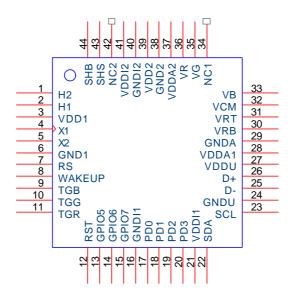

I. General Descriptions-

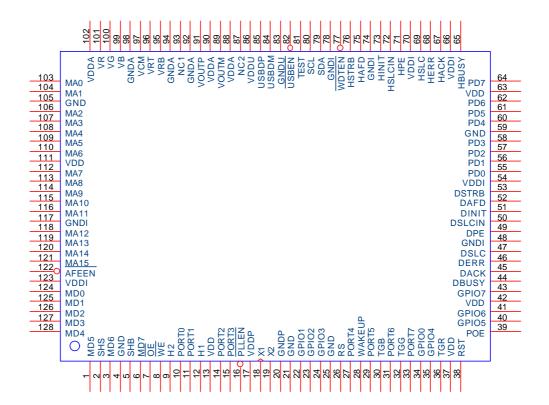
The GT-6816 is an enhanced version of GT-6801, which provides highly integrated **System-On-Chip** (**SOC**) solution for high-performance color scanner. The GT-6816 is enhanced not only in the AFE (Analog Front End) from 12-bit to 16-bit but also built-in an intelligent power management circuit to meet both operating and suspend mode for USB bus-powered Scanner. The GT-6816 is also pin to pin backward compatible with the GT-6801, providing system designer easy way to upgrade the current applications without changing the hardware design.

II. Features-

- ♦ Single-chip integration for high-performance color scanner application
- ♦ On-chip Analog Front End: CDS/AGC and 16-bit ADC Maximum 6MHz
- On-chip universal TG supports various types of CCD/CIS sensors
- ♦ Embedded high-performance RISC controller
- ♦ On-chip USB transceiver
- ♦ Built-in 16KB image line buffers
- ♦ PC interface supports : USB/EPP/ECP/BPP
- ♦ No external memory component required for typical application
- ♦ Firmware programmable frame size
- Intelligent power management meets both operating and suspend mode for USB bus power
- ♦ On-chip PLL circuits
- ♦ Operating clock :48 MHz with external crystal: 6 MHz
- ♦ Operating voltage: Core: 3.3V, I/O: 5V
- ♦ Operating current: Core 80mA, AFE 50mA
- ♦ Suspend current: 50 A
- Package: 128-QFP & 44-QFP



III. Benefits-


- Provides a total solution, fast time-to-market

- Provides a total solution, fast time-to-market
 USB bus power without additional power line
 Supports a wide range of applications
 Customer differentiation via firmware
 Provides firmware update path via USB channel
 Easy to meet EMI standard
 Minimum external components
 Supports a full set of development kit
 Single chip solution, stock management becomes easier

IV. Pin Configuration-

Type(A)-44-pin QFP

V. Pin Descriptions-

128 No.	44 No.	Name	Reset State	Туре	Driven	Description
1		MD4	Tri-state	I/O	4mA	External memory data bus bit 4
2		MD5	Tri-state	I/O	4mA	External memory data bus bit 5
3	43	SHS	Tri-state	О	8mA	CCD sample hold signal control signal
4		MD6	Tri-state	I/O	4mA	External memory data bus bit 6
5		GNDC1		P		Core ground
6	44	SHB	Tri-state	О	8mA	CCD sample hold reset control signal
7		MD7	Tri-state	I/O	4mA	External memory data bus bit 7
8		MOE#	High	О	4mA	External memory output enable
9		MWE#	High	О	4mA	External memory write enable
10	1	H2/CLK	Tri-state	О	8mA	CCD shift clock/CIS clock control signal
11		PORT1 0	Tri-state	I/O	4mA	uP port 1 bit 0
12		PORT1 1	Tri-state	I/O	4mA	uP port 1 bit 1
13	2	H1/SP	Tri-state	О	8mA	CCD shift clock/CIS SP control signal
14		VDDC1		P		Core power
15		PORT1 2	Tri-state	I/O	4mA	uP port 1 bit 2
16		PORT1 3	Tri-state	I/O	4mA	uP port 1 bit 3
17		PLL EN#		I		PLL enable control signal, with pull-down, not
18	3	VDDP		P		PLL power
19	4	X1		I		Crystal input
20	5	X2		О		Crystal output
21	6	GNDP		P		PLL ground
22		GNDC2		P		Core ground
23		GPIO1	Tri-state	I/O	4mA	GPIO bit 1
24		GPIO2	Tri-state	I/O	4mA	GPIO bit 2
25		GPIO3	Tri-state	I/O	4mA	GPIO bit 3
26		GNDC3		P		Core ground
27	7	RS	Tri-state	О	8mA	CCD reset signal
28		PORT1 4	Tri-state	I/O	4mA	uP port 1 bit 4
29	8	WAKEUP		I		USB device remoter wakeup
30		PORT1 5	Tri-state	I/O	4mA	uP port 1 bit 5
31	9	TGB/LEDB	Tri-state	О	8mA	CCD TG/CIS LED B channel control signal
32		PORT1 6	Tri-state	I/O	4mA	uP port 1 bit 6
33	10	TGG/LEDG	Tri-state	О	8mA	CCD TG/CIS LED G channel control signal
34		PORT71	Tri-state	I/O	4mA	uP port 1 bit 7
35		GPIO0	Tri-state	I/O	4mA	GPIO bit 0
36		GPIO4	Tri-state	I/O	4mA	GPIO bit 4
37	11	TGR/LEDR	Tri-state	О	8mA	CCD TG/CIS LED R channel control signal
38		VDDC2		P		Core power
39	12	RESET		I		Power on reset, high active
40		GPIO5	Tri-state	I/O	4mA	GPIO bit 5
41	13	GPIO6	Tri-state	I/O	4mA	GPIO bit 6
42	14	VDDC3		P		Core power
43		GPIO7	Tri-state	I/O	4mA	GPIO bit 7
44	15	DBUSY		I		Device parallel port (Busy) signal, with

