GaAs MMIC 4x2 SWITCH
 MATRIX, 0.2-3.0 GHz

Typical Applications

4x2 Switch Matrix for 0.2-3.0 GHz Applications:

- Cable Modem
- CATV
- Cellular Systems
- DBS

Functional Diagram

Features
 4×2 Switch Matrix Using One IC
 4x4 Switch Matrix Using Two ICs
 Integrated 4 Bit Decoder
 Single Positive Supply: Vdd $=+5 \mathrm{~V}$
 QFN Leadless SMT Package, 16 mm²
 General Description

The HMC276LP4 \& HMC276LP4E are low-cost 4x2 switch matrices in leadless QFN $4 \times 4 \mathrm{~mm}$ surface mount packages for use in RF multiplexing applications from 200 to 3000 MHz . A positive voltage controlled 4 bit decoder is integrated on the switch. The switches may be used in either 75 ohm or 50 ohm systems.

Both switch outputs (OP1 \& OP2) can independently select any of the four inputs ($\mathrm{HH}, \mathrm{HL}, \mathrm{VH}, \mathrm{VL}$) or simultaneously select the same inputs. Note that the switch is bi-directional and input/output functionality may be interchanged. The recommended loading impedance is 62.5 ohms on each input ($\mathrm{HH}, \mathrm{HL}, \mathrm{VH}$, VL) and 75 ohms on each output (OP1 \& OP2). All data presented was measured in a 50 ohm (input/ output) system.

Electrical Specifications, $T_{A}=+25^{\circ}$ C, Vdd $=+5 \mathrm{~V}$, 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{gathered} 200 \mathrm{MHz} \\ 700-3000 \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	7.0	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{gathered} 200 \mathrm{MHz} \\ 700-950 \mathrm{MHz} \\ 950-1450 \mathrm{MHz} \\ 1450-2150 \mathrm{MHz} \\ 2150-3000 \mathrm{MHz} \end{gathered}$	40 See 33 31	55 44 Isola 37 35	Tables	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss (Input; VL, HL, VH, HH)	$\begin{gathered} 200 \mathrm{MHz} \\ 700-3000 \mathrm{MHz} \end{gathered}$	14	$\begin{aligned} & 25 \\ & 18 \end{aligned}$		dB dB
Return Loss (Output; OP1, OP2)	$\begin{gathered} 200 \mathrm{MHz} \\ 700-3000 \mathrm{MHz} \end{gathered}$	16	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Output IP3	$700-3000 \mathrm{MHz}$	31	37		dBm
Input Power for 1 dB Compression	$700-3000 \mathrm{MHz}$	22	26		dBm
Switching Speed tRISE / tFALL (10/90\% RF) tON / tOFF (50\% CTL to $10 / 90 \%$ RF)	700-3000 MHz		$\begin{aligned} & 140 \\ & 350 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

OP1 Isolation 950-1450 MHz

Input to Output State	Interfering Signal	State	Min. (dB)	Typ. (dB)
HL to OP1	VL to OP1 All Other States	9 All Other States	38 40	41 >43
VL to OP1	All States	All States	43	>46
VH to OP1	All States	All States	43	>46
HH to OP1	HL to OP1 All Other States	15 All Other States	38 41	41 $>44$${ }^{2}$

Return Loss

Insertion Loss on OP2

OP2 Isolation 950-1450 MHz

Input to Output State	Interfering Signal	State	Min. (dB)	Typ. (dB)
HL to OP2	All States	All States	42	>45
VH to OP2	VL to OP2 All Other States	2 All Other States	38 41	41
VL to OP2	HL to OP2 All Other States	9 All Other States	38	40
HH to OP2	All States	All States	45	>43
H48				

