL TIMING SPECIFICATIONS ^{1,4} Data Setup Time Data Hold Time Address Set-up Time Address Hold Time Chip Select to LD1 Set-up Time Chip Select to LD1 Hold Time LD1 Pulse Width LD1 Negative Edge to LD2 Positive Edge LD2 Pulse Width Chip Select to RD Set-Up Time Chip Select to RD Set-Up Time Chip Select to RD Hold Time RD Pulse Width High Z to Data Valid for Readback Data Valid for Readback to High Z R1 Pulse Width R2 Pulse Width	t _{DS} t _{DH} t _{AS} t _{AH} t _{CS1} t _{CH1} t _{LD1W} t _{LD1LD2} t _{LD2W} t _{CS2} t _{CH2} t	20 20 100 6 0 50 60 60 600 600 200 100					ns ns ns ns ns ns ns ns ns ns ns ns ns n	V _{IL} = 0 V, V _{IH} = 5 V, CL = 20 pF

Specifications are subject to change without notice

ELECTRICAL CHARACTERISTICS (CONT'D)

NOTES:

- ¹ Guaranteed; not tested.
- ² Specified values guarantee functionality.
- ³ Digital inputs should not go below digital GND or exceed DV_{DD} supply voltage.
- ⁴ See Figures 1, 2, and 3. All digital input signals are specified with $t_R = t_F = 10$ ns 10% to 90% and timed from a 50% voltage level.
- ⁵ For power supply values < $\pm 2*V_{REF}$, the output swing is limited as specified in Analog Outputs.
- ⁶ Digital feedthrough and channel-to-channel crosstalk are heavily dependent on the board layout and environment.

Specifications are subject to change without notice

/ / / / / /

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}

V_{CC} to AGND \ldots +16.5 V
$V_{\mbox{\scriptsize EE}}$ to AGND \ldots
DV_DD to <code>DGND</code>
V_{REF} to DGND \ldots +7.0 V
Analog Outputs & Inputs Infinite Shorts to V_{CC} , V_{EE} , DV_{DD} , AGND and DGND (provided that power dissipation of the package spec is not exceeded)
AGND to DGND

Digital Input & Digital Output Voltage to: DV _{DD}
Operating Temperature Range40°C to +85°C
Maximum Junction Temperature 150°C
Storage Temperature Range $\dots -65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (Soldering, 10 sec) +300°C
Package Power Dissipation Rating to 75°C PQFP, PGA, PLCC

NOTES:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

² Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

APPLICATION NOTES Refer to Section 8 for Applications Information

NOTE: When using these DACs to drive remote devices, the accuracy of the output can be improved by utilizing a remote analog ground connection. The difference between the DGND and AGND should be limited to \pm 300 mV to assure normal operation. If there is any chance that the AGND to DGND can be greater than \pm 1 V, we recommend two back-to-back diodes be used between DGND and AGND to clamp the voltage and prevent damage to the DAC. Using a buffer between the remote ground location and AGND may help reduce noise induced from long lead or trace lengths.

Figure 1. Loading Latch A and Updating Latch B

Notes

- (1) Chip Select (CS) and Load LATCHA (LD1) Signals follow the same timing constraints and are interchangeable in the above diagram.
- (2) $\overline{R1} = \overline{R2} = 1.$
- $\vec{(3)}$ For the case where $\overline{\text{LD2}}$ is in the low state, analog output would respond to the falling edge of $\overline{\text{LD1}}$ (transparent mode).

Notes

(1) Chip Select (CS) and Data Readback (RD) Signals follow the same timing constraints and are interchangeable in the above diagram.

(2) $\overline{R1} = \overline{R2} = 1.$

Figure 3. Reset Operations

MP7613

Rev. 2.00

Τ(Φ)Μ

A standard μ -processor and TTL/CMOS compatible input data port loads the data into the pre-selected DACS. If $\overline{CS} = 0$, the chip accesses digital data on the bus. Then address bits A0 to A2 select the appropriate DAC and $\overline{LD1}$ loads the data into the first-latch-bank. When all 8-channels first-latch-banks are loaded, then $\overline{LD2}$ enables the second-latch-bank and updates

all 8-channels simultaneously. The selected DAC becomes transparent (activity on the digital inputs appear at the analog output) when both $\overline{\text{LD1}} = \overline{\text{LD2}} = 0$.

 $\overline{R1} = 0$ resets the first-latch-bank. $\overline{R2} = 0$ resets the secondlatch-bank which sets the analog output to zero volts (data = 100...00), regardless of digital inputs.