45 DACK I Device parallel port 46 DERR I Device parallel port (F 47 DSLC I Device parallel port (F 48 GNDI1 P IO ground 49 16 GNDI2 P IO ground 50 DPE I Device parallel port (S 51 DSLCIN Low O 24mA Device parallel port (S 52 DINIT Low O 24mA Device parallel port (III)	Fault) (select (Pape	signa	ıl	
47 DSLC I Device parallel port (48 GNDI1 P IO ground 49 16 GNDI2 P IO ground 50 DPE I Device parallel port (51 DSLCIN Low O 24mA Device parallel port (S	(Select			with
48 GNDI1 P IO ground 49 16 GNDI2 P IO ground 50 DPE I Device parallel port 51 DSLCIN Low O 24mA Device parallel port (S	(Pape	et) si	gnal.	with
49 16 GNDI2 P IO ground 50 DPE I Device parallel port 51 DSLCIN Low O 24mA Device parallel port (S	Select			
50DPEIDevice parallel port51DSLCINLowO24mADevice parallel port (S	Select			
51 DSLCIN Low O 24mA Device parallel port (S	Select			
		er en	d) s	ignal,
52 DINIT Low O 24mA Device parallel port (b	nit) ci	in) s	igna	1
27 Division Device Daraner Bott (II	m v si	gnal		
53 DAFD Low O 24mA Device parallel port (A	\uto f	eed)	sign	al
54 DSTRB Low O 24mA Device parallel port (S	Strobe	e) sign	nal	
55 VDDI1 P IO power				
56 17 PD0 Tri-state I/O 24mA Parallel port data	bus	bit	0.	with
57 18 PD1 Tri-state I/O 24mA Parallel port data	bus	bit	1.	with
58 19 PD2 Tri-state I/O 24mA Parallel port data	bus	bit	2.	with
59 20 PD3 Tri-state I/O 24mA Parallel port data	bus	bit	3,	with
60 GNDC4 P Core ground				
61 PD4 Tri-state I/O 24mA Parallel port data	bus	bit	4.	with
62 PD5 Tri-state I/O 24mA Parallel port data	bus	bit	5.	with
63 PD6 Tri-state I/O 24mA Parallel port data	bus	bit	6.	with
64 VDDC4 P Core power.				
65 PD7 Tri-state I/O 24mA Parallel port data	bus	bit	7.	with
66 HBUSY Low O 24mA Host parallel port (Bus	sv) si	gnal		
67 21 VDDI2 P I/O Power				
68 VDDI3 P I/O Power				
69 HACK Low O 24mA Host parallel port (Act	k) sig	nal		
70 HERR Low O 24mA Host parallel port (nal.	with
71 HSLC Low O 24mA Host parallel port (Sel-				
72 VDDI4 P I/O power				
73 HPE Low O 24mA Host parallel port (Par	oer en	d) si	gnal	
74 HSLCIN I Host parallel port (Se				, with
75 HINIT I Host parallel port				
76 GNDI3 P I/O ground				
77 HAFD I Host parallel port (Auto	fee	d) s	ignal.
78 HSTRB I Host parallel port (S				
79 GNDI4 P I/O ground				
80 22 SDA Tri-state I/O 4mA Serial EEPROM dat	ta lir	ne. F	PCB	need
81 23 SCL Tri-state I/O 4mA Serial EEPROM clo				
82 TEST I For test only, with				
83 GNDU P USB transceiver groun				
84 24 D- I/O USB transceiver D-				
85 25 D+ I/O USB transceiver D+				
86 26 VDDU P USB transceiver power	er			

VI.Registers map-

tegisters map			
PPCR	R/W	'hff	Parallel nort control register
PPHAR	R/W	'hfe	Parallel port high address register
PPLAR	R/W	'hfd	Parallel port low address register
<u>PPDR</u>	R/W	'hfc	Parallel port data register
IVDHPR	R/W	'hfb	Image valid data high pointer register
<u>IVDLPR</u>	R/W	'hfa	Image valid data low pointer register
IVIR	R/W	'hf9	Image valid indication register
HADFR TOOR	R/W	'he4	Host access device flag register
TGCR MOD6DR	R/W R/W	'hff00 'hff01	TG Control Register Modulo 6 bit for dot clock
MODODK MOD6PR	R/W	'hff02	Modulo 6 bit for pixel clock
MODOLK MOD16HR	R/W	'hff03	Modulo 16 bit high byte
MOD16LR	R/W	hff04	Modulo 16 bit low byte
ADCLKRR	R/W	'hff05	ADCLK rise register
ADCLKFR	R/W	'hff06	ADCLK fall register
SHR6R	R/W	'hff07	SH(TG) setup register(reference to 6bit counter)
SHF6R	R/W	'hff08	SH(TG) setup register(reference to 6bit counter)
SHR8R	R/W	'hff09	SH(TG) setup register(reference to 16bit counter)
SHF8R	R/W	'hff0a	SH(TG) setup register(reference to 16bit counter)
SHCR	R/W	'hff0b	SH(TG) configuration register
LEDRHR	R/W	'hff0c	LED rise high register(reference to 16bit counter)
LEDRLR	R/W	'hff0d	LED rise low register(reference to 16bit counter)
LEDFHR	R/W	'hff0e	LED fall high register(reference to 16bit counter)
LEDFLR	R/W	'hff0f	LED fall low register(reference to 16bit counter)
LEDCR	R/W	'hff10	LED configuration register
TGMR	R/W	'hff11	TG Mask register
RS1RR	R/W	hff12	RS1 rise register
RS1FR	R/W	'hff13	RS1 fall register
RS2RR	R/W	'hff14	RS2 rise register
RS2FR	R/W	hff15	RS2 fall register
SHRRR	R/W	'hff16	SHR rise register
SHRFR	R/W	'hff17	SHR fall register
SHSRR	R/W	'hff18	SHS rise register
SHSFR	R/W	'hff19	SHS fall register
H1RR	R/W	'hff1a	H1 rise register
H1FR	R/W	'hff1b	H1 fall register
H2RR	R/W	'hff1c	H2 rise register
H2FR	R/W	'hff1d	H2 fall register
CLAMP0RR	R/W	'hff1e	CLAMP 0 rise register
CLAMP0FR	R/W	'hff1f	CLAMP 0 fall register

