DG211

SPST 4-Channel Analog Switch

The DG211 is a low cost, CMOS monolithic, Quad SPST analog switch. It can be used in general purpose switching applications for communications, instrumentation, process control and computer peripheral equipment and provides true bidirectional performance in the ON condition and blocks signals to $30 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ in the OFF condition.

Part Number Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ}$ C)	PACKAGE	PKG. NO.
DG211CJ	DG211CJ	0 to 70	16 Ld PDIP	E16.3
DG211CJZ (Notes 1, 2)	DG211CJZ	0 to 70	16 Ld PDIP* (Pb-free)	E16.3
DG211CY (Note 2)	DG211CY	0 to 70	16 Ld SOIC	M16.15
DG211CYZ (Notes 1, 2)	DG211CYZ	0 to 70	16 Ld SOIC (Pb-free)	M16.15

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.
NOTES:

1. Intersil Pb-free plus anneal products employ special Pb -free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
2. Add "T" suffix for Tape and Reel.

Pinout

DG211

(PDIP, SOIC) TOP VIEW

Features

- Switches $\pm 15 \mathrm{~V}$ Analog Signals
- TTL Compatibility
- Logic Inputs Accept Negative Voltages
- ron (Max).
- Pb-Free Plus Anneal Available (RoHS Compliant)

Functional Block Diagrams

DG211

TRUTH TABLE

LOGIC	DG211
0	ON
1	OFF

Logic " 0 " $\leq 0.8 \mathrm{~V}$, Logic " 1 " $\geq 2.4 \mathrm{~V}$

Schematic Diagram

Absolute Maximum Ratings

V+ to V-	44V
$V_{\text {IN }}$ to Ground	V - to $\mathrm{V}+$
V_{L} to Ground	-0.3V to 25V
V_{S} or V_{D} to V^{+}	0 to -36V
V_{S} or V_{D} to V -	0 to 36V
V+ to Ground	25 V
V- to Ground.	-25V
Current, any Terminal Except S or D	30 mA
Continuous Current, S or D	20 mA
	$70 \mathrm{~mA}$

Operating Conditions

Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 3)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package*	100
SOIC Package	120
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range.	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)	$300^{\circ} \mathrm{C}$
*Pb-free PDIPs can be used for throug processing only. They are not intended for processing applications.	wave solder Reflow solder

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		(NOTE 4) MIN	(NOTE 5) TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS						
Turn-ON Time, t ON	See Figure 1$V_{S}=10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$		-	460	-	ns
Turn-OFF Time, \qquad toff2			-	360	-	ns
			-	450	-	ns
OFF Isolation, OIRR (Note 7)	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & f=100 \mathrm{kHz} \end{aligned}$		-	70	-	dB
Crosstalk (Channel to Channel), CCRR			-	-90	-	dB
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		-	5	-	pF
Drain OFF Capacitance, $\mathrm{C}_{\text {D(OFF) }}$			-	5	-	pF
Channel ON Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}+\mathrm{C}_{\text {S(ON) }}$			-	16	-	pF
DIGITAL INPUT CHARACTERISTICS						
Input Current with Voltage High, I_{IH}	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-1.0	-0.0004	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		-	0.003	1.0	$\mu \mathrm{A}$
Input Current with Voltage Low, $\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-1.0	-0.0004	-	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, VANALOG			-15	-	15	V
Drain-Source ON Resistance, rDS(ON)	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$		-	150	175	Ω
Source OFF Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-	0.01	5.0	nA
		$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-5.0	-0.02	-	nA
Drain OFF Leakage Current, ${ }^{\text {d }}$ (OFF)		$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-	0.01	5.0	nA
		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-5.0	-0.02	-	$n A$
Drain ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ (Note 6)	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=14 \mathrm{~V}$	-	0.1	5.0	nA
		$V_{S}=V_{D}=-14 V$	-5.0	-0.15	-	nA

Electrical Specifications $\quad \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad$ (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 4) MIN	(NOTE 5) TYP	MAX	UNITS
POWER SUPPLY CHARACTERISTICS					
Positive Supply Current, I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 2.4 V	-	0.1	10	$\mu \mathrm{A}$
Negative Supply Current, I-		-	0.1	10	$\mu \mathrm{A}$
Logic Supply Current, I_{L}		-	0.1	10	$\mu \mathrm{A}$

NOTES:
4. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
5. For design reference only, not 100% tested.
6. $I_{D(O N)}$ is leakage from driver into $O N$ switch.
7. $O F F$ Isolation $=20 \log \frac{\mathrm{~V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{D}}}, \mathrm{V}_{\mathrm{S}}=$ Input to OFF switch, $\mathrm{V}_{\mathrm{D}}=$ output.

Test Circuits and Waveforms

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note the V_{S} may be + or - as per switching time test circuit. V_{O} is the steady state output with

\dagger Logic shown for DG211.
FIGURE 1. SWITCHING TIME MEASUREMENT POINTS
switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

FIGURE 2. SWITCHING TIME TEST CIRCUIT

Die Characteristics

DIE DIMENSIONS:
$2159 \mu \mathrm{~m} \times 2235 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

PASSIVATION:

Type: PSG/Nitride PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$ Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout
DG211

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ($0.76-1.14 \mathrm{~mm}$).

E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	$0.100 ~ B S C$	2.54	BSC	-	
e_{A}	0.300	BSC	7.62 BSC	6	
e $_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	16			16	

Rev. 0 12/93

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed $0.15 \mathrm{~mm}(0.006$ inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050 BSC		1.27 BSC		-
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	16		16		7
α	0°	8°	0°	8°	-

Rev. 1 6/05

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

