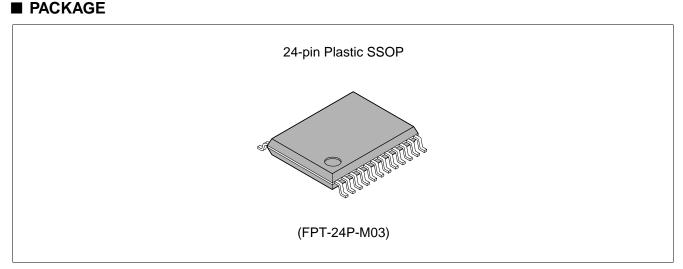
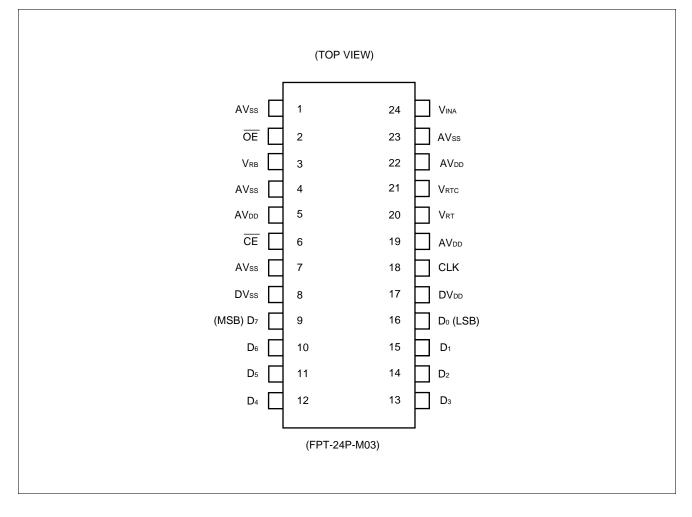
ASSP

CMOS

30 MHz 8-bit A/D Converter


MB40C238

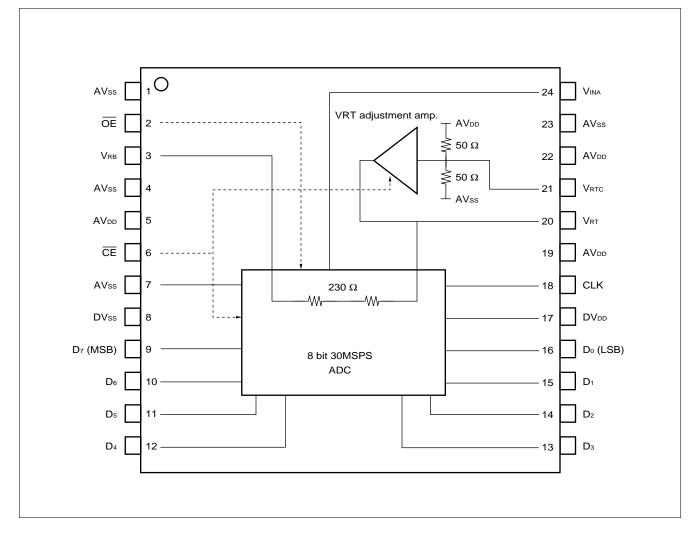
■ DESCRIPTION


MB40C238 is a high-speed converter using a fast CMOS technology.

■ FEATURES

 Resolution 	: 8 bit
 Linearity error 	: $\pm 0.2\%$ (standard)
 Differential linearity error 	: ±0.12% (standard)
 Maximum conversion rate 	: 30 MSPS (minimum)
 Power supply voltage 	: +3.0 V (single)
 Digital input voltage range 	: 3 V CMOS level
• Digital output voltage range	: 3 V CMOS level compatible (tristate output)
 Analog input voltage range 	: 0 to 2.0 V (1.2 to 1.8 Vp-p)
 Analog input capacitance 	: 15 pF (standard)
 Power dissipation 	: 50 mW (standard: including reference current)
 Additional features 	: VRT voltage adjustment amp (VRT = 1.2 to 2.0 V)
	Power saving capacity (also reference current set to OFF: 0.5 mW or less)
	High impedance output
Package	: 24-pin SSOP