Name	R/W	Address	Description
CCLP0RR	R/W	'hff20	CCLP 0 rise register
CCLP0FR	R/W	hff21	CCLP 0 fall register
CLAMP1RR	R/W	hff22	CLAMP 1 rise register
CLAMP1FR	R/W	hff23	CLAMP 1 fall register
CCLP1RR	R/W	'hff24	CCLP 1 rise register
CCLP1FR	R/W	hff25	CCLP 1 fall register
CLAMP2RR	R/W	'hff26	CLAMP 2 rise register
CLAMP2FR	R/W	'hff27	CLAMP 2 fall register
CCLP2RR	R/W	'hff28	CCLP 2 rise register
CCLP2FR	R/W	hff29	CCLP 2 fall register
CDSR0RR	R/W	'hff2a	CDSR channel 0 rise register
CDSR0FR	R/W	'hff2b	CDSR channel 0 fall register
CDSR1RR	R/W	'hff2c	CDSR channel 1 rise register
CDSR1FR	R/W	'hff2d	CDSR channel 1 fall register
CDSR2RR	R/W	'hff2e	CDSR channel 2 rise register
CDSR2FR	R/W	'hff2f	CDSR channel 2 fall register
CDSS0RR	R/W	hff30	CDSS channel 0 rise register
CDSS0FR	R/W	'hff31	CDSS channel 0 fall register
CDSS1RR	R/W	'hff32	CDSS channel 1 rise register
CDSS1FR	R/W	hff33	CDSS channel 1 fall register
CDSS2RR	R/W	'hff34	CDSS channel 2 rise register
CDSS2FR	R/W	hff35	CDSS channel 2 fall register
CDSD0RR	R/W	'hff36	CDSD channel 0 rise register
CDSD0FR	R/W	'hff37	CDSD channel 0 fall register
CDSD1RR	R/W	'hff38	CDSD channel 1 rise register
CDSD1FR	R/W	'hff39	CDSD channel 1 fall register
CDSD2RR	R/W	'hff3a	CDSD channel 2 rise register
CDSD2FR	R/W	'hff3b	CDSD channel 2 fall register
MUXA0RR	R/W	'hff3c	MUXA sel 0 rise register
MUXA0FR	R/W	'hff3d	MUXA sel 0 fall register
MUXA1RR	R/W	'hff3e	MUXA sel 1 rise register
MUXA1FR	R/W	'hff3f	MUXA sel 1 fall register
MUXB0RR	R/W	'hff40	MUXB sel 0 rise register
MUXB0FR	R/W	'hff41	MUXB sel 0 fall register
MUXB1RR	R/W	'hff42	MUXB sel 1 rise register
MUXB1FR	R/W	'hff43	MUXB sel 1 fall register
OFFM0RR	R/W	'hff44	OFFM sel 0 rise register
OFFM0FR	R/W	'hff45	OFFM sel 0 fall register
OFFM1RR	R/W	'hff46	OFFM sel 1 rise register
OFFM1FR	R/W	'hff47	OFFM sel 1 fall register
PGAM0RR	R/W	'hff48	PGAM sel 0 rise register
PGAM0FR	R/W	'hff49	PGAM sel 0 fall register
PGAM1RR	R/W	'hff4a	PGAM sel 1 rise register
PGAM1FR	R/W	'hff4b	PGAM sel 1 fall register

Name	R/W	Address	Description
GAINM0RR	R/W	'hff4c	GAINM sel 0 rise register
GAINM0FR	R/W	'hff4d	GAINM sel 0 fall register
GAINM1RR	R/W	'hff4e	GAINM sel 1 rise register
GAINM1FR	R/W	'hff4f	GAINM sel 1 fall register
DCR	R/W	'hff80	DMA Control Register
D1TBHR	W	'hff81	DMA1 Transfer Byte Count High Byte Register
D1TBLR	W	'hff82	DMA1 Transfer Byte Count Low Byte Register
MISAHR	W	'hff83	M1 Starting Address High Byte Register
MISALR	W	'hff84	M1 Starting Address Low Byte Register
M2SAHR	R/W	'hff85	M2 Starting Address High Byte Register
M2SALR	R/W	'hff86	M2 Starting Address Low Byte Register
D2BCHR	R/W	'hff88	DMA2 byte count high register
D2BCLR	R/W	'hff89	DMA2 byte count low register
DMACR	R/W	ʻhff8a	DMA configuration register
D2THR	R/W	'hff8b	DMA2 Transfer Count High Byte Register
D2TLR	R/W	'hff8c	DMA2 Transfer Count Low Byte Register
D2SHR	R/W	'hff8d	DMA2 Sync Count High Byte Register
D2SLR	R/W	'hff8e	DMA2 Svnc Count Low Byte Register
RHR	R/W	'hff8f	Resolution High Byte Register
RLR	R/W	'hff90	Resolution Low Byte Register
CCR	W	'hff91	Compression Configuration Register
MBLHR	R/W	hff92	Minimum Buffer length High Register
MBLLR	R/W	hff93	Minimum Buffer length Low Register
<i>GPIOCR</i>	R/W	'hff94	GPIO control register
<i>GPIODR</i>	R/W	'hff95	GPIO data register
WDTRR	W	'hff96	Watch Dog Timer Reset register
ASR	R/W	'hff87	AFE suspend register
ACR	R/W	'hff97	AFE configuration register
AC2R	R/W	'hff98	AFE configuration 2 register
COFF0R	R/W	'hff99	CDS OFFSET for channel 0
CPGA0R	R/W	ʻhff9a	CDS PGA for channel 0
COFF1R	R/W	'hff9b	CDS OFFSET for channel 1
CPGA1R	R/W	'hff9c	CDS PGA for channel 1
COFF2R	R/W	'hff9d	CDS OFFSET for channel 2
CPGA2R	R/W	'hff9e	CDS PGA for channel 2
SCR	R/W	'hff9f	Suspend Control
<i>PPMCR</i>	R/W	'hffA0	Parallel port mode control register
<i>PPHSR</i>	R/W	'hffA1	Parallel port Host Status register
<i>PPHDR</i>	R/W	'hffA2	Parallel port Host Data register
PPDSR	R/W	'hffA3	Parallel port Device Status register
<i>EDHSAR</i>	R/W	'hffA5	EPP/USB DMA3 high start address register
EDLSAR	R/W	'hffA6	EPP/USB DMA3 low start address register
<i>EDHBCR</i>	R/W	'hffA7	EPP DMA3 high byte count register
EDLBCR	R/W	'hffA8	EPP DMA3 low byte count register

