High Performance Driver/Comparator on a Single Chip AD53033

FEATURES

250 MHz Operation

Driver/Comparator Included

52-Lead LQFP Package with Built-in Heat Sink

APPLICATIONS

Automatic Test Equipment
Semiconductor Test Systems
Board Test Systems
Instrumentation and Characterization Equipment

PRODUCT DESCRIPTION

The AD53033 is a single chip that performs the pin electronics functions of driver and comparator (D-C) in ATE VLSI and memory testers.
The driver is a proprietary design that features three active states: Data High Mode, Data Low Mode and Term Mode as well as an Inhibit State. This facilitates the implementation of high speed active termination. The output voltage range is -3 V to +8 V to accommodate a wide variety of test devices. The output leakage is typically less than 250 nA over the entire signal range.
The dual comparator, with an input range equal to the driver output range, features built-in latches and ECL-compatible outputs. The outputs are capable of driving 50Ω signal lines terminated to -2 V . Signal tracking capability is upwards of $5 \mathrm{~V} / \mathrm{ns}$.
Also included on the chip is an onboard temperature sensor whose purpose is to give an indication of the surface temperature of the D-C. This information can be used to measure θ_{JC} and θ_{JA} or flag an alarm if proper cooling is lost. Output from the

FUNCTIONAL BLOCK DIAGRAM

sensor is a current sink that is proportional to absolute temperature. The gain is trimmed to a nominal value of $1.0 \mu \mathrm{~A} / \mathrm{K}$. As an example, the output current can be sensed by using a $10 \mathrm{k} \Omega$ resistor connected from +10 V to the THERM (IOUT) pin. A voltage drop across the resistor will be developed that equals: $10 \mathrm{~K} \times 1 \mu \mathrm{~A} / \mathrm{K}=10 \mathrm{mV} / \mathrm{K}=2.98 \mathrm{~V}$ at room temperature.

[^0]AD53033-SPECIFICATIONS

DRIVER SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V} \pm 3 \%,-\mathrm{V}_{\mathrm{S}}=-7 \mathrm{~V}= \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=+75^{\circ} \mathrm{C}$ to $\left.+95^{\circ} \mathrm{C}\right)$. $\mathrm{CHDCPL}=\mathrm{CLDCPL}=39 \mathrm{nF}$.

