6-Input 1-Output Video Switch
 Monolithic IC MM1140

Outline

This is a 6-input, 1-output high performance video switch for TV/BS signal switching. It is ideal for use when multiple input circuits are needed on 1 chip.

Features

1. Built-in mute function (mute pin : input possible)
2. Crosstalk
-70dB (at 4.43 MHz)
3. Power supply voltage

5~13V
4. Frequency response

10 MHz

Package

SOP-14B (MM1140XF)

Applications

1. TV
2. VCR
3. Other video equipment

Block Diagram

Pin Description

Pin no. Pin name Internal equivalent circuit diagram Pin no. Pin name

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Ratings	Units
Storage temperature	TSTG	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Power supply voltage	Vcc	15	V
Allowable loss	Pd	350	mW

Electrical Characteristics (Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}$)

Item		Symbol	Measurement conditions	Min.	Typ.	Max.	Units
Operating power supply voltage range		Vcc		4.75	5.0	13.0	V
Consumption current		Id	Refer to Measuring Circuit		9.0	13.0	mA
Voltage gain		Gv	Refer to Measuring Circuit	-0.5	0	+0.5	dB
Frequency characteristic		Fc	Refer to Measuring Circuit	-1	0	+1	dB
Differential gain		DG	Refer to Measuring Circuit		0	± 3	\%
Differential phase		DP	Refer to Measuring Circuit		0	± 3	deg
Crosstalk		$\mathrm{C}_{\text {T }}$	Refer to Measuring Circuit		-70	-60	dB
Total harmonic distortion		THD	Refer to Measuring Circuit		0.01	0.3	\%
Output offset voltage		Voff	Refer to Measuring Circuit			± 30	mV
Switch input voltage	H	VIH	Refer to Measuring Circuit	2.1			V
	L	VIL	Refer to Measuring Circuit			0.7	V
Input impedance		Ri			15		$\mathrm{k} \Omega$
Output impedance		Ro			25		Ω

Measuring Procedures (Except where noted otherwise, $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, $\mathrm{VC} 1=\mathrm{Vcc}, \mathrm{VC2}=0 \mathrm{~V}$)

Item		Symbol	Switch state	Measuring Procedure
Consumption current		Id	1	Connect a DC ammeter to the Vcc pin and measure. Vcc is 5 V and the ammeter is shorted for use in subsequent measurements.
Voltage gain		Gv	2	Input a $2.0 V_{\text {P-P }}, 100 \mathrm{kHz}$ sine wave to SG , and obtain Gv from the following formula given TP12 voltage as V1 and TP14 voltage as V2. Gv=20LOG (V2/V1) dB
Frequency characteristic		Fc	2	For the above Gv measurement, given TP14 voltage for 10 MHz as $\mathrm{V} 3, \mathrm{Fc}$ is obtained from the following formula. Fc=20LOG (V3/V2) dB
Differential gain		DG	2	Input a 2.0VP-P staircase wave to SG, and measure differential gain at TP14. APL=10~90\%
Differential phase		DP	2	Proceed as for DG, and measure differential phase.
Total harmonic distortion		THD	2	Input a $2.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, \mathrm{l}} \mathrm{kHz}$ sine wave to SG , connect a distortion meter to TP14 and measure.
Output offset voltage		Voff	3	Measure the DC voltage difference of each switch status at TP13.
Crosstalk		Ст	9	Assume VC1=2.1V, VC2=0.7V. Input a 2.0 V P-P, 4.43 MHz sine wave to SG , and given TP12 voltage as V 4 and TP14 voltage as V5, C_{T} is obtained from the following formula. $\mathrm{C}_{\mathrm{T}}=20 \mathrm{LOG}(\mathrm{~V} 5 / \mathrm{V} 4) \mathrm{dB}$
Switch 1 input voltage	H	ViH1 $\mathrm{V}_{\mathrm{LL} 1}$	4	Impress different optional DC voltages on TP6 and TP7. Gradually raise from VC3 $=0 \mathrm{~V}$. TP1 voltage when TP7 voltage is output on TP13 is $\mathrm{V}_{\mathrm{H}} 1$. Gradually lower from VC3=Vcc. TP1 voltage when TP6 voltage is output on TP13 is $\mathrm{V}_{\mathrm{L}} 1$.
Switch 2 input voltage	H L	$\mathrm{V}_{\text {IH } 2}$ $\mathrm{~V}_{\text {II2 }}$	5	Impress different optional DC voltages on TP6 and TP8. Gradually raise from VC3 $=0 \mathrm{~V}$. TP2 voltage when TP8 voltage is output on TP13 is $\mathrm{V}_{\mathrm{H}} 2$. Gradually lower from VC3=Vcc. TP2 voltage when TP6 voltage is output on TP13 is $\mathrm{V}_{\mathrm{IL}} 2$.
Switch 3 input voltage	H L	$\mathrm{VIH}^{\text {3 }}$ $\mathrm{V}_{\text {II3 }}$	6	Impress different optional DC voltages on TP6 and TP9. Gradually raise from VC3 $=0 \mathrm{~V}$. TP3 voltage when TP9 voltage is output on TP13 is $V_{\mathrm{IH}} 3$. Gradually lower from VC3=Vcc. TP3 voltage when TP6 voltage is output on TP13 is $\mathrm{V}_{\mathrm{IL}} 3$.
Switch 4 input voltage	H	ViH4 VII4	7	Impress different optional DC voltages on TP9 and TP10. Gradually raise from VC3 $=0 \mathrm{~V}$. TP4 voltage when TP10 voltage is output on TP13 is Vir4. Gradually lower from VC3=Vcc. TP4 voltage when TP9 voltage is output on TP13 is VII4.
Switch 5 input voltage	H L	Vif5 VIL5	8	Impress different optional DC voltages on TP6 and TP11. Gradually raise from VC3 $=0 \mathrm{~V}$. TP5 voltage when TP11 voltage is output on TP13 is Vif5. Gradually lower from VC3=Vcc. TP5 voltage when TP6 voltage is output on TP13 is VIL5.

Switch Conditions Table

Conditions	SW										
	Control switching					Input switching					
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
1	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	1	0	0	0	0	0
	1	0	0	0	0	0	1	0	0	0	0
	1	1	0	0	0	0	0	1	0	0	0
	1	1	1	0	0	0	0	0	1	0	0
	1	1	1	1	0	0	0	0	0	1	0
	1	1	1	1	1	0	0	0	0	0	1
3	Conditions 2					0	0	0	0	0	0
4	2	0	0	0	0	0	0	0	0	0	0
5	0	2	0	0	0	0	0	0	0	0	0
6	0	0	2	0	0	0	0	0	0	0	0
7	0	0	1	2	0	0	0	0	0	0	0
8	0	0	0	0	2	0	0	0	0	0	0
9	Combination of all control switching and input switching when no signal is output to TP14.										

Control Input-Output Table

SW					OUT
$\mathbf{1}$	$\mathbf{2}$	3	4	5	
L	L	L	-	L	IN1
H	L	L	-	L	IN2
-	H	L	-	L	IN3
-	-	H	L	L	IN4
-	-	H	H	L	IN5
-	-	-	-	H	MUTE