NAME	R/W	Address	Description
GAINMORR	R/W	'hff4c	GAINM sel 0 rise register
GAINM0FR	R/W	'hff4d	GAINM sel 0 fall register
GAINM1RR	R/W	'hff4e	GAINM sel 1 rise register
GAINM1FR	R/W	'hff4f	GAINM sel 1 fall register
<u>DCR</u>	R/W	'hff80	DMA Control Register
D1TBHR	W	'hff81	DMA1 Transfer Byte Count High Byte Register
D1TBLR	W	'hff82	DMA1 Transfer Byte Count Low Byte Register
M1SAHR	W	'hff83	M1 Starting Address High Byte Register
M1SALR	W	'hff84	M1 Starting Address Low Byte Register
M2SAHR	R/W	'hff85	M2 Starting Address High Byte Register
M2SALR	R/W	'hff86	M2 Starting Address Low Byte Register
D2BCHR	R/W	'hff88	DMA2 byte count high register
D2BCLR	R/W	'hff89	DMA2 byte count low register
DMACR	R/W	ʻhff8a	DMA configuration register
D2THR	R/W	'hff8b	DMA2 Transfer Count High Byte Register
D2TLR	R/W	'hff8c	DMA2 Transfer Count Low Byte Register
D2SHR	R/W	'hff8d	DMA2 Sync Count High Byte Register
D2SLR	R/W	'hff8e	DMA2 Svnc Count Low Byte Register
RHR	R/W	'hff8f	Resolution High Byte Register
RLR	R/W	'hff90	Resolution Low Byte Register
CCR	W	'hff91	Compression Configuration Register
MBLHR	R/W	'hff92	Minimum Buffer length High Register
MBLLR	R/W	'hff93	Minimum Buffer length Low Register
<i>GPIOCR</i>	R/W	'hff94	GPIO control register
<i>GPIODR</i>	R/W	'hff95	GPIO data register
WDTRR	W	'hff96	Watch Dog Timer Reset register
ASR	R/W	'hff87	AFE suspend register
ACR	R/W	'hff97	AFE configuration register
AC2R	R/W	'hff98	AFE configuration 2 register
COFF0R	R/W	'hff99	CDS OFFSET for channel 0
CPGA0R	R/W	'hff9a	CDS PGA for channel 0
COFF1R	R/W	'hff9b	CDS OFFSET for channel 1
CPGA1R	R/W	'hff9c	CDS PGA for channel 1
COFF2R	R/W	'hff9d	CDS OFFSET for channel 2
CPGA2R	R/W	'hff9e	CDS PGA for channel 2
SCR	R/W	'hff9f	Suspend Control
<i>PPMCR</i>	R/W	'hffA0	Parallel port mode control register
PPHSR	R/W	'hffA1	Parallel port Host Status register
<i>PPHDR</i>	R/W	'hffA2	Parallel port Host Data register
<i>PPDSR</i>	R/W	'hffA3	Parallel port Device Status register
<i>EDHSAR</i>	R/W	'hffA5	EPP/USB DMA3 high start address register
EDLSAR	R/W	'hffA6	EPP/USB DMA3 low start address register
EDHBCR	R/W	'hffA7	EPP DMA3 high byte count register
EDLBCR	R/W	'hffA8	EPP DMA3 low byte count register