■ PIN ASSIGNMENT


■ PIN DESCRIPTION

Pin No.	Symbol	Description
5, 19, 22	AVdd	Analog power supply (+3.0 V)
17	DVdd	Digital power supply (+3.0 V)
1, 4, 7, 23	AVss	Analog power supply ground pin (0 V)
8	DVss	Digital power supply ground pin (0 V)
9, 10, 11, 12, 13, 14, 15, 16	D7 to D0	Digital output pin (D7: MSB, D0: LSB)
18	CLK	Clock input pin
24	Vina	A/D converter analog input pin Input range is VRB to VRT (0 to 1.5 V: standard)
21	Vrtc	V_{RT} voltage adjustment amp input pin (VRTC: 1.5 V is output when opened.)
20	Vrt	Reference voltage output pin on top side. The voltage fed to V _{RTC} is output. (1.5 V: standard)
3	Vrb	Reference voltage input pin on bottom side (0 V: standard)
6	CE	Input pin for toggling standby function. Input high signal brings the ADC and reference voltage circuit.
2	OE	Input pin for toggling output high impedance function. Input high signal brings the ADC output high impedance state.

Note: The values in parentheses are standard.

MB40C238

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit		
Farancier	Symbol	Min.	Max.	Unit	
Power supply voltage	AVdd, DVdd	-0.3	+7.0	V	
Input voltage (analog/digital)	CLK, Vina, Vrtc, Vrb	-0.3	AVDD+0.3	V	
	D ₀ to D ₇	-0.3	DVDD+0.3	V	
Output voltage	VRT	-0.3	AVDD+0.3	V	
Storage temperature	Tstg	-55	+125	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	
Falameter	Symbol	Min.	Тур.	Max.	Unit	
	AVdd	2.70	3.00	3.60	V	
Power supply voltage	DVdd	2.70	3.00	3.60	V	
	AVdd – DVdd	0.0	—	0.2	V	
Analog input voltage	VINA	Vrb	—	Vrt	V	
Analog reference voltage: T	Vrtc	1.2	1.5	2.0	V	
Analog reference voltage: B	Vrb	0.0	—	0.8	V	
Analog reference voltage range	Vrt – Vrb	1.2	1.5	1.8	V	
Digital "H" level input voltage	Vihd	2.3	—	_	V	
Digital "L" level input voltage	Vild	_	—	0.5	V	
Digital input current	D		—	5	μA	
Clock frequency	fськ	0.5	_	30	MHz	
"H" level minimum clock pulse width	tw +	16.0	_		ns	
"L" level minimum clock pulse width	tw -	16.0	_	_	ns	
Operating temperature range	Та	-20		+75	°C	

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

ELECTRICAL CHARACTERISTICS

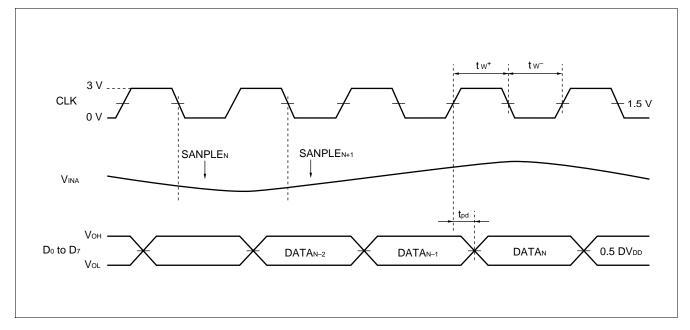
1. DC Characteristics in Analog Section

 $(AV_{DD} = 2.70 \text{ V to } 3.60 \text{ V}, \text{ DV}_{DD} = 2.70 \text{ V to } 3.60 \text{ V}, \text{ Ta} = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C})$

