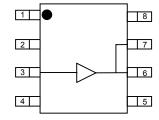
1/2 Watt, High Linearity InGaP HBT Amplifier Product Information

Product Features

- 800 1000 MHz
- +28 dBm P1dB
- +43 dBm Output IP3
- 17.5 dB Gain @ 900 MHz
- Single Positive Supply (+5 V)
- MTTF > 100 Years
- Lead-free/green/RoHS-compliant SOIC-8 SMT Pkg.

Applications


- Mobile Infrastructure
- Final Stage Amplifier for Repeaters

Product Description

The AH116 / ECP052 is a high dynamic range driver amplifier in a low-cost surface mount package. The InGaP/GaAs HBT is able to achieve high performance for various narrow-band tuned application circuits with up to +43 dBm OIP3 and +28 dBm of compressed 1-dB power and is housed in a lead-free/green/RoHS-compliant SOIC-8 package. All devices are 100% RF and DC tested.

The product is targeted for use as driver amplifiers for wireless infrastructure where high linearity and medium power is required. The internal active bias allows the AH116 / ECP052 to maintain high linearity over temperature and operate directly off a +5 V supply. This combination makes the device an excellent fit for transceiver line cards and power amplifiers in current and next generation multi-carrier 3G base stations.

Functional Diagram

Function	Pin No.
Vref	1
Input / Base	3
Output / Collector	6, 7
Vbias	8
GND	Backside
N/C or GND	2, 4, 5

Specifications

Parameters	Units	Min	Тур	Max
Frequency Range	MHz		900	
Gain	dB	15	17.5	
Input R.L.	dB		18	
Output R.L.	dB		7	
Output P1dB	dBm	+27	+28.7	
Output IP3 (2)	dBm	+42	+43	
IS-95A Channel Power @ -45 dBc ACPR, 900 MHz	dBm		+23	
Noise Figure	dB		7	
Operating Current Range (3)	mA	200	250	300
Device Voltage	V		+5	

Test conditions unless otherwise noted.

- 1. T = 25°C, Vsupply = +5 V, Frequency = 900 MHz, in tuned application circuit
- 3OIP measured with two tones at an output power of +13 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.
- This corresponds to the quiescent current or operating current under small-signal conditions. It is expected that the current can increase up to 300mA at P1dB.

Typical Performance (1)

Parameters	Units	Typical
Frequency	MHz	900
Gain	dB	17.5
S11	dB	-18
S22	dB	-7
Output P1dB	dBm	+28.7
Output IP3 (2)	dBm	+43
IS-95A Channel Power @ -45 dBc ACPR,	dBm	+23
Noise Figure	dB	7
Supply Bias		+5 V @ 250 mA

Absolute Maximum Rating

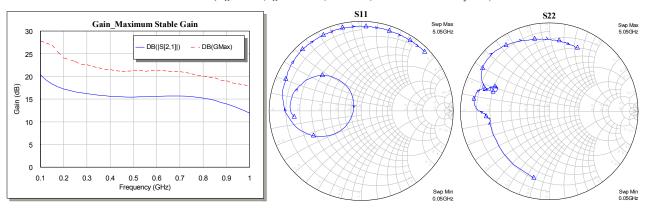
Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-65 to +150 °C
RF Input Power (continuous)	+22 dBm
Device Voltage	+8 V
Device Current	400 mA
Device Power	2 W
Junction Temperature	+250 °C

Operation of this device above any of these parameters may cause permanent damage.

Ordering Information

Part No.	Description
AH116-S8*	1/2 Watt, High Linearity InGaP HBT Amplifier (lead-tin SOIC-8 Pkg)
ECP052G*	1/2 Watt, High Linearity InGaP HBT Amplifier (lead-tin SOIC-8 Pkg)
AH116-S8G	½ Watt, High Linearity InGaP HBT Amplifier (lead-free/green/RoHS-compliant SOIC-8 Pkg)
AH116-S8PCB900	900 MHz Evaluation Board

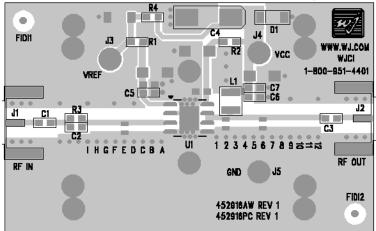
This package is being phased out in favor of the green package type which is backwards compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.


