Features

- $802.11 \mathrm{a}+\mathrm{b} / \mathrm{g}$ Dual Band Applications
- Broadband Performance: DC - 6.0 GHz
- Low Insertion Loss: $0.7 \mathrm{~dB} @ 2.4 \mathrm{GHz}$

$$
1.0 \mathrm{~dB} @ 4.9 \text { to } 6.0 \mathrm{GHz}
$$

- High Isolation: $43 \mathrm{~dB} @ 2.4 \mathrm{GHz}$

$$
30 \mathrm{~dB} @ 4.9 \text { to } 6.0 \mathrm{GHz}
$$

- Fast Switching Speed: $0.5 \mu \mathrm{~m}$ GaAs PHEMT
- Lead-Free 3 mm 12-lead PQFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- $260^{\circ} \mathrm{C}$ Reflow Compatible
- RoHS* Compliant Version of MASWSS0094

Description

M/A-COM's MASWSS0129 is a broadband GaAs PHEMT MMIC diversity switch available in a low cost, lead-free 3 mm 12-lead PQFN package. The MASWSSO129 is ideally suited for applications where very small size and low cost are required.

Typical applications are for WLAN IEEE 802.11a and $802.11 \mathrm{~b} / \mathrm{g}$ systems that employ two antennas for transmit and receive diversity. Other applications include cordless phones and base stations. Designed for high power, this DPDT switch maintains high linearity up to 6.0 GHz .

The MASWSS0129 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
MASWSS0129	Bulk Packaging
MASWSS0129TR	7 inch, 1000 piece reel
MASWSS0129TR-3000	13 inch, 3000 piece reel
MASWSS0129SMB	Sample Test Board (Includes 5 Samples)

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description
1	GND	Ground
2	GND	Ground
3	V $_{\mathrm{C} 1}$	Control 1
4	ANT1	Antenna Port 1
5	GND	Ground
6	ANT2	Antenna Port 2
7	V $22^{\text {GND }}$	Control 2
8	GND	Ground
9	Rx	Ground
10	GND	Receive Port
11	Tx	Ground
12	Paddle ${ }^{2}$	Transmit Port
13		RF and DC Ground

[^0][^1]Electronics

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{Vc}=0 \mathrm{~V} / 3 \mathrm{~V}, 8 \mathrm{pF}$ Capacitor ${ }^{3}$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss ${ }^{4}$	$\begin{gathered} 2.4 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-5 \mathrm{GHz} \\ 4.9-6 \mathrm{GHz} \end{gathered}$	dB dB dB dB	— — —	$\begin{aligned} & 0.70 \\ & 0.75 \\ & 0.90 \\ & 1.00 \end{aligned}$	$\begin{gathered} 1.30 \\ - \\ 1.55 \end{gathered}$
Isolation (on/off or off/on)	$\begin{gathered} 2.4 \mathrm{GHz} \\ 4.9-6 \mathrm{GHz} \end{gathered}$	dB dB	$\overline{25}$	$\begin{aligned} & 43 \\ & 30 \end{aligned}$	—
Isolation (on/on or off/off)	$\begin{gathered} 2.4 \mathrm{GHz} \\ 4.9-6 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	-	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	-
Return Loss	$\begin{gathered} 2.4 \mathrm{GHz} \\ 4.9-6 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	-	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	-
IP2	Two Tone, $15 \mathrm{dBm} /$ Tone, 5 MHz Spacing $\begin{aligned} & \text { 2.4 GHz } \\ & \text { 5.3 GHz } \\ & 5.8 \mathrm{GHz} \end{aligned}$	dBm dBm dBm	—	$\begin{aligned} & 93 \\ & 86 \\ & 84 \end{aligned}$	—
IP3	Two Tone, $15 \mathrm{dBm} /$ Tone, 5 MHz Spacing $\begin{aligned} & \text { 2.4 GHz } \\ & \text { 5.3 GHz } \\ & 5.8 \mathrm{GHz} \end{aligned}$	dBm dBm dBm	—	$\begin{aligned} & 52 \\ & 50 \\ & 50 \end{aligned}$	—
Input P-1dB	$\begin{aligned} & \text { 2.4 GHz } \\ & \text { 5.3 GHz } \\ & \text { 5.8 GHz } \end{aligned}$	dBm dBm dBm	—	$\begin{aligned} & 33 \\ & 31 \\ & 31 \end{aligned}$	-
$2^{\text {nd }}$ Harmonic	$\begin{gathered} \mathrm{P}_{\mathrm{IN}}=20 \mathrm{dBm} \\ 2.4 \mathrm{GHz} \\ 5.8 \mathrm{GHz} \end{gathered}$	dBc dBc	-	$\begin{aligned} & -75 \\ & -77 \end{aligned}$	-
$3{ }^{\text {rd }}$ Harmonic	$\begin{gathered} \mathrm{P}_{\mathrm{IN}}=20 \mathrm{dBm} \\ 2.4 \mathrm{GHz} \\ 5.8 \mathrm{GHz} \end{gathered}$	dBc dBc	-	$\begin{aligned} & -69 \\ & -86 \end{aligned}$	-
Trise, Tfall	10\% to 90\% RF 90\% to 10\% RF	$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$	—	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	-
Ton, Toff	50\% control to 90\% RF, and 50\% control to 10\% RF	nS	-	90	-
Transients	-	mV	-	6	-
Control Current	$\|\mathrm{Vc}\|=3 \mathrm{~V}$	$\mu \mathrm{A}$	-	6	25

3. For positive voltage control, external DC blocking capacitors are required on all RF ports.
4. Insertion loss can be optimized by varying the DC blocking capacitor value.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Evaluation Board for Lead-Free 3 mm 12-lead PQFN Package

Application Schematic

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Input Power @ 3 V Control	+31 dBm
Input Power @ 5 V Control	+34 dBm
Voltage	$\pm 8.5 \mathrm{volts}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. M/A-COM does not recommend sustained operation near these survivability limits.

Truth Table ${ }^{7,8}$

$\begin{aligned} & \text { Control } \\ & V_{\mathrm{c} 1} \end{aligned}$	$\begin{aligned} & \text { Control } \\ & V_{c} 2 \end{aligned}$	ANT 1 - Rx	$\begin{gathered} \text { ANT } 1 \\ \text { - Tx } \end{gathered}$	ANT 2 - Tx	ANT 2 - Rx
1	0	On	Off	On	Off
0	1	Off	On	Off	On
1	1	Off	Off	Off	Off
0	0	Off	Off	Off	Off

7. $1=+2.9 \mathrm{~V}$ to $+5 \mathrm{~V}, 0=0 \mathrm{~V} \pm 0.2 \mathrm{~V}$.
8. Differential voltage, $\mathrm{V}($ state $\overline{1})-\mathrm{V}($ state 0$)$, must be 2.7 V minimum and must not exceed 8.5 V .

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

GaAs Broadband DPDT Diversity Switch

Typical Performance Curves, 8 pF Blocking Caps

Lead-Free 3 mm 12-Lead PQFN ${ }^{\dagger}$
\square

[^2]- Asia/Pacific Tel: 81.44.844.8296/Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

[^0]: 2. The exposed pad centered on the package bottom must be connected to RF and DC ground.
[^1]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^2]: ${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.