Parameter	Min	Typ	Max	Units	Test Conditions
DIFFERENTIAL INPUT CHARACTERISTICS (DATA to $\overline{\text { DATA }}$, IOD to $\overline{\mathrm{IOD}}$, RLD to $\overline{\mathrm{RLD}}$) Input Voltage Differential Input Range Bias Current	$\begin{aligned} & -2 \\ & -250 \end{aligned}$	ECL	0 $+250$		$\mathrm{V}_{\mathrm{IN}}=-2 \mathrm{~V}, 0.0$
REFERENCE INPUTS Bias Currents	-50		+50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{T}}=5 \mathrm{~V}$
OUTPUT CHARACTERISTICS Logic High Range Logic Low Range Amplitude (V_{H} and V_{L}) Absolute Accuracy V_{H} Offset V_{H} Gain + Linearity Error V_{L} Offset V_{L} Gain + Linearity Error Offset TC Output Resistance $\begin{aligned} & \mathrm{V}_{\mathrm{H}}=-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=+8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=+3 \mathrm{~V} \end{aligned}$ Dynamic Current Limit Static Current Limit	$\begin{aligned} & -2 \\ & \\ & -3 \\ & 0.1 \\ & \\ & -50 \\ & 0.3-5 \\ & -50 \\ & -0.3-5 \\ & \\ & 44 \\ & 44 \\ & 44 \\ & 44 \\ & 100 \\ & -85 \end{aligned}$	0.5 46 46 46 46 46	$\begin{aligned} & 8 \\ & \\ & 5 \\ & 9 \\ & +50 \\ & +0.3+5 \\ & +50 \\ & +0.3+5 \\ & \\ & 48 \\ & 48 \\ & 48 \\ & 48 \\ & +85 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \% \text { of } \mathrm{V}_{\mathrm{H}}+\mathrm{mV} \\ & \mathrm{mV} \\ & \% \text { of } \mathrm{V}_{\mathrm{L}}+\mathrm{mV} \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \Omega \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { DATA }=\mathrm{H}, \mathrm{~V}_{\mathrm{H}}=-2 \mathrm{~V} \text { to }+8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{H}}=-2 \mathrm{~V} \text { to }+6 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{L}}=-1 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V} \text { to }+8 \mathrm{~V}\right) \\ & \text { DATA }=\mathrm{L}, \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V} \text { to }+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { DATA }=\mathrm{H}, \mathrm{~V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=+3 \mathrm{~V} \\ & \text { DATA }=\mathrm{H}, \mathrm{~V}_{\mathrm{H}}=-2 \mathrm{~V} \text { to }+8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=+3 \mathrm{~V} \\ & \text { DATA }=\mathrm{L}, \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=+7.5 \mathrm{~V} \\ & \text { DATA }=\mathrm{L}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=+7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,+1,+30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,-1,-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,+1,+30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0,-1,-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-30 \mathrm{~mA}(\operatorname{Trim~Point}) \\ & \mathrm{C}_{\mathrm{BYP}}=39 \mathrm{nF}, \mathrm{~V}_{\mathrm{H}}=+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { Output to }-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V} \\ & \text { DATA }=\mathrm{H} \text { and Output to }+8 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \text { DATA }=\mathrm{L} \end{aligned}$
$\mathrm{V}_{\text {TERM }}$ Voltage Range $V_{\text {TERM }}$ Offset $V_{\text {TERM }}$ Gain + Linearity Error Offset TC Output Resistance	$\begin{aligned} & -3 \\ & -50 \\ & -0.3+5 \end{aligned}$ 44	$\begin{aligned} & 0.5 \\ & 46 \end{aligned}$	$\begin{aligned} & 8.0 \\ & +50 \\ & +0.3+5 \end{aligned}$ 49	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \\ & \% \text { of } \mathrm{V}_{\mathrm{SET}}+\mathrm{mV} \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$	TERM MODE, $\mathrm{V}_{\mathrm{T}}=-3 \mathrm{~V}$ to $+8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}$ TERM MODE, $\mathrm{V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}$ TERM MODE, $\mathrm{V}_{\mathrm{T}}=-3 \mathrm{~V}$ to $+8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}$ $\mathrm{V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}$ $\mathrm{I}_{\text {OUT }}=+30 \mathrm{~mA},+1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{T}}=-3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}$ $\mathrm{I}_{\text {OUT }}=-30 \mathrm{~mA},-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{T}}=+8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}$ $\mathrm{I}_{\text {OUT }}= \pm 30 \mathrm{~mA}, \pm 1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{T}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}$
DYNAMIC PERFORMANCE, (V_{H} AND V_{L}) Propagation Delay Time Propagation Delay TC Delay Matching, Edge to Edge Rise and Fall Times 1 V Swing 3 V Swing 5 V Swing 9 V Swing Rise and Fall Time Temperature Coefficient 1 V Swing 3 V Swing 5 V Swing Overshoot and Preshoot Settling Time to 15 mV to 4 mV	1.1 $-3.0-50$	$\begin{aligned} & 1.6 \\ & 2 \\ & <100 \\ & 0.6 \\ & 1.0 \\ & 1.7 \\ & 3.0 \\ & \\ & \pm 1 \\ & \pm 2 \\ & \pm 4 \\ & \\ & \\ & <50 \\ & <10 \end{aligned}$	2.1 $+3.0+50$	ns ps $/{ }^{\circ} \mathrm{C}$ ps ns ns ns ns ps $/{ }^{\circ} \mathrm{C}$ ps $/{ }^{\circ} \mathrm{C}$ ps $/{ }^{\circ} \mathrm{C}$ $\%$ of Step $+m V$ ns $\mu \mathrm{s}$	Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+400 \mathrm{mV}, \mathrm{V}_{\mathrm{L}}=-400 \mathrm{mV}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+400 \mathrm{mV}, \mathrm{V}_{\mathrm{L}}=-400 \mathrm{mV}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+400 \mathrm{mV}, \mathrm{V}_{\mathrm{L}}=-400 \mathrm{mV}$ Measured $20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1 \mathrm{~V}$ Measured $20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}$ Measured $10 \%-90 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}$ Measured $10 \%-90 \%, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=7 \mathrm{~V}$ Measured $20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1 \mathrm{~V}$ Measured $20 \%-80 \%, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}$ Measured $10 \%-90 \%, V_{L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}=-0.1 \mathrm{~V}, 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}=0.0 \mathrm{~V}, 1.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}=0.0 \mathrm{~V}, 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}=0.0 \mathrm{~V}, 5.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{H}}=-2.0 \mathrm{~V}, 7.0 \mathrm{~V}$ $\begin{aligned} & \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.5 \mathrm{~V} \end{aligned}$