Function	A2	A1	A0	RD	LD1	LD2	CS	R1	R2
Load Latch 1 of DAC1	0	0	0	1	0→1	1	0	1	1
Load Latch 1 of DAC2	0	0	1	1	0→1	1	0	1	1
Load Latch 1 of DAC3	0	1	0	1	0→1	1	0	1	1
Load Latch 1 of DAC4	0	1	1	1	0→1	1	0	1	1
Load Latch 1 of DAC5	1	0	0	1	0→1	1	0	1	1
Load Latch 1 of DAC6	1	0	1	1	0→1	1	0	1	1
Load Latch 1 of DAC7	1	1	0	1	$0 \rightarrow 1$	1	0	1	1
Load Latch 1 of DAC8	1	1	1	1	0→1	1	0	1	1
Load Latch 2 of DAC1 \rightarrow 8	х	х	Х	1	1	0→1	0	1	1
Read Latch 1 of DAC1	0	0	0	0	1	1	0	1	1
Read Latch 1 of DAC2	0	0	1	0	1	1	0	1	1
Read Latch 1 of DAC3	0	1	0	0	1	1	0	1	1
Read Latch 1 of DAC4	0	1	1	0	1	1	0	1	1
Read Latch 1 of DAC5	1	0	0	0	1	1	0	1	1
Read Latch 1 of DAC6	1	0	1	0	1	1	0	1	1
Read Latch 1 of DAC7	1	1	0	0	1	1	0	1	1
Read Latch 1 of DAC8	1	1	1	0	1	1	0	1	1
Reset Latch 1 of DAC1→8 Reset Latch 2 of DAC1→8	x x	x x	x x	X X	X X	x x	X X	0 1	1 0

Note: 1: High, 0: Low, X: Don't Care

Table 1. Octal Parallel Data Input 14-Bit DAC Truth Table

Note: For timing information see Electrical Characteristics

8

Hex Code	Binary Code	Output Voltage = 2 • Vr (-1 + <u>2•D</u>) (Vr = +5 V) 4096
000	000000000000000	10 • (-1 + 0) = -10
7 F F	01111111111	10 ● (−1 + <u>4094</u>) = −4.88 mV
800	10000000000	$10 \bullet (-1 + \frac{4096}{4096}) = 0$
801	10000000001	$10 \bullet (-1 + \frac{4098}{4096}) = 4.88 \text{ mV}$
FFF	11111111111	$10 \bullet (-1 + \frac{8190}{4096}) = 9.99512$

MP7613

Table 2. MP7613Ideal DAC Output vs. Input Code

Note: See Electrical Characteristics on pages 28-30 for real system accuracy

PERFORMANCE CHARACTERISTICS

Graph 1 shows the typical output settling characteristic of the MP7610 Family for a RESET \rightarrow ZS \rightarrow FS \rightarrow ZS series of code transitions. The top graph shows the output voltage transients, while the bottom graph shows the difference between the output and the ideal output.

Graph 2. Linearity with V_{REF} = 5 V, All DACs, All Codes

CL = 500pF, 5nF, 50nF, 500nF

Graph 9. Typical Response of the MP7610 Family Analog Output to a Current Pulse with CL=500pF, 5nF, 50nF, 500nF (See NO TAG above)

44 LEAD PLASTIC QUAD FLAT PACK (14mm x 14mm PQFP, METRIC) Q44

	MILLI	METERS	INC	CHES		
SYMBOL	MIN	MAX	MIN	МАХ		
А		3.15		0.124		
A ₁	0.25	_	0.01	_		
A ₂	2.6	2.8	0.102	0.110		
В	0.3	0.4	0.012	0.016		
С	0.13	0.23	0.005	0.009		
D	16.95	17.45	0.667	0.687		
D ₁	13.9	14.1	0.547	0.555		
е	1.00 BSC 0.039 BSC					
L	0.65	1.03	0.026	0.040		
α	0°	7°	0°	7°		
Coplanarity = 4 mil max.						

44 LEAD PIN GRID ARRAY (PGA) G44

	INC	CHES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	
А	0.082	0.10	2.08	2.54	
b	0.016	0.020	0.406	0.508	
D	0.841	0.859	21.4	21.8	
D ₁	0.688	0.712	17.5	18.1	
е	0.	100 typ.		2.54 typ.	
L ₁	0.170	0.190	4.32	4.83	
Q	0.	050 typ.		1.27 typ.	

	CONNECTION TABLE									
PAD	PIN	PAD	PIN	PAD	PIN					
1	B2	16	G4	31	C8					
2	B1	17	H4	32	C7					
3	C2	18	H5	33	B8					
4	C1	19	G5	34	B7					
5	D2	20	H6	35	A7					
6	D1	21	G6	36	B6					
7	E1	22	H7	37	A6					
8	E2	23	G7	38	B5					
9	F1	24	G8	39	A5					
10	F2	25	F7	40	A4					
11	G1	26	F8	41	B4					
12	G2	27	E7	42	A3					
13	H2	28	E8	43	B3					
14	G3	29	D8	44	A2					
15	H3	30	D7							
1										

Note: The letters A-H and numbers 1-8 are the coordinates of a grid. For example, pin 1 is at the intersections of the "B" vertical line and the "2" horizontal line.

44 LEAD PLASTIC LEADED CHIP CARRIER (PLCC) P44

	IN	CHES	MILLI	METERS	
SYMBOL	MIN	MAX	MIN	MAX	
А	0.165	0.180	4.19	4.57	
A ₁	0.100	0.110	2.54	2.79	
A ₂	0.148	0.156	3.76	3.96	
В	0.013	0.021	0.330	0.553	
С	0.097	0.0103	0.246	0.261	
D	0.685	0.695	17.40	17.65	
D ₁ (1)	0.650	0.654	16.51	16.61	
D ₂	0590	0.630	14.99	16.00	
D ₃	0.500 Ref		12.70 Ref.		
e ₁	0.0	50 BSC	1.27 BSC		

Note: (1) Dimension D_1 does not include mold protrusion. Allowed mold protrusion is 0.254 mm/0.010 in.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1993 EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