N/43/E	D /II/	4 1 1	D
NAME	R/W	Address	Description EDD/JCD DMA2 and all all all and all all all and all all all all all all all all all al
EDCR	R/W	'hffA9	EPP/USB DMA3 control register
TISR	R/W	'hffAA	Ton Interrupt status Register
UIS2R	R/W	'hffAB	USB Interrupt status 2 Register
UIS1R	R/W	'hffAC	USB Interrupt status 1 Register
TIER	R/W	'hffAD	Ton Interrupt Enable Register
UIE2R	R/W	'hffAE	USB Interrunt Enable 2 Register
<u>UIE1R</u>	R/W	'hffAF	USB Interrupt Enable 1 Register
ISR	R/W	'hffB0	Interrunt Select Register
DFR	R/W	'hffB1	Device Flag register
DBCARCR	R/W	'hffB2	DMA3 byte count auto-reload control register
URLBCR	R/W	'hffB3	USB Receive low byte count Register
URHBCR	R/W	'hffB4	USB Receive high byte count Register
URLBCGIR	R/W	'hffB5	USB Receive low byte count to generate IRO
URLBCGIR	R/W	'hffB6	USB Receive high byte count to generate IRO
URT	R	'hffB8	USB Request Type
URC	R	'hffB9	USB Request Code
URVLB	R	'hffBA	USB Request Value Low Byte
URVHB	R	'hffBB	USB Request Value High Byte
URILB	R	'hffBC	USB Request Index Low Byte
<u>URIHB</u>	R	'hffBD	USB Reauest Index High Byte
URLLB	R	'hffBE	USB Request Length Low Byte
URLHB	R	'hffBF	USB Request Length High Byte
UEIR	R/W	'hffC0	USB Endpoint index Register
DUSR	R	'hffC1	DMA3 USB Status Register
DUTBCI8R	R/W	'hffC2	DMA3 USB TX Byte Count for internal
DUTPS2R	R/W	'hffC3	DMA3 USB TX Packet Size 2 Register
DUTPS1R	R/W	'hffC4	DMA3 USB TX Packet Size 1 Register
DUTPC2R	R/W	'hffC5	DMA3 USB TX Packet Count 2 (# of packet)
DUTPC1R	R/W	'hffC6	DMA3 USB TX Packet Count 1 (# of nacket)
DURPSR	R	'hffC7	DMA3 USB Receive packet size Register
<u>UECR</u>	R/W	'hffC8	USB Endpoint Control Register
<u>UETSR</u>	R/W	'hffC9	USB Endpoint Transmit Status Register
UERSR	R/W	'hffCA	USB Endpoint Receive Status Register
<u>UDAR</u>	R/W	'hffCB	USB Device Address Register
UDCR	R/W	'hffCC	USB Device Control Register
UDSTR0	R/W	'hffD0	USB Device Status Transmit Register 0
UDSTR1	R/W	'hffD1	USB Device Status Transmit Register 1
UDSTR2	R/W	'hffD2	USB Device Status Transmit Register 2
UDSTR3	R/W	'hffD3	USB Device Status Transmit Register 3
UDSTR4	R/W	'hffD4	USB Device Status Transmit Register 4
UDSTR5	R/W	'hffD5	USB Device Status Transmit Register 5
UDSTR6	R/W	'hffD6	USB Device Status Transmit Register 6
UDSTR7	R/W	'hffD7	USB Device Status Transmit Register 7
UDCRR0	R	'hffD8	USB Device Command Receive Register 0

Name	R/W	Address	Description
UDCRR1	R	'hffD9	USB Device Command Receive Register 1
UDCRR2	R	'hffDA	USB Device Command Receive Register 2
UDCRR3	R	'hffDB	USB Device Command Receive Register 3
UDCRR4	R	'hffDC	USB Device Command Receive Register 4
UDCRR5	R	'hffDD	USB Device Command Receive Register 5
UDCRR6	R	'hffDE	USB Device Command Receive Register 6
UDCRR7	R	'hffDF	USB Device Command Receive Register 7

- Registers Definitions
- Timing Generator Setup Register

CPU Read/Write

Address: FF00H

Bit	Reset	Description				
7:4	4' b0	Reserved				
3	1'b0	Select LED control signal output to PEPP_AD0~PEPP_AD2 for the sake of driving issue. When this bit is set, the mapping of pins are changed to: PTGR = TG_R, PTGG = TG_G, PTGB = TG_B, PEPP_AD0 = LED_R, PEPP_AD1 = LED_G, PEPP_AD2 = LED_B; Note: TG_R, TG_G, TG_B are TG signal for R, G, B channel.				
2	1' b1	LED_R, LED_G, LED_B are LED signal for R, G, B channel. These signals are programmable by register definitions. TG rise event enable: 0 = disable TG rise event. 1 = enable TG rise event. TG event will occur when TG signal changes				
		state from '0' to '1'				
1	1' b0	Sensor type: 0 = CIS 1 'b0				
0	1' b0	Global Timing Generator enable control.				

Referenced period for 6-bits dot clock counter:

CPU Read/Write
Address: FF01H

Bit	Reset	Description
7:6	2' b0	Reserved
		Defines the referenced period (N+1) cycles of the 6 bits dot clock counter.
5:0	6' b0	The 6-bits dot clock counter is referenced by master clock (48MHz). Dot
		clock is defined by this N+1 cycles referenced to 6-bits dot clock counter.

Referenced period for 6-bits pixel clock counter:

CPU Read/Write

Address: FF02H

Bit	Reset	Description					
7:6	2' b0	Reserved					
		Defines the referenced period (N+1) cycles of the 6 bits pixel clock					
		counter. The 6-bits pixel clock counter is referenced by master clock					
5.0	6' b0	(48MHz). Pixel clock is defined by this N+1 cycles referenced to 6-bits					
5:0	0 00	pixel clock counter.					
		The programmable timing control signal for sensor and AFE are					
		referenced to pixel clock.					

Referenced period high byte for 16-bits counter of timing generator:

CPU Read/Write

Address: FF03H

Bit	Reset	Description
7:0	8' b0	Period for 16-bits counter high byte

Referenced period low byte for 16-bits counter of timing generator:

Address: FF04H

Bit	Reset	Description
7:0	8' b0	Period for 16-bits counter low byte.
		These two registers define the period (N+1) cycles of 16-bits counter
		referenced to pixel clock. All programmable timing control signals are
		referenced to this 16-bits counter.

AFE ADCLK rising phase control

CPU Read/Write

Address: FF05H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define ADCLK rising phase referenced to 6-bits dot clock counter

AFE ADCLK falling phase control

CPU Read/Write

Address: FF06H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define ADCLK falling phase referenced to 6-bits dot clock counter

Sensor TG control signal rising phase referenced to pixel counter

CPU Read/Write

Address: FF07H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define TG rising phase reference to 6-bits pixel counter

Sensor TG control signal falling phase referenced to pixel counter

Address: FF08H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define TG falling phase referenced to 6-bits pixel counter

Sensor TG signal rising phase referenced to 16-bits counter:

CPU Read/Write

Address: FF09H

Bit	Reset	Description
7:0	8' b0	Define TG rising phase referenced to 16-bit counter

Sensor TG signal falling phase referenced to 16-bits counter:

CPU Read/Write

Address: FF0AH

Bit	Reset	Description
7:0	8' b0	Define TG falling phase referenced to 16-bit counter

Note:

The conditions for rising and falling only available during first 256 cycles of 16-bits counter. For cycle exceeds 256 of 16-bits counter, TG output '0' state.

Sensor TG control signal configuration

CPU Read/Write

Address: FF0BH

Bit	Reset	Description
7:6	8' b0	Reserved

5	1' b0	TG_B polarity
4	1' b0	TG_B enable
3	1' b0	TG_G polarity
2	1'b0	TG_G enable
1	1' b0	TG_R polarity
0	1' b0	TG_R enable

Note: all these bits are synchronous with TG rising edge.

Polarity = 0: normal output as programming output

Polarity = 1 : invert output from programming output

 $Enable = 0: disable\ control\ signal\ output$

Enable = 1: enable programming output.

Sensor LED control signal rising phase high byte

CPU Read/Write

Address: FF0CH

Bit	Reset	Description
7:4	4' b0	Reserved
3:0	4' b0	Define rising phase bit11~bit8

Sensor LED control signal rising phase low byte

CPU Read/Write

Address: FF0DH

Bit	Reset	Description
7:0	8' b0	Define rising phase bit7~bit0

Sensor LED control signal falling phase high byte

CPU Read/Write

Address: FF0EH

Bit	Reset	Description
7:4	4' b0	Reserved
3:0	4' b0	Define falling phase bit11~bit8

Sensor LED control signal falling phase low byte

CPU Read/Write

Address: FF0FH

Bit	Reset	Description
7:0	8' b0	Define falling phase bit7~bit0
3.7		

Note:

The programming rising and falling phase are referenced to 16-bit counter with 12 MSB.

Bit	Reset	Description
7:6	8' b0	Reserved
5	1' b0	LED_B polarity

4	1'b0	LED_B enable
3	1'b0	LED_G polarity
2	1'b0	LED_G enable
1	1'b0	LED_R polarity
0	1' b0	LED_R enable

Note: all these bits are synchronous with TG rising edge.

Polarity = 0: normal output as programming output

Polarity = 1 : invert output from programming output

Enable = 0: disable control signal output

Enable = 1 : enable programming output.

Sensor TG mask period control register

CPU Read/Write

Address: FF11H

	Bit	Reset	Description
		8' b0	Define TG mask period. This mask signal will go active when initial the
	7.0		16-bits counter and clear after N cycles of pixel clock. During this period
	7:0		internal sensor control signal RS1, RS2, H1, and H2 will enter idle state,
			i.e., output '0' when this masking function is enable.

Sensor RS1 control signal rising phase

CPU Read/Write

Address: FF12H

Bit	Reset	Description
		RS1 polarity
7	1' b0	0 = normal operation.
		1 = invert RS1 output
		RS1 enable
6	1' b0	0 = disable RS1 output
		1 = enable RS1 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

Sensor RS1 control signal falling phase

CPU Read/Write

Address: FF13H

Bit	Reset	Description
7	1' b0	Reserved

		RS1 masking function enable
6	1' b0	0 = disable masking function
		1 = enable masking function
5:0	6' b0	Define falling phase referenced to 6-bits pixel clock counter

Sensor RS2 control signal rising phase

CPU Read/Write

Address: FF14H

Bit	Reset	Description
		RS2 polarity
7	1' b0	0 = normal operation.
		1 = invert RS2 output
		RS2 enable
6	1' b0	0 = disable RS2 output
		1 = enable RS2 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

Sensor RS2 control signal falling phase

CPU Read/Write

Address: FF15H

Bit	Reset	Description
7	1' b0	Reserved
		RS2 masking function enable
6	1' b0	0 = disable masking function
		1 = enable masking function
5:0	6' b0	Define falling phase referenced to 6-bits pixel clock counter

Sensor SHR control signal rising phase

CPU Read/Write

Address: FF16H

Bit	Reset	Description
		SHR polarity
7	1' b0	0 = normal operation
		1 = invert SHR output
		SHR enable
6	1' b0	0 = disable SHR ouptut
		1 = enable SHR output
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

Sensor SHR control signal falling phase

CPU Read/Write Address: FF17H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel clock counter

Sensor SHS control signal rising phase

CPU Read/Write

Address: FF18H

Bit	Reset	Description
		SHS polarity
7	1' b0	0 = normal operation
		1 = invert SHS output
		SHS enable
6	1' b0	0 = disable SHS ouptut
		1 = enable SHS output
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

Sensor SHS control signal falling phase

CPU Read/Write

Address: FF19H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel clock counter

Sensor H1 control signal rising phase

CPU Read/Write

Address: FF1AH

Bit	Reset	Description
		H1 polarity
7	1' b0	0 = normal operation.
		1 = invert H1 output
		H1 enable
6	1' b0	0 = disable H1 output
		1 = enable H1 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

Sensor H1 control signal falling phase

CPU Read/Write

Address: FF1BH

Bit	Reset	Description
7	1'b0	H1 half enable
		H1 masking function enable
6	1' b0	0 = disable masking function
		1 = enable masking function

5:0	6' b0	Define falling phase referenced to 6-bits pixel clock counter
-----	-------	---

Sensor H2 control signal rising phase

CPU Read/Write

Address: FF1CH

Bit	Reset	Description
7	1' b0	H2 polarity
		0 = normal operation.
		1 = invert H2 output
6	1' b0	H2 enable
		0 = disable H2 output
		1 = enable H2 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

Sensor H2 control signal falling phase

CPU Read/Write

Address: FF1DH

Bit	Reset	Description
7	1'b0	H2 half enable
6	1' b0	H2 masking function enable
		0 = disable masking function
		1 = enable masking function
5:0	6' b0	Define falling phase referenced to 6-bits pixel clock counter

AFE CLAMP0 control signal rising phase

CPU Read/Write

Address: FF1EH

Bit	Reset	Description
7:0	8' b0	Define rising phase referenced to 16-bits counter

AFE CLAMP0 control signal falling phase

CPU Read/Write

Address: FF1FH

	Bit	Reset	Description
,	7:0	8' b0	Define falling phase referenced to 16-bits counter
Γ.			

Note:

These two registers define the rising and falling phase of CLAMP0 control signal, and only available on the first 256 cycles of 16-bits counter. CLAMP0 output '0' when 16-bits counter exceeds 256 cycle.

AFE CCLP0 control signal rising phase

CPU Read/Write

Address: FF20H

Bit	Reset	Description
		CLAMP0 enable
7	1' b0	0 = CLAMP0 output disable
		1 = CLAMP0 output enable
		CCLP0 enable
6	1' b0	0 = CCLP0 output disable
		1 = CCLP0 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel clock counter

AFE CCLP0 control signal falling phase

CPU Read/Write

Address: FF21H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CLAMP1 control signal rising phase

CPU Read/Write

Address: FF22H

Bit	Reset	Description
7:0	8' b0	Define rising phase referenced to 16-bits counter

AFE CLAMP1 control signal falling phase

CPU Read/Write

Address: FF23H

Bit	Reset	Description
7:0	8' b0	Define falling phase referenced to 16-bits counter
Note:		

Note:

These two registers define the rising and falling phase of CLAMP1 control signal, and only available on the first 256 cycles of 16-bits counter. CLAMP1 output '0' when 16-bits counter exceeds 256 cycle.

AFE CCLP1 control signal rising phase

CPU Read/Write

Address: FF24H

Bit	Reset	Description
		CLAMP1 enable
	1' b0	0 = CLAMP1 output disable
		1 = CLAMP1 output enable
		CCLP1 enable
6	1' b0	0 = CCLP1 output disable
		1 = CCLP1 output enable

5:0 o bo Define rising phase referenced to o-bits pixel counter	5:0	6' b0	Define rising phase referenced to 6-bits pixel counter
---	-----	-------	--

AFE CCLP1 control signal falling phase

CPU Read/Write

Address: FF25H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CLAMP2 control signal rising phase

CPU Read/Write

Address: FF26H

Bit	Reset	Description
7:0	8' b0	Define rising phase referenced to 16-bits counter

AFE CLAMP2 control signal falling phase

CPU Read/Write

Address: FF27H

Bit	Reset	Description
7:0	8' b0	Define falling phase referenced to 16-bits counter

Note:

These two registers define the rising and falling phase of CLAMP2 control signal, and only available on the first 256 cycles of 16-bits counter. CLAMP2 output '0' when 16-bits counter exceeds 256 cycle.

AFE CCLP2 control signal rising phase

CPU Read/Write

Address: FF28H

Bit	Reset	Description
		CLAMP2 enable
7	1' b0	0 = CLAMP2 output disable
		1 = CLAMP2 output enable
		CCLP2 enable
6	1' b0	0 = CCLP2 output disable
		1 = CCLP2 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CCLP2 control signal falling phase

CPU Read/Write

AFE CDSR0 control signal rising phase

CPU Read/Write

Address: FF2AH

Bit	Reset	Description
7	1' b0	Reserved
		CDSR0 enable
6	1' b0	0 = CDSR0 output disable
		1 = CDSR0 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSR0 control signal falling phase

CPU Read/Write

Address: FF2BH

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSR1 control signal rising phase

CPU Read/Write

Address: FF2CH

Bit	Reset	Description
7	1' b0	Reserved
		CDSR1 enable
6	1' b0	0 = CDSR1 output disable
		1 = CDSR1 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSR1 control signal falling phase

CPU Read/Write

Address: FF2DH

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSR2 control signal rising phase

CPU Read/Write

Address: FF2EH

Bit	Reset	Description
7	1' b0	Reserved

6		CDSR2 enable 0 = CDSR2 output disable
	1 00	1 = CDSR2 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSR2 control signal falling phase

CPU Read/Write

Address: FF2FH

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSS0 control signal rising phase

CPU Read/Write

Address: FF30H

Bit	Reset	Description
7	1' b0	Reserved
		CDSS0 enable
6	1' b0	0 = CDSS0 output disable
		1 = CDSS0 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSS0 control signal falling phase

CPU Read/Write

Address: FF31H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSS1 control signal rising phase

CPU Read/Write

Address: FF32H

Bit	Reset	Description
7	1' b0	Reserved
		CDSS1 enable
6	1' b0	0 = CDSS1 output disable
		1 = CDSS1 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSS1 control signal falling phase

CPU Read/Write

Address: FF33H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSS2 control signal rising phase

CPU Read/Write

Address: FF34H

Bit	Reset	Description
7	1' b0	Reserved
		CDSS2 enable
6	1' b0	0 = CDSS2 output disable
		1 = CDSS2 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSS2 control signal falling phase

CPU Read/Write

Address: FF35H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSD0 control signal rising phase

CPU Read/Write

Address: FF36H

Bit	Reset	Description
7	1' b0	Reserved
		CDSD0 enable
6	1' b0	0 = CDSD0 output disable
		1 = CDSD0 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSD0 control signal falling phase

CPU Read/Write

Address: FF37H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE CDSD1 control signal rising phase

CPU Read/Write

Address: FF38H

Bit	Reset	Description
7	1' b0	Reserved
		CDSD1 enable
6	1' b0	0 = CDSD1 output disable
		1 = CDSD1 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSD1 control signal falling phase

CPU Read/Write

Address: FF39H

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSD2 control signal rising phase

CPU Read/Write

Address: FF3AH

Bit	Reset	Description
7	1' b0	Reserved
		CDSD2 enable
6	1' b0	0 = CDSD2 output disable
		1 = CDSD2 output enable
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE CDSD2 control signal falling phase

CPU Read/Write

Address: FF3BH

Bit	Reset	Description
7:6	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE MUXA0 control signal rising phase

CPU Read/Write

Address: FF3CH

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert MUXA0 output signal
6	1' b0	Enable
		0 = disable MUXA 0 output
		1 = enable MUXA0 output