Parameter	Min	Typ	Max	Units	Test Conditions
Delay Change vs. Pulsewidth Minimum Pulsewidth 3 V Swing 5 V Swing Toggle Rate		$\begin{aligned} & <50 \\ & 2 \\ & 3 \\ & 250 \end{aligned}$		ps ns ns MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3 \mathrm{~V}, 90 \% \text { Reached, Measure @ } 50 \% \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, 90 \% \text { Reached, Measure @ } 50 \% \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V}, \mathrm{VDUT}>3.0 \mathrm{~V} \text { p-p } \end{aligned}$
DYNAMIC PERFORMANCE, INHIBIT Delay Time, Active to Inhibit Delay Time, Inhibit to Active Delay Time Matching (Z) I/O Spike Rise, Fall Time, Active to Inhibit Rise, Fall Time, Inhibit to Active	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	<200	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \pm 2.2 \\ & \\ & \\ & 3.5 \\ & 2.2 \end{aligned}$	ns ns ns $\mathrm{mV}, \mathrm{p}-\mathrm{p}$ ns ns	Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}$ Measured at $50 \%, \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V}$ $\mathrm{Z}=$ Delay Time Active to Inhibit Test (Above)- Delay Time Inhibit to Active Test (Above) (Of Worst Two Edges) $\begin{aligned} & \mathrm{V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V} \text { (Measured } 20 \% / 80 \% \text { of } 1 \mathrm{~V} \text { Output) } \\ & \mathrm{V}_{\mathrm{H}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-2 \mathrm{~V} \text { (Measured } 20 \% / 80 \% \text { of } 1 \mathrm{~V} \text { Output) } \end{aligned}$
DYNAMIC PERFORMANCE , V $\mathrm{V}_{\text {TERM }}$ Delay Time, V_{H} to $\mathrm{V}_{\text {TERM }}$ Delay Time, V_{L} to $\mathrm{V}_{\text {TERM }}$ Delay Time, $\mathrm{V}_{\text {TERM }}$ to V_{H} and $\mathrm{V}_{\text {TERM }}$ to V_{L} Overshoot and Preshoot $\mathrm{V}_{\text {TERM }}$ Mode Rise Time $\mathrm{V}_{\text {TERM }}$ Mode Fall Time PSRR, DRIVE or TERM Mode	$-3.0+75$	35	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 4.0 \\ & +3.0+75 \\ & \\ & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \% \text { of Step }+\mathrm{mV} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { Measured at } 50 \%, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{H}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=-0.4 \mathrm{~V} \\ & \text { Measured at } 50 \%, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{H}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=-0.4 \mathrm{~V} \\ & \text { Measured at } 50 \%, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{H}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=-0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\text {TERM }}=(+0.4 \mathrm{~V},-0.4 \mathrm{~V}),(0.0 \mathrm{~V},-2.0 \mathrm{~V}), \\ & (0.0 \mathrm{~V},+7.0 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=-2 \mathrm{~V}, 20 \%-80 \% \\ & \mathrm{~V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{H}}=0 \mathrm{~V}, \mathrm{~V}_{\text {TERM }}=-2 \mathrm{~V}, 20 \%-80 \% \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}} \pm 3 \% \end{aligned}$

Specifications subject to change without notice.