Specifications and information are subject to change without notice

1/2 Watt, High Linearity InGaP HBT Amplifier Product Information

Typical Device Data

S-Parameters ($V_{cc} = +5 \text{ V}$, $I_{cc} = 250 \text{ mA}$, $T = 25^{\circ}\text{C}$, unmatched 50 ohm system)


Notes:

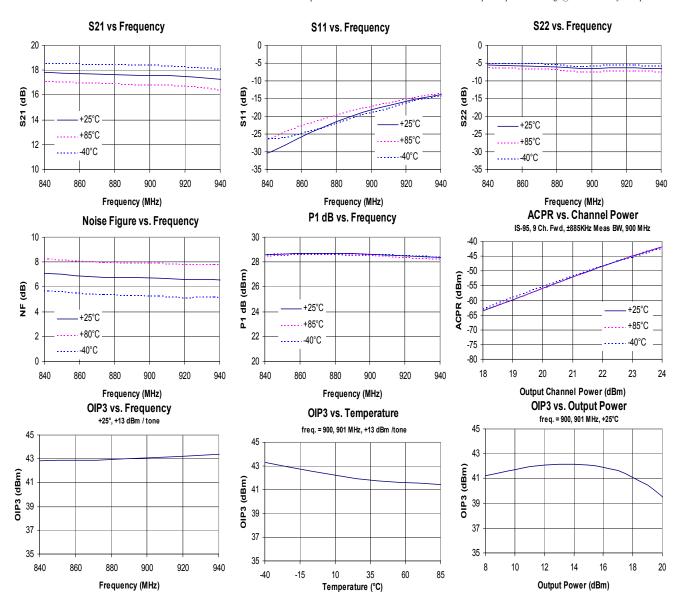
The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the dashed red line. The return loss plots are shown from 50 - 5050 MHz, with markers placed at 0.5 - 5.05 GHz in 0.5 GHz increments.

S-Parameters (V_{cc} = +5 V, I_{cc} = 250 mA, T = 25°C, unmatched 50 ohm system, calibrated to device leads)

Freq (MHz)	S11 (dB)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-2.72	24.16	133.35	-36.72	29.75	-2.23	-102.97
100	-2.25	20.33	124.95	-35.31	13.96	-3.08	-137.03
200	-2.31	17.23	119.37	-34.90	2.32	-3.32	-159.63
400	-3.08	15.63	98.28	-33.62	-16.36	-3.48	-172.70
600	-5.79	15.58	69.70	-32.10	-37.73	-2.87	-176.25
800	-19.72	15.22	25.60	-31.19	-78.95	-2.27	-179.74
1000	-6.06	11.91	-22.67	-33.26	-129.67	-1.40	173.15

Application Circuit PC Board Layout

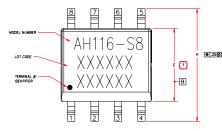
Circuit Board Material: .014" Getek, 4 - layer, 1 oz copper, Microstrip line details: width = .026", spacing = .026" The silk screen markers 'A', 'B', 'C', etc. and '1', '2', '3', etc. are used as placemarkers for the input and output tuning Shunt capacitors – C8 and C9. The markers and vias are spaced in .050" increments.


900 MHz Application Circuit (AH116-S8PCB900)

Typical RF Performance at 25°C

Typicui iti i ciioiiiiiiiice ue ze e				
Frequency	900 MHz			
S21 – Gain	17.5 dB			
S11 – Input Return Loss	-18 dB			
S22 – Output Return Loss	-7 dB			
Output P1dB	+28.7 dBm			
Output IP3 (+17 dBm / tone, 1 MHz spacing)	+43 dBm			
Channel Power (@-45 dBc ACPR, IS-95 9 channels fwd)	+23 dBm			
Noise Figure	7 dB			
Device / Supply Voltage	+5 V			
Quiescent Current	250 mA			

C9 is placed at the silkscreen marker '11' or center of component placed at 29 deg. @ 960 MHz away from pin 6.



1/2 Watt, High Linearity InGaP HBT Amplifier Product Information

AH116-S8 (SOIC-8 Package) Mechanical Information

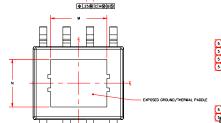
This package may contain lead-bearing materials. The plating material on the leads is SnPbs

Outline Drawing

C

- DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS WHICH SHALL NOT EXCEED .25mm(.010in) PER SIDE.

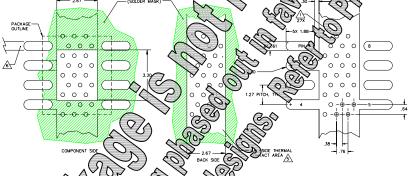
The compone "AH116-S lot code of


part are Application

ormation

Passes /500V to <1000V Human Body Model (HBM) JEDEC Standard JESD22-A114

Rating: Level 3 at +235° C convection reflow JEDEC Standard J-STD-020



Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010"). Add as much copper as possible to inner and outer layers near the
- part to ensure optimal thermal performance.

 Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the
- region where the board contacts the heatsink.
 RF trace width depends upon the PC board material and
- Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

Land Pat

Thermal

Operating (5) Junction

preferenced from the junction-to-lature. Tjc is a function of ritage at 715% and 7 and he current applied to pins and 8 6 cm be current applied to pins

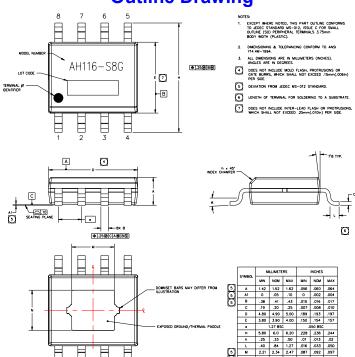
pical biasing condition of +5V, ase temperature. A minimum hours is achieved for junction

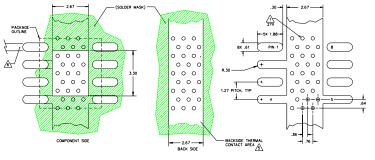
1000000 (million hrs) 100000 10000 1000 100

MTTF vs. GND Tab Temperature

Tab Temperature (° C)

Specifications and information are subject to change without notice


1/2 Watt, High Linearity InGaP HBT Amplifier Product Information


AH116-S8G (Lead-Free Package) Mechanical Information

This package is lead-free/green/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260°C reflow temperature) and lead (maximum 245°C reflow temperature) soldering processes.

Outline Drawing

Mounting Configuration / Land Pattern

Product Marking

The component will be marked with an "AH116-S8G" designator with an alphanumeric lot code on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

ESD / MSL Information

Caution! ESD sensitive device.

ESD Rating: Class 1B

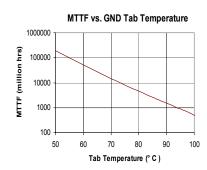
Value: Passes /500V to <1000V Human Body Model (HBM) Test: Standard: JEDEC Standard JESD22-A114

MSL Rating: Level 2 at +260° C convection reflow JEDEC Standard J-STD-020 Standard:

Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the
- 4. Do not put solder mask on the backside of the PC board in the
- region where the board contacts the heatsink.

 5. RF trace width depends upon the PC board material and
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.

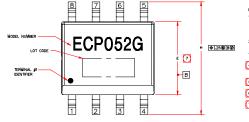

Thermal Specifications

Parameter	Rating
Operating Case Temperature	-40 to +85° C
Thermal Resistance (1), Rth	62° C / W
Junction Temperature (2), Tjc	162° C

1. The thermal resistance is referenced from the junction-tocase at a case temperature of 85° C. Tic is a function of the voltage at pins 6 and 7 and the current applied to pins 6, 7, and 8 and can be calculated by:

Tjc = Tcase + Rth * Vcc * Icc

2. This corresponds to the typical biasing condition of +5V, 250 mA at an 85° C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 247° C.


Specifications and information are subject to change without notice.

Product Information

ECP052G (SOIC-8 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is Snl

Outline Drawing

- IOT INCLUDE INTER-LEAD FLASH OR PROTRUSK SHALL NOT EXCEED .25mm(.010m) PER SIDE.

The com "ECP052G code on he top

nis part are Application

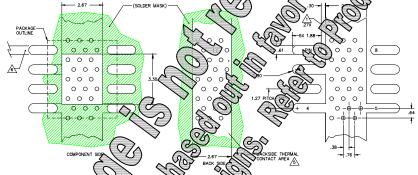
ormation

ESD sensitive device.

Class 1B

Passes between 500 and 1000V Human Body Model (HBM) JEDEC Standard JESD22-A114

Rating: Level 3 at +235° C convection reflow tandard: JEDEC Standard J-STD-020

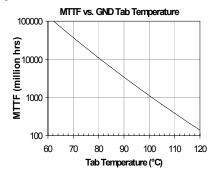

Mounting Config. Notes Ground / thermal vias are critical for the proper performance of this

- device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. Mounting screws can be added near the part to fasten the board to a
- heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.

 5. RF trace width depends upon the PC board material and

- 6. Use 1 oz. Copper minimum.7. All dimensions are in millimeters (inches). Angles are in degrees

Land Pat


Thermal

Operating (

is reference from the junction-imperative of 85° C. Tjc is a mperature of 85° C. Tyc is a oblige at 15° and 7 and the current 7,7, and 50° can be calculated by:

+ Rth Occ * Icc e + Rth c/cc * Icc nds to typical biasing condition of

yponds typical biasing condition of mA 250° C case temperature. A million hours is achieved for Ores below 247° C.

Specifications and information are subject to change without notice