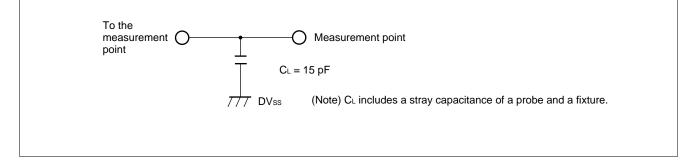
Parameter		Symbol	Value			Unit
		Symbol	Min.	Тур.	Max.	
Resolution		—	—	8	—	bit
Linearity error	Conditional DC	LE	_	±0.20	±0.40	%
Differential linearity error	precision Vrt – Vrв = 1.5 V	DLE	_	±0.12	±0.20	%
Analog input capacity		CINA	_	15	_	pF
Reference input voltage (Top side) (VRTC opened)		Vrtc	—	0.50 imes AVDD		V
Reference output voltage (Top side)		Vrt	_	Vrtc		V
Reference current (Bottom side)		Ігв	—	6.5		mA
Analog supply current		Aldd	_	14.0	34.0	mA
Digital supply current		DIDD	_	3.0	7.0	mA
Standby supply current		ISTBA	_	100	_	μA
		ISTBD	_	1		μΑ

2. DC Characteristics in Digital Section

 $(AV_{DD} = 2.70 \text{ V to } 3.60 \text{ V}, DV_{DD} = 2.70 \text{ V to } 3.60 \text{ V}, Ta = -20^{\circ}\text{C to } +75^{\circ}\text{C})$

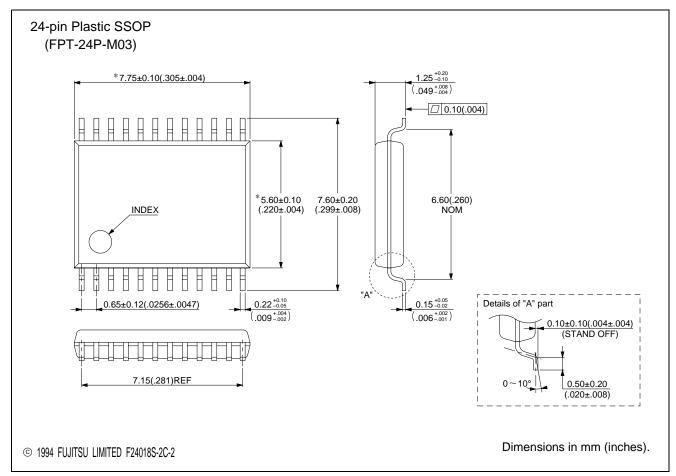

Parameter	Symbol	Value			l Init
Farameter	Symbol	Min.	Тур.	Max.	Unit
Digital "H" level output voltage	Vонd	2.4		DVdd	V
Digital "L" level output voltage	Vold	—	—	0.4	V
Digital "H" level output current	Іон	-400	—	—	μA
Digital "L" level output current	lol	—	—	1.6	mA

3. Switching Characteristics


 $(AV_{DD} = 2.70 \text{ V to } 3.60 \text{ V}, \text{DV}_{DD} = 2.70 \text{ V to } 3.60 \text{ V}, \text{Ta} = -20^{\circ}\text{C to } +75^{\circ}\text{C})$

Parameter	Symbol	Value			Unit	
Falameter	Symbol	Min.	Тур.	Max.	Unit	
Maximum conversion rate	fs	30			MSPS	
Digital output delay time	tpd	3	8	20	ns	

DIGITAL OUTPUT BUFFER LOAD CIRCUIT


■ USAGE PRECAUTIONS

- Be sure to ground the pins of AV_{DD}, DV_{DD}, V_{RT} and V_{RB} via high-frequency capacitor. Place the high-frequency capacitor as close as possible to the pin.
- You can minimize the power supply current dissipation due to the internal logic indetermination by making the clock to 4CLK or higher.

■ ORDERING INFORMATION

Part number	Package	Remark
MB40C238PF	24-pin Plastic SSOP (FPT-24P-M03)	

PACKAGE DIMENSION

MB40C238

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9802 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.