■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

- Features
- Ultra-compact model.
- Photo IC output model.
- Operates at a V_{CC} of 2.2 to 7 V .
- High-speed response.

- Absolute Maximum Ratings

 ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)| Item | | Symbol | Rated value |
| :---: | :---: | :---: | :---: |
| Emitter | Forward current | I_{F} | $\begin{aligned} & 50 \mathrm{~mA} \\ & \text { (see note 1) } \end{aligned}$ |
| | Reverse voltage | V_{R} | 4 V |
| Detector | Supply voltage | $V_{C C}$ | 9 V |
| | Output voltage | V OUT | 17 V |
| | Output current | lout | 8 mA |
| | Permissible output dissipation | Pout | $\begin{aligned} & 80 \mathrm{~mW} \\ & \text { (see note 1) } \end{aligned}$ |
| Ambient temperature | Operating | Topr | $\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$ |
| | Storage | Tstg | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & 100^{\circ} \mathrm{C} \end{aligned}$ |
| | Soldering | Tsol | $\begin{aligned} & 260^{\circ} \mathrm{C} \\ & (\text { see note 2) } \end{aligned}$ |

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds $25^{\circ} \mathrm{C}$.
2. Complete soldering within 3 seconds.

■ Electrical and Optical Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V_{F}	1.2 V typ., 1.4 V max.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Reverse current	I_{R}	$0.01 \mu \mathrm{~A}$ typ., $10 \mu \mathrm{~A}$ max.	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$
	Peak emission wavelength	λ_{P}	940 nm typ.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Detector	Power supply voltage	V_{Cc}	2.2 V min., 7 V max.	---
	Low-level output voltage	V_{OL}	0.12 V typ., 0.4 V max.	$\mathrm{Vcc}=2.2$ to $7 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
	High-level output current	${ }^{\mathrm{IOH}}$	$10 \mu \mathrm{~A}$ max.	$\mathrm{Vcc}=2.2 \mathrm{tp} 7 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=17 \mathrm{~V}$
	Current consumption	I_{CC}	2.3 mA typ., 4 mA max.	$\mathrm{Vcc}=7 \mathrm{~V}$
	Peak spectral sensitivity wavelength	λ_{P}	870 mm typ.	$\mathrm{Vcc}=2.2$ to 7 V
LED current when output is ON		I_{FT}	1.1 mA typ., 2.5 mA max.	$\mathrm{V}_{C C}=2.2$ to 7 V
Hysteresis		$\Delta \mathrm{H}$	21\% typ.	$\mathrm{V}_{\mathrm{CC}}=2.2$ to 7 V (see note 1)
Response frequency		f	3 kHs min .	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.2 \text { to } 7 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \text { (see note } 2 \text {) } \end{aligned}$
Response delay time		$t_{\text {PHL }}$	$5 \mu \mathrm{styp}$.	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.2 \text { to } 7 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & (\text { see note } 3) \end{aligned}$
Response delay time		$t_{\text {PLH }}$	$18 \mu \mathrm{~s}$ typ.	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.2 \text { to } 7 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \text { (see note 3) } \end{aligned}$

Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
2. The value of the response frequency is measured by rotating the disk as shown below. (P.P.S = pulse/s)

3. The following illustrations show the definition of response delay time.

- Engineering Data

Forward Current vs. Collector Dissipation Temperature Rating

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$
LED Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$
Current Consumption vs. Supply Voltage (Typical)

Forward Current vs. Forward Voltage Characteristics (Typical)

Forward voltage $\mathrm{V}_{\mathrm{F}}(\mathrm{V})$
Low-level Output Voltage vs. Output Current (Typical)

Output current $\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
Response Delay Time vs. Forward Current (Typical)

LED Current vs. Supply Voltage (Typical)

Supply voltage $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$
Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$
Repeat Sensing Position Characteristics (Typical)