Typical Insertion Loss vs. Temperature

Isolation When HL is Connected to OP1*

Isolation When VL is Connected to OP1*

Isolation When HL is Connected to OP2*

GaAs MMIC 4x2 SWITCH MATRIX, 0.2-3.0 GHz

Isolation When VL is Connected to OP2*

[^0]
GaAs MMIC 4x2 SWITCH MATRIX, 0.2-3.0 GHz

Isolation When VH is Connected to OP2*

Isolation When HH is Connected to OP2*

Output Third Order Intercept Point

Path	State	$\begin{gathered} \text { F1 } \\ \text { Pout (dBm) } \end{gathered}$	Pout Intermod (dBm)	$\begin{aligned} & \text { IMR } \\ & (\mathrm{dBc}) \end{aligned}$	Output IP3 (dBm)
VL to OP1	1	-12	-106	94	35
VL to OP2	1	-12	-114	102	39
HL to OP1	11	-12	-108	96	36
HL to OP2	11	-12	-110	98	37
VH to OP1	6	-12	-115	103	39.5
VH to OP2	6	-12	-115	103	39.5
HH to OP1	16	-12	-116	104	40
HH to OP2	16	-12	-114	102	39
Test Conditions Temperature $=+25^{\circ} \mathrm{C}$ F1 $=2150(\mathrm{MHz}):-12 \mathrm{dBm}$ at the Output $\mathrm{F} 2=2151(\mathrm{MHz}):-12 \mathrm{dBm}$ at the Output				$\begin{aligned} & \text { Vdd }=+5 \mathrm{~V} \\ & \text { VCTL Low }=0 \mathrm{~V}, \text { High }=+5 \mathrm{~V} \end{aligned}$	

* Isolation is recorded above insertion loss \& measured at output of switch.

RoHS $\sqrt{ }$

Control Voltages

Bias Voltage

HV1, Tone1, HV2, Tone2

State	Bias Condition
Low (0)	0 to $0.8 \mathrm{Vdc} @ 5 \mu \mathrm{~A}$ Typical
High (1)	+2.0 to $+5.0 \mathrm{Vdc} @ 25 \mu \mathrm{~A}$ Typical

Vdd Range $=+5.0$ Vdc $\pm 10 \%$		
Vdd $(V d c)$	Idd (Typ.) (mA)	Idd (Max.) (mA)
+5.0	1	1.5

DC Blocking And Decoupling Capacitors

The HMC276LP4 requires DC blocks on all 6 RF ports (OP1, OP2, VL, HL, VH, HH). Characterization on the HMC276LP4 was done using 0402 size 330pF capacitors on all RF ports. A $1,000 \mathrm{pF}$ DC decoupling capacitor (0603 size) is recommended for the Vdd pin.

Absolute Maximum Ratings

Bias Voltage Range (Vdd)	+8.0 Vdc
Control Voltage Range (All Logic Lines)	$\mathrm{Vdd}+0.5$ to -0.2 V Vdc
Channel Temperature	$150^{\circ} \mathrm{C}$
Thermal Resistance	$325^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
Maximum Input Power (Each Input)	$+23 \mathrm{dBm}(200-2150 \mathrm{MHz})$

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

NOTES:

1. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
4. PAD BURR LENGTH SHALL BE 0.15 mm MAX. PAD BURR HEIGHT SHALL BE 0.05 mm MAX.
5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm .
6. ALL NC LEADS, GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[3]}$
HMC276LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ${ }^{[1]}$	H276 XXXX
HMC276LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\underline{\text { H276 }}$

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX

Switch Application Circuit for 4x4 Switch Matrix

The HMC276LP4 switch can operate as a 4×4 switch by connecting the 4 inputs of two switches directly together.
The VL, VH, HL, and HH inputs of the first switch should be connected to the second switch, as illustrated.

Mirror image switch performance can be realized by inverting the HV1 \& HV2 logic control signals of one of the HMC276LP4 switches.

The input loading impedance of two switches in parallel should be 31.25 ohms. The output loading impedance on each output should be 75 ohms. The interconnect RF line between the switch's inputs should be an RF trace with a characteristic impedance of 62.5 ohms. This will allow the switch to remain matched in all possible switch states.

The HMC276LP4 does not provide output to output (OP1
 to OP2) isolation. For this reason, it is recommended that external amplifiers should be used at each output. The amplifier's reverse isolation will provide output to output isolation, if this is necessary.

Each HMC276LP4 requires DC blocking capacitors on ALL RF input and output ports.

Evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. A generous number of ground vias should be used to interconnect top/bottom ground planes. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

List of Materials for Evaluation PCB $104130{ }^{[1]}$

Item	Description
J2 - J9	PCB Mount SMA RF Connector
J1	DC Connector
C1 - C8	330 pF Capacitor, 0402 Pkg.
C9	1,000 pF Capacitor, 0603 Pkg.
U1	HMC276LP4 / HMC276LP4E 4×2 Switch Matrix
PCB [2]	104113 Eval Board

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

Multi Pin DC Interface (J1)

Pin	Line
1	Vdd
2	Tone 1
3	GND
4	Tone 2
5	GND
6	HV1
7	N/C
8	N/C
9	HV2

[^0]: * Isolation is recorded above insertion loss \& measured at output of switch.

