

STS12NH3LL N-CHANNEL 30 V - 0.008 Ω - 12 A SO-8

PRODUCT PREVIEW

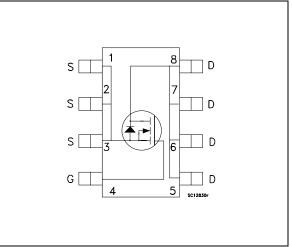
ULTRA LOW GATE CHARGE STripFET[™] MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	Ι _D
STS12NH3LL	30 V	< 0.0105 Ω	12 A

- TYPICAL R_{DS}(on) = 0.008 Ω @ 10V
- OPTIMAL R_{DS}(on) x Qg TRADE-OFF @ 4.5 V
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DEVICE
- LOW INPUT CAPACITANCE

DESCRIPTION


The STS12NH3LL is based on the latest generation of ST's proprietary "STripFET™" technology. An innovative layout enables the device to also exhibit extremely low gate charge for the most demanding requirements as high-side switch in highfrequency DC-DC converters. It's therefore ideal for high-density converters in Telecom and Computer applications.

APPLICATIONS

HIGH FREQUENCY DC-DC CONVERTERS FOR COMPUTER AND TELECOM

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

Part Number	Marking	Package	Packaging
STS12NH3LL	S12NH3LL	SO-8	TAPE & REEL

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V	
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	30	V	
V _{GS}	Gate-source Voltage	± 16	V	
I _D Drain Current (continuous) at T _C = 25°C		12	A	
I _D Drain Current (continuous) at T _C = 100°C		7.5	A	
I _{DM} (•)	Drain Current (pulsed)	48	A	
P _{tot}	Total Dissipation at T _C = 25°C	2.5	W	
T _{stg}	T _{stg} Storage Temperature		°C	
Тj	Max. Operating Junction Temperature	— 55 to 150		

(•) Pulse width limited by safe operating area

Table 4: Thermal Data

Rthj-amb (#)	Thermal Resistance Junction-ambient	50	°C/W		
(#) When Mounted on 1 inch ² FR-4 board, 2 oz Cu (t \leq 10 sec.)					

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 5: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	30			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			± 100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1			V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$		0.008 0.010	0.0105 0.013	Ω Ω

Table 6: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15V, I _D = 6 A		TBD		S
Ciss	Input Capacitance	V _{DS} = 25V, f= 1 MHz, V _{GS} = 0		965		pF
Coss	Output Capacitance			285		pF
C _{rss}	Reverse Transfer Capacitance			38		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 15 V, I _D = 6 A		15		ns
t _r	Rise Time	$R_G = 4.7\Omega$, $V_{GS} = 4.5V$ (see Figure 3)		32		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 15V, I _D = 12 A, V _{GS} = 4.5 V (see Figure 5)		9 3.7 3	12	nC nC nC

Table 8: Switching Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off-Delay Time Fall Time	V_{DD} = 15 V, I _D = 6 A, R _G = 4.7 Ω , V _{GS} = 4.5 V (see Figure 3)		18 8.5		ns ns

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				12 48	A A
V _{SD}	Forward On Voltage	$I_{SD} = 12 \text{ A}, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 20\text{V}, \text{ T}_{j} = 150^{\circ}\text{C}$ (see Figure 4)		24 17.4 1.45		ns nC A

Figure 3: Switching Times Test Circuit For Resistive Load

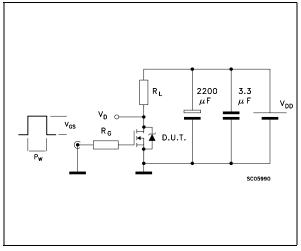
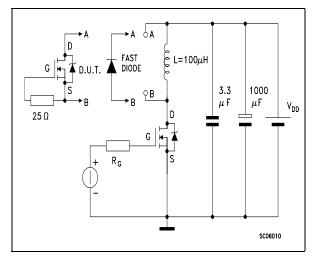
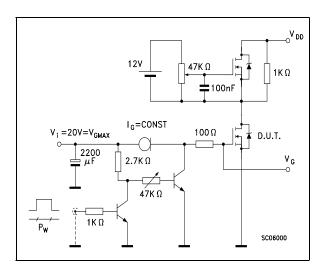




Figure 4: Test Circuit For Diode Recovery Times

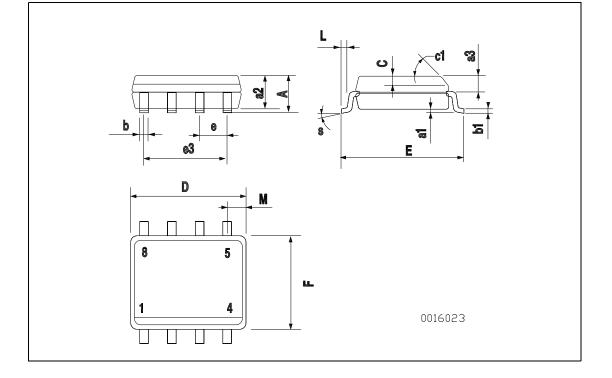


Figure 5: Gate Charge Test Circuit

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1		•	45	(typ.)	•	
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S		1	8 (r	nax.)	•	

Table 10: Revision History

Date	Revision	Description of Changes
21-July-2004	3	The Rds(on) value changed (see table5).
		New stylesheet

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America