


IRFN9140SMD

MECHANICAL DATA

Dimensions in mm (inches)

0.89 (0.035) 3.70 (0.146) min. 3.70 (0.146) 3.41 (0.134) 3.41 (0.134) 3 4.14 3.84 16.02 (0.631) 15.73 (0.619) 10.69 (0.421) 10.39 (0.409) 9.67 (0.381) 9.38 (0.369) 11.58 (0.456) 11.28 (0.444)

P-CHANNEL POWER MOSFET

V_{DSS} -100VI_{D(cont)} -14A R_{DS(on)} 0.020Ω

FEATURES

- HERMETICALLY SEALED SURFACE MOUNT PACKAGE
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD₁

Pad 1 - Source Pad 2 - Drain Pad 3 - Gate

IRFxxxSM also available with Note: pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V			
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 25°C)	-14A			
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	-9.0A			
I_{DM}	Pulsed Drain Current ¹	–56A			
P_{D}	Power Dissipation @ T _{case} = 25°C	75W			
	Linear Derating Factor	0.6W/°C			
E _{AS}	Single Pulse Avalanche Energy ²	500mJ			
dv/dt	Peak Diode Recovery ³	-5.0V/ns			
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C			
TL	Package Mounting Surface Temperature (for 5 sec)	300°C			
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.67°C/W			
$R_{\thetaJ-PCB}$	Thermal Resistance Junction to PCB (Typical)	4°C/W			
Mataa	<u>'</u>				

Notes

1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) @ V_{DD} = -25V , L \geq 3.8mH , R_G = 25 Ω , Peak I_L = -14A , Starting T_J = 25°C

3) @ $I_{SD} \le -14A$, $di/dt \le -100A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150^{\circ}C$, SUGGESTED $R_G = 9.1\Omega$

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

IRFN9140SMD

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	I	I.					
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	$I_D = -1mA$	-100			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			-0.087		V/°C	
ΔT_{J}	Breakdown Voltage	$I_D = -1 \text{mA}$						
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = -10V$			0.20			
	Resistance ¹	$V_{GS} = -10V$	I _D = -14A			0.22	.22 Ω	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = -250 \mu A$	-2		-4	V	
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ -15V	I _{DS} = -9A	6.2			S(\O)	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0	$V_{DS} = 0.8BV_{DSS}$			-25	μΑ	
			T _J = 125°C			-250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = -20V	•			-100	.	
I _{GSS}	Reverse Gate – Source Leakage	V _{GS} = 20V			100	– nA		
	DYNAMIC CHARACTERISTICS	1 00						
C _{iss}	Input Capacitance	V _{GS} = 0			1400			
C _{oss}	Output Capacitance	$V_{DS} = -25V$		600		pF		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		200				
Qg	Total Gate Charge ¹	V _{GS} = -10V	I _D = -14A					
		$V_{DS} = 0.5BV_{DSS}$		31		60	nC	
Q _{gs}	Gate – Source Charge ¹	$I_{D} = -14A$	3.7		13			
Q _{gd}	Gate – Drain ("Miller") Charge ¹	$V_{DS} = 0.5BV_{DS}$	5			35.2	nC	
t _{d(on)}	Turn-On Delay Time					35		
t _r	Rise Time	$V_{DD} = -50V$				85	ns	
t _{d(off)}	Turn-Off Delay Time	$I_{D} = -14A$				85		
t _f	Fall Time	$R_G = 9.1\Omega$				65		
<u>'</u>	SOURCE – DRAIN DIODE CHARAC	TERISTICS					<u> </u>	
I _S	Continuous Source Current					-14	A	
I _{SM}	Pulse Source Current ²					-56		
V _{SD}	Diode Forward Voltage	I _S = -14A	T _J = 25°C			-4.2	V	
		$V_{GS} = 0$				7.2		
t _{rr}	Reverse Recovery Time	$I_{F} = -14A$	$T_J = 25^{\circ}C$			280	ns	
Q _{rr}	Reverse Recovery Charge	$d_i / d_t \le -100A/$	us V _{DD} ≤-50V			3.6	μС	
t _{on}	Forward Turn-On Time				negligible			
	PACKAGE CHARACTERISTICS							
L _D	Internal Drain Inductance (from centre of drain pad to die)				0.8		nH	
L _S	Internal Source Inductance (from centre	of source pad to end		2.8] "F		

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk