# GaAs SPDT Terminated Switch DC - 3.0 GHz 

## Features

- Low Cost Plastic SOT-26 Package
- Low Insertion Loss $<0.6 \mathrm{~dB}$ @ 900 MHz
- High Isolation $>38 \mathrm{~dB} @ 900 \mathrm{MHz}$
- Low Power Consumption $<10 \mu \mathrm{~A} @+3 \mathrm{~V}$
- Positive or Negative 2.5 to 8 V Control


## Description

M/A-COM's SW-442 is a GaAs monolithic switch in a low cost SOT-26 surface mount plastic package. The SW-442 is ideally suited for applications where very low power consumption, low insertion loss, very small size and low cost are required. Typical application is in dual band systems where switching between small signal components is required such as filter banks, single band LNA's, converters etc. The SW-442 can be used in applications up to 0.25 Watts in systems such as CDMA, W-CDMA, PCS, DCS1800, GSM and other analog/digital wireless communications systems.

The SW-442 is fabricated using a mature 0.8 micron GaAs MESFET process. The process features full passivation for increased performance and reliability.

SOT-26 Plastic Package


Ordering Information

| Part Number | Package |
| :--- | :--- |
| SW-442 PIN | SOT-26 Plastic Package |
| SW-442TR | Forward Tape and Reel ${ }^{1}$ |
| SW-442RTR | Reverse Tape and Reel ${ }^{1}$ |
| SW-442SMB | Sample Board |

1. Reference Application Note M513 for reel size information.

## Electrical Specifications $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss | $\begin{aligned} & \mathrm{DC}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.1 \end{aligned}$ | $\begin{gathered} \hline 0.7 \\ 1.0 \\ 1.25 \\ \hline \end{gathered}$ |
| Isolation | $\begin{aligned} & \mathrm{DC}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & 36 \\ & 25 \\ & 21 \\ & \hline \end{aligned}$ | $\begin{aligned} & 38 \\ & 28 \\ & 22 \\ & \hline \end{aligned}$ |  |
| VSWR | $\begin{aligned} & \mathrm{DC}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \end{aligned}$ |  |  | $\begin{aligned} & 1.4: 1 \\ & 1.6: 1 \end{aligned}$ | $\begin{aligned} & \hline 1.5: 1 \\ & 1.7: 1 \end{aligned}$ |
| $\mathrm{P}_{\text {1dB }}$ (2.7V supply) | $500 \mathrm{MHz}-3 \mathrm{GHz}$ | dBm |  | 24 |  |
| $\mathrm{P}_{1 \mathrm{~dB}}$ (5V supply) | $500 \mathrm{MHz}-3 \mathrm{GHz}$ | dBm |  | 28 |  |
| $\mathrm{IP}_{2}$ (2.7V supply) | 2-Tone 900 MHz , 5 MHz spacing, 10 dBm each tone | dBm |  | 80 |  |
| $\mathrm{IP}_{3}$ (2.7V supply) | 2-Tone $900 \mathrm{MHz}, 5 \mathrm{MHz}$ spacing, 10 dBm each tone | dBm |  | 50 |  |
| $\begin{aligned} & \mathbf{T}_{\text {rise }}, \mathbf{T}_{\text {fall }} \\ & \mathbf{T}_{\text {on }}, \mathbf{T}_{\text {off }} \\ & \text { Transients } \end{aligned}$ | $10 \%$ to $90 \%$ RF, $90 \%$ to $10 \%$ RF $50 \%$ Control to $90 \%$ RF, Control to $10 \%$ RF In-Band | $\begin{gathered} \hline \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{mV} \\ \hline \end{gathered}$ |  | $\begin{aligned} & 40 \\ & 60 \\ & 10 \end{aligned}$ |  |
| Gate Leakage | $\mathrm{V}_{\text {CTL }}=2.5 \mathrm{~V}$ | $\mu \mathrm{A}$ |  | 6 | 15 |

## Absolute Maximum Ratings ${ }^{1}$

| Parameter | Absolute Maximum |
| :--- | :---: |
| Input Power $(0.5-3.0 \mathrm{GHz})$ |  |
| $\quad 3 \mathrm{~V}$ Control | +30 dBm |
| 5 V Control | +33 dBm |
| Operating Voltage | +8.5 Volts |
| Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

1. Exceeding any one or combination of these limits may cause permanent damage.

## Truth Table

| Mode <br> (Control) | V1 | V2 | RFC - RF1 | RFC - RF2 |
| :--- | :---: | :---: | :---: | :---: |
| Positive $^{1}$ | $0 \pm 0.2 \mathrm{~V}$ | +2.5 to +8 V | On | Off |
|  | +2.5 to +8 V | $0 \pm 0.2 \mathrm{~V}$ | Off | On |
| Negative $^{2}$ | $0 \pm 0.2 \mathrm{~V}$ | -2.5 V to -8 V | Off | On |
|  | -2.5 V to -8 V | $0 \pm 0.2 \mathrm{~V}$ | On | Off |

1. External DC blocking capacitors are required on all RF ports and GND. GND capacitors can be used with postive control voltage to resonate lead inductance for improved isolation.
2. If negative control is used, DC blocking capacitors and GND capacitors are not required.

## PIN Configuration

| PIN No. | Function | Description |
| :---: | :---: | :---: |
| 1 | RF1 | RF in/out |
| 2 | GND | RF Ground |
| 3 | RF2 | RF in/out |
| 4 | V2 | V Control 2 |
| 5 | RFC | RF COMMON |
| 6 | V1 | V Control 1 |

## Functional Schematic Positive Control Voltage



## Functional Schematic Negative Control Voltage



## Handling Procedures

The following precautions should be observed to avoid damage:

## Static Sensitivity

Gallium Arsenide Integrated Circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

## Typical Performance Curves



Isolation Loss vs. Frequency over Temperature (Postive Control)



Input VSWR vs. Frequency over
Temperature


Isolation Loss vs. Frequency over Temperature (Negative Control)


Insertion Loss vs. Frequency over Temperature (Negative Control)


V2.00