COMPARATOR SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V} \pm 3 \%,-\mathrm{V}_{\mathrm{S}}=-7 \mathrm{~V}= \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{j}}=+75^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$).

Specifications subject to change without notice.

AD53033-SPECIFICATIONS

TOTAL FUNCTION SPECIFICATIONS

(All specifications are at $\mathrm{T}_{\mathrm{j}}=+85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V} \pm 3 \%,-\mathrm{V}_{\mathrm{s}}=-7 \mathrm{~V}= \pm 3 \%$ unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=+75^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$).

Parameter	Min	Typ	Max	Units	Test Conditions
OUTPUT CHARACTERISTICS					
Output Leakage Current, V ${ }_{\text {OUT }}=-2 \mathrm{~V}$ to +7 V	-500		+500	nA	
Output Leakage Current, $\mathrm{V}_{\text {OUT }}=-3 \mathrm{~V}$ to +8 V	-2		+2	$\mu \mathrm{~A}$	
Output Capacitance		6		pF	Driver INHIBITED
POWER SUPPLIES					
Total Supply Range	19		V		
Positive Supply	12		V		
Negative Supply	-7		V		
Positive Supply Current		178	mA	Driver $=$ Active	
Negative Supply Current		195	mA	Driver $=$ Active	
Total Power Dissipation		3.5	W	Driver $=$ Active Temperature Sensor Gain Factor	

NOTES

Connecting or shorting the decoupling pins to ground will result in the destruction of the device.
Specifications subject to change without notice.
Table I. Driver Truth Table

DATA	$\overline{\text { DATA }}$	IOD	$\overline{\mathbf{I O D}}$	$\overline{\text { RLD }}$	$\overline{\mathbf{R L D}}$	OUTPUT STATE
0	1	1	0	X	X	VL
1	0	1	0	X	X	VH
X	X	0	1	0	1	INH
X	X	0	1	1	0	VTERM

Table II. Comparator Truth Table

Vout		LEH	$\overline{\text { LEH }}$	LEL	$\overline{\text { LEL }}$	OUTPUT STATES				
		QH				$\overline{\mathbf{Q H}}$	QL	$\overline{\mathbf{Q L}}$		
> HCOMP	>LCOMP		1	0	1	0	1	0	1	0
> HCOMP	<LCOMP	1	0	1	0	1	0	0	1	
< HCOMP	>LCOMP	1	0	1	0	0	1	1	0	
< HCOMP	<LCOMP	1	0	1	0	0	1	0	1	
X	X	0	1	0	1	QH (t-1)	$\overline{\mathrm{QH}}(\mathrm{t}-1)$	QL (t-1)	$\overline{\mathrm{QL}}(\mathrm{t}-1)$	

Environmental
Operating Temperature (Junction) $+175^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)^{3} \ldots^{2} .+260^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Output short circuit protection to ground is guaranteed as long as proper heat sinking is employed to ensure compliance with the operating temperature limits.
${ }^{3}$ To ensure lead coplanarity (± 0.002 inches) and solderability, handling with bare hands should be avoided and the device should be stored in environments at $24^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F} \pm 10^{\circ} \mathrm{F}\right)$ with relative humidity not to exceed 65%.

Table III. Package Thermal Characteristics

Air Flow, FM	$\boldsymbol{\theta}_{\mathbf{J A}},{ }^{\circ} \mathbf{C} / \mathbf{W}$
0	33
200	25
400	22

ORDERING GUIDE

Model	Package Description	Shipment Method Quantity per Shipping Container	Package Option
AD53033JSTP	52-Lead LQFP-EDQUAD	90	SQ-52

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53033 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

52-Lead LQFP-EDQUAD with Integral Heat Slug

(SQ-52)

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

