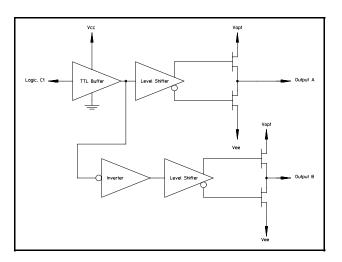


SWD-109

Features

- High Speed CMOS Technology
- Single Channel
- Positive Voltage Control
- Low Power Dissipation
- Low Cost Plastic SO-8 Package

Description


The SWD-109 is a single channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to +2.0V (relative to GND) to optimize the intermodulation products of the control devices at low frequencies.

Ordering Information

Part Number	Package		
SWD-109 PIN	Bulk Packaging		
SWD-109TR	1000 piece reel		

Note: Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Function	Pin No.	Function
1	Output A	5	Vee
2	GND	6	Vopt
3	Vcc	7	GND
4	C1, Logic	8	Output B

Truth Table

Input	Outputs			
C1	Α	В		
Logic "0"	V _{EE}	V _{OPT}		
Logic "1"	V _{OPT}	V _{EE}		

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

SWD-109 V5

Guaranteed Operating Ranges

Symbol	Parameter ¹	Unit	Min.	Тур.	Max.
V _{CC}	Positive DC Supply Voltage	V	4.5	5.0	5.5
V _{EE}	Negative DC Supply Voltage	V	-8.5	-5.0	-4.5
V _{OPT} ²	Optional DC Output Supply Voltage	V	0	1.0	2.0
V _{OPT} -V _{EE}	Negative Supply Voltage Range	V	4.5	6.5	11.0
V _{CC} -V _{EE}	Positive to negative Supply Range	V	9.0	10.0	14.0
T _A	Operating Ambient temperature	°C	-40	+25	+85
Іон	DC Output Current - High	mA	_	_	-1.0
I _{OL}	DC Output Current - Low	mA	_	_	1.0
T_{rise},T_{fall}	Maximum Input Rise or Fall Time	ns	_	_	500

^{1.} All voltages are relative to GND.

DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Co	nditions	Units	Min.	Тур.	Max.
V _{IH}	Input High Voltage	Guaranteed High Input Voltage		V	2.0	_	_
V _{IL}	Input Low Voltage	Guaranteed Lov	v Input Voltage	V	_	_	0.8
V _{IH}	Output High Voltage	I _{OH} = -1 mA	V _{EE} = Max	V	V _{OPT} -0.1	_	_
V _{OL}	Output Low Voltage	I _{OL} = 1 mA	V _{EE} = Max	V	_	_	V _{EE} +0.1
I _{IN}	Input Leakage Current	V _{IN} = V _{CC} or GND	V _{EE} = Min	μA	_	.01	10
Icc	Quiescent Supply Current	V _{CC} = Max V _{OPT} = Min or Max	V _{EE} = Min V _{IN} = V _{CC} or GND	μΑ	_	_	100
ΔI _{CC}	Additional Supply Current, per TTL Input pin	V _{CC} = Max	V _{IN} = V _{CC} -2.1V	mA	_	_	1.0

V_{OPT} is grounded for most applications. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, V_{OPT} can be increased to between 1.0 and 2.0V. The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz. It should be noted that the control current is on the GaAs MMICs will increase when positive controls are applied.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

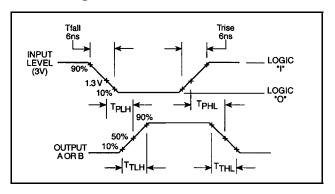
Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

SWD-109

AC Characteristics Over Guaranteed Operating Range ³

Symbol	Parameter	-55 to +25°C	<u><</u> +85°C	<u><</u> +125°C	Unit
T _{PLH}	Propagation Delay	22	25	30	ns
T _{PHL}	Propagation Delay	22	25	30	ns
T _{TLH}	Output Rising Transition Time	9.0	9.0	9.0	ns
T _{THL}	Output Falling Transition Time	8.0	8.0	8.0	ns
T _{skew}	Delay Skew, Output A to Output B	4.0	4.0	4.0	ns
C _{IN}	Input Capacitance	10	10	10	pF
C _{PDC}	Power Dissipation Capacitance ⁴	10	10	10	pF
C _{PDE}	Power Dissipation Capacitance ⁴	140	140	140	pF

^{3.} V_{CC} = 4.5V, V_{OPT} - V_{EE} = min or max, V_{OPT} = 0V, C_L = 25 pF, Trise, Tfall = 6ns. These conditions represent the worst case for slow delays.


Absolute Maximum Ratings⁵

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	-0.5	7.0	V
V _{EE}	Negative DC Supply Voltage	-9.0	0.5	V
V _{OPT}	Optional DC Output Supply Voltage	-0.5	Vcc +0.5	V
V _{OPT} -V _{EE}	Output to Negative Supply Voltage Range	-0.5	11.0	V
V _{CC} -V _{EE}	Positive to Negative Supply Voltage Range	-0.5	14.0	V
Vı	DC Input Voltage	-0.5	V _{CC} +0.5	V
l _l	DC Input Current	-25	25	mA
Vo	DC Output Voltage	V _{EE} – 0.5	V _{OPT} +0.5	V
P _D ⁶	Power Dissipation in Still Air		500	mW
Vo	DC Output Current	-25	25	mA
T _{STG}	Storage Temperature	-65	150	°C

5. All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures.

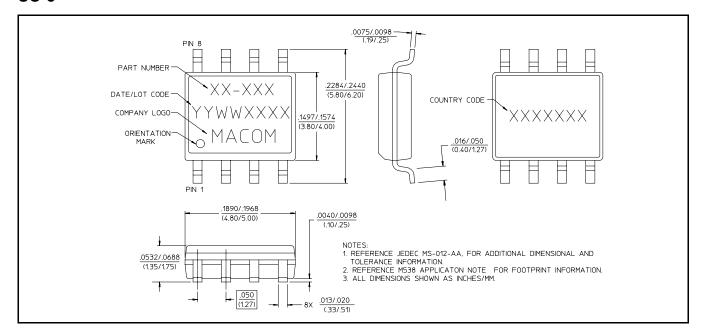
6. Derate -7 mW/°C from 65°C to 85°C.

Switching Waveforms

^{4.} Total Power Dissipation is calculated by the following formula: PD = $V_{CC}^2 fC_{PDC} + (V_{OPT} - V_{EE})^2 fC_{PDE}$

³

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

SWD-109 V5

SO-8

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298