5:0	6' b0	Define rising phase referenced to 6-bits pixel counter
-----	-------	--

AFE MUXA0 control signal falling phase

CPU Read/Write

Address: FF3DH

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE MUXA1 control signal rising phase

CPU Read/Write

Address: FF3EH

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert MUXA1 output signal
		Enable
6	1' b0	0 = disable MUXA1 output
		1 = enable MUXA1 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE MUXA1 control signal falling phase

CPU Read/Write

Address: FF3FH

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE MUXB0 control signal rising phase

CPU Read/Write

Address: FF40H

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert MUXB0 output signal
		Enable
6	1' b0	0 = disable MUXB0 output
		1 = enable MUXB0 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE MUXB0 control signal falling phase

CPU Read/Write

Address: FF41H

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE MUXB1 control signal rising phase

CPU Read/Write

Address: FF42H

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert MUXB1 output signal
		Enable
6	1' b0	0 = disable MUXB1 output
		1 = enable MUXB1 output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE MUXB1 control signal falling phase

CPU Read/Write

Address: FF43H

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE OFFSET Select 0 control signal rising phase

CPU Read/Write

Address: FF44H

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert OFFSET Select 0 control signal output
		Enable
6	1' b0	0 = disable OFFSET Select 0 control signal output
		1 = enable OFFSET Select 0 control signal output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE OFFSET Select 0 control signal falling phase

CPU Read/Write

Address: FF45H

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE OFFSET Select 1 control signal rising

CPU Read/Write

Address: FF46H

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert OFFSET Select 1 control signal output
		Enable
6	1' b0	0 = disable OFFSET Select 1 control signal output
		1 = enable OFFSET Select 1 control signal output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE OFFSET Select 1 control signal falling

CPU Read/Write

Address: FF47H

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE PGA Select 0 control signal rising phase

CPU Read/Write

Address: FF48H

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert PGA Select 0 control signal output
		Enable
6	1' b0	0 = disable PGA Select 0 control signal output
		1 = enable PGA Select 0 control signal output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE PGA Select 0 control signal falling phase

CPU Read/Write

Address: FF49H

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE PGA Select 1 control signal rising phase

CPU Read/Write

Address: FF4AH

Bit	Reset	Description

		Polarity
7	1' b0	0 = normal operation
		1 = invert PGA Select 1 control signal output
		Enable
6	1' b0	0 = disable PGA Select 1 control signal output
		1 = enable PGA Select 1 control signal output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE PGA Select 1 control signal falling phase

CPU Read/Write

Address: FF4BH

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE GAIN Select 0 control signal rising phase

CPU Read/Write

Address: FF4CH

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert GAIN Select 0 control signal output
		Enable
6	1' b0	0 = disable GAIN Select 0 control signal output
		1 = enable GAIN Select 0 control signal output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE GAIN Select 0 control signal falling phase

CPU Read/Write

Address: FF4DH

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

AFE GAIN Select 1 control signal rising phase

CPU Read/Write

Address: FF4EH

Bit	Reset	Description
		Polarity
7	1' b0	0 = normal operation
		1 = invert GAIN Select 1 control signal output

		Enable
6	1' b0	0 = disable GAIN Select 1 control signal output
		1 = enable GAIN Select 1 control signal output
5:0	6' b0	Define rising phase referenced to 6-bits pixel counter

AFE GAIN Select 1 control signal falling phase

CPU Read/Write

Address: FF4FH

Bit	Reset	Description
7:0	2' b0	Reserved
5:0	6' b0	Define falling phase referenced to 6-bits pixel counter

DMA control register

CPU Read/Write

Address: FF80H

Bit	Reset	Description
		Last scan line:
		0 = not last scan line
7	1' b0	1 = current scan is last line
	1 00	When do last line scan, CPU must set this bit to inform the controller the
		next DMA2 transfer is the last line scan. Clear this bit automatically when
		DMA2 is done.
		Disable DMA2 write to M2
		0 = DMA2 write data to M2 is enable
6	1' b0	1 = skip current DMA2 writing data to M2
U		When this bit is set, the current DMA2 writing data to M2 will be disable.
		DMA2 transfer count will not increment during this bit set high. DMA2
		event will be triggered.
5:4	3' b0	Reserved
	1' b0	SROM download
		0 = normal operation
		1 = re-download code from external EEPROM
3		When this command is requested, CPU will enter reset state and
		re-download the program code stored in external EEPROM. The starting
		address must be defined before set this command. When download is
		completed, CPU is running with the download program code.

		DMA3 enable read image
		DMA3 is defined as the transfer between M2 and PC interface (ECP, EPP,
		or USB).
		When this bit is set to '1', the incoming DMA3 transfer indicates the
	1,1.0	transfer of image data to PC interface. The image valid data byte count
2	1' b0	will decrement by one automatically when DMA3 is a read transfer and
		this bit is set to one. If this bit is cleared to '0', the request for read/write
		M2 by PC interface is just the memory access.
		If the last line scanning is present, this bit will also be cleared
		automatically when DMA2 is completed.
		DMA2 enable
		0 = DMA2 is disable
		1 = DMA2 is enable
		DMA2 is defined as the transfer from sensor input via AFE to M2.
		When each line scan is complete, DMA2 event occurs and DMA2 enable
1	1' b0	bit is cleared automatically.
		The address is started from the current M2 starting address and
		incremented automatically. CPU can poll this bit to determine the line
		scan is end or not. If overrun occurs, i.e., the image buffer is not enough to
		store the incoming image data, this bit will be cleared and disable the
		DMA2 transfer. In this condition, interrupt will be generated.
	1' b0	DMA1 enable
0		DMA1 is defined as the transfer from M2 to M1. The purpose of DMA1 is
		to download the updated program code to M1. The updated program code
		must be stored in M2 before DMA1 is active.
		When this bit is set to '1', DMA