Preliminary Data Sheet

FEATURES

Digitally programmable gain
G=1, 2, 4, 8, 16, 32, 64, 128
Software or pin programmable
Excellent temperature performance
Specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ max input offset drift
$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max gain drift
Excellent dc performance
$122 \mathrm{~dB} \min$ CMR, G = 128
$25 \mu \mathrm{~V}$ max input offset voltage
100 pA max bias current
0.7 uV p-p ($\mathbf{0 . 1} \mathbf{~ H z}$ to $\mathbf{1 0 ~ H z) ~}$

Good ac performance
Gain Bandwidth Product 1 MHz
Slew Rate 0.7 V/ $\mu \mathrm{s}$
Rail-to-rail input and output
Shutdown/Multiplex
Additional uncommitted op amp
Supply range: $\mathbf{3 . 0 \mathrm { V }}$ to 5.5 V

APPLICATIONS

Pressure and Strain Transducers

Thermocouples and RTDs
Programmable Instrumentation
Industrial Controls
Weigh Scales

GENERAL DESCRIPTION

The AD8231 is a low drift, rail to rail, instrumentation amplifier with software programmable gains of $1,2,4,8,16,32,64$ or 128. The gains are programmed via digital logic or pin strapping.

The AD8231 is ideal for applications that require precision performance over a wide temperature range, such as industrial temperature sensing and data logging. Because the gain setting resistors are internal, maximum gain drift is only $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Because of the autozero input stage, maximum input offset is 25 uV and maximum input offset drift is just $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. CMRR is also guaranteed over temperature: 80 dB for $\mathrm{G}=1$, increasing to 122 dB at a gain of 128 . Voltage noise is just 0.7 uV p-p $(0.01$ Hz to 10 Hz).

Rev. PrC

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1. AD8231 Functional Diagram

The AD8231 also includes an uncommitted op amp which can be used for additional gain, differential signal driving or filtering. Like the in amp, the op amp has an autozero architecture, rail to rail input, and rail to rail output.

The AD8231 includes a shutdown feature that reduces current to 1 uA and makes the amplifier output high impedance. This allows easy multiplexing of multiple amplifiers without additional switches.

The AD8231 is specified over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. It is available in a 4 mm x 4mm 16-Lead LFCSP (Chip Scale) package.

[^0]
SPECIFICATIONS

Table 1. $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted).

Parameter	Conditions	Min	Typ	Max	Unit		
INSTRUMENTATION AMPLIFIER							
OFFSET VOLTAGE Input Offset, Vosı Average Temperature Drift Output Offset, Voso Average Temperature Drift	VOS RTI $=$ Vosı + Voso/G		$\begin{aligned} & 5 \\ & 0.01 \\ & 15 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 25 \\ & 0.05 \\ & 50 \\ & 0.1 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
INPUT CURRENTS Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		200 50	$\begin{aligned} & 400 \\ & 1 \\ & 100 \\ & 0.5 \end{aligned}$	pA nA pA nA		
GAINS Gain Error $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=2 \text { to } 128 \end{aligned}$ Gain Drift $\begin{aligned} & G=1 \\ & G=2 \text { to } 128 \end{aligned}$ Gain Nonlinearity $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=8 \\ & \mathrm{G}=128 \end{aligned}$	$1,2,4,8,16,32,64,128$ $\text { Vout }=0.1 \text { to } 4.9 \mathrm{~V}$		0.1 1 2 2 5 TBD TBD	$\begin{aligned} & 0.3 \\ & \text { TBD } \\ & 10 \\ & 10 \end{aligned}$	\% \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm ppm ppm		
$\begin{gathered} \hline \mathrm{CMRR} \\ \mathrm{G}=1 \\ \mathrm{G}=2 \\ \mathrm{G}=4 \\ \mathrm{G}=8 \\ \mathrm{G}=16 \\ \mathrm{G}=32 \\ \mathrm{G}=64 \\ \mathrm{G}=128 \end{gathered}$		$\begin{aligned} & 80 \\ & 86 \\ & 92 \\ & 98 \\ & 104 \\ & 110 \\ & 116 \\ & 122 \end{aligned}$	$\begin{aligned} & 100 \\ & 106 \\ & 112 \\ & 118 \\ & 124 \\ & 130 \\ & 136 \\ & 142 \end{aligned}$		dB dB		
NOISE Input Voltage Noise, eni Output Voltage Noise, eno	$\begin{aligned} & \text { Noise } \mathrm{RTI}=\operatorname{sqrt}\left(\text { eni }{ }^{2}+(\text { eno/G })^{2}\right. \\ & \mathrm{V}_{\mathbb{I N}+}, \mathrm{V}_{\mathbb{N}-}=2.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=0.01 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=0.01 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 32 \\ & 0.7 \\ & 0.2 \\ & 60 \\ & 1 \\ & 0.5 \end{aligned}$		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \vee$ p-p $\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \vee p-p$ $\mu \mathrm{V}$ p-p		
OTHER INPUT CHARACTERISTICS Differential Input Impedance Common Mode Input Impedance Power Supply Rejection Ratio Input Operating Voltage Range	Common Mode Differential	$\begin{aligned} & 100 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 10\|\mid 5 \\ & 10\|\mid 5 \\ & 110 \end{aligned}$	4.95	$\mathrm{G} \Omega \\| \mathrm{pF}$ $\mathrm{G} \Omega \\| \mathrm{pF}$ dB V		
REFERENCE INPUT Input Impedance Voltage Range		0.05	$10\|\mid 10$		$\begin{aligned} & \mathrm{G} \Omega \\| \mathrm{pF} \\ & \mathrm{~V} \end{aligned}$		

DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate		$\begin{aligned} & 1 \\ & 0.6 \end{aligned}$			MHz V/ $\mu \mathrm{s}$	
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current	$\begin{aligned} & \mathrm{RL}=100 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.8 \end{aligned}$ 10	$\begin{aligned} & 4.94 \\ & 4.88 \\ & 60 \\ & 80 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	V V mV mV mA	
DIGITAL INTERFACE Input Voltage Low Input Voltage High Leakage Current Setup Time : tos Hold Time: t_{DH} Write Width: tcs Gain switching time		$\begin{aligned} & 4.0 \\ & \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	TBD	1.0 TBD	V V nA ns ns ns ns	
OPERATIONAL AMPLIFIER						
INPUT CHARACTERISTICS Offset Voltage, Vos Temperature Drift Input Bias Current Input Offset Current Input Voltage Range Open Loop Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Voltage Noise Density Voltage Noise	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ $\mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}$	$\begin{aligned} & 0.05 \\ & \text { TBD } \\ & 100 \\ & 100 \end{aligned}$	10 0.01 200 50 110 110 17 0.4	30 0.05 400 1 100 0.5 4.95 TBD TBD	$\mu \mathrm{V}$ $u V /{ }^{\circ} \mathrm{C}$ pA nA pA nA V V / mV dB dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \vee p-p$	
DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate			$\begin{aligned} & 1 \\ & 0.6 \end{aligned}$		MHz V/ $\mu \mathrm{s}$	
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.8 \end{aligned}$ 10	$\begin{aligned} & 4.96 \\ & 4.92 \\ & 60 \\ & 80 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	V V mV mV mA	
BOTH AMPLIFIERS						
POWER SUPPLY Quiescent Current Quiescent Current (Shutdown) SHD high to high output impedance SHD low to low output impedance Shutdown output impedance			$\begin{aligned} & 3.5 \\ & 1 \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 10 \end{aligned}$	mA uA ns ns $\mathrm{G} \Omega \\| \mathrm{pF}$	

Table 2. $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.65 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted).

Parameter	Conditions	Min	Typ	Max	Unit	
INSTRUMENTATION AMPLIFIER						
OFFSET VOLTAGE Input Offset, Vosı Average Temperature Drift Output Offset, Voso Average Temperature Drift	VOS RTI $=$ Vosi $+\mathrm{V}_{\text {oso }} / \mathrm{G}$		$\begin{aligned} & 5 \\ & 0.01 \\ & 15 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 25 \\ & 0.05 \\ & 50 \\ & 0.1 \end{aligned}$	$\mu \mathrm{V}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
INPUT CURRENTS Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 200 \\ & 5 \end{aligned}$	$\begin{aligned} & 400 \\ & 1 \\ & 100 \\ & 0.5 \end{aligned}$	pA nA pA nA	
GAINS Gain Error $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=2 \text { to } 128 \end{aligned}$ Gain Drift $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=2 \text { to } 128 \end{aligned}$ Gain Nonlinearity $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=8 \\ & \mathrm{G}=128 \end{aligned}$	$1,2,4,8,16,32,64,128$ $0.1 \text { to } 3.2 \mathrm{~V}$		$\begin{aligned} & 0.1 \\ & 1 \\ & 2 \\ & 2 \\ & \\ & \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 0.3 \\ & \text { TBD } \\ & 10 \\ & 10 \end{aligned}$	\% \% ppm $/{ }^{\circ} \mathrm{C}$ ppm ppm ppm	
$\begin{gathered} \hline \text { CMRR } \\ \mathrm{G}=1 \\ \mathrm{G}=2 \\ \mathrm{G}=4 \\ \mathrm{G}=8 \\ \mathrm{G}=16 \\ \mathrm{G}=32 \\ \mathrm{G}=64 \\ \mathrm{G}=128 \\ \hline \end{gathered}$		$\begin{aligned} & 80 \\ & 86 \\ & 92 \\ & 98 \\ & 104 \\ & 110 \\ & 116 \\ & 122 \end{aligned}$	$\begin{aligned} & 100 \\ & 106 \\ & 112 \\ & 118 \\ & 124 \\ & 130 \\ & 136 \\ & 142 \end{aligned}$		dB dB	
NOISE Input Voltage Noise, eni Output Voltage Noise, eno	$\begin{aligned} & \text { Noise } R T I=\text { sqrt }\left(\text { eni }{ }^{2}+(\text { eno/G })^{2}\right. \\ & V_{I N+}, V_{\mathbb{N}-}=2.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=0.01 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=0.01 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 45 \\ & 0.7 \\ & 0.2 \\ & 60 \\ & 1 \\ & 0.5 \end{aligned}$		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \vee p-p$ $\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p $\mu \mathrm{V}$ p-p	
OTHER INPUT CHARACTERISTICS Differential Input Impedance Common Mode Input Impedance Power Supply Rejection Ratio Input Operating Voltage Range	Common Mode Differential	$\begin{aligned} & 100 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 10\|\mid 5 \\ & 10\|\mid 5 \\ & 110 \end{aligned}$	3.25	$\mathrm{G} \Omega\|\mid \mathrm{pF}$ $\mathrm{G} \Omega \\| \mathrm{pF}$ dB V	
REFERENCE INPUT Input Impedance Voltage Range		0.05	$10\|\mid 10$		$\begin{aligned} & \mathrm{G} \Omega \\| \mathrm{pF} \\ & \mathrm{v} \end{aligned}$	

DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate		$\begin{aligned} & 1 \\ & 0.6 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current	$\begin{aligned} & \mathrm{RL}=100 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 3.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.1 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.24 \\ & 3.18 \\ & 60 \\ & 80 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	V V mV mV mA	
DIGITAL INTERFACE Input Voltage Low Input Voltage High Leakage Current Setup Time : tos Hold Time: t_{DH} Write Width: tcs Gain switching time		$\begin{aligned} & 2.0 \\ & \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	TBD	$\begin{aligned} & 0.7 \\ & \text { TBD } \end{aligned}$	V V nA ns ns ns ns	
OPERATIONAL AMPLIFIER						
INPUT CHARACTERISTICS Offset Voltage, Vos Temperature Drift Input Bias Current Input Offset Current Input Voltage Range Open Loop Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Voltage Noise Density Voltage Noise	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ $\mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}$	$\begin{aligned} & 0.05 \\ & \text { TBD } \\ & 100 \\ & 100 \end{aligned}$	10 0.01 200 50 110 110 25 0.4	30 0.05 400 1 100 0.5 3.25 TBD TBD	$\mu \mathrm{V}$ $\mathrm{uV} /{ }^{\circ} \mathrm{C}$ pA nA pA nA V V / mV dB dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p	
DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate			$\begin{aligned} & 1 \\ & 0.6 \end{aligned}$		MHz V/ $\mu \mathrm{s}$	
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 3.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.1 \end{aligned}$ 10	$\begin{aligned} & 3.26 \\ & 3.12 \\ & 60 \\ & 80 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	V V mV mV mA	
BOTH AMPLIFIERS						
POWER SUPPLY Quiescent Current Quiescent Current (Shutdown) SHD high to high output impedance SHD low to low output impedance Shutdown output impedance			$\begin{aligned} & 3 \\ & 1 \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 10 \end{aligned}$	mA uA ns ns $\mathrm{G} \Omega \\| \mathrm{pF}$	

ABSOLUTE MAXIMUM RATINGS

Table 2. AD8231 Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
Internal Power Dissipation	
Output Short Circuit Current	
Input Voltage (Common-Mode)	
Differential Input Voltage	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operational Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Pin Number	Mnemonic	Function	Pin Number	Mnemonic	Function
1	NC	No connect	9	REF	
Output Level					

GAIN SELECTION

The AD8231's gain is set by voltages applied to the A0, A1, and A2 pins. High (HI) or low (LO) voltage limits are listed in the specifications section. To change the gain, the $\overline{\mathrm{WR}}$ pin must be driven low. When the $\overline{\mathrm{WR}}$ pin is driven high, the gain is latched, and voltages at the A0-A2 pins will have no effect. Table 3 is the truth table showing the different gain settings.

$\overline{\mathrm{WR}}$	A2	A1	A0	Gain
LO	LO	LO	LO	1
LO	LO	LO	HI	2
LO	LO	HI	LO	4
LO	LO	HI	HI	8
LO	HI	LO	LO	16
LO	HI	LO	HI	32
LO	HI	HI	LO	64
LO	HI	HI	HI	128
HI	X	X	X	No change

Table 3 Truth table for AD8231's gain settings

16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-16-4)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VGGC

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2007 Analog Devices, Inc. All rights reserved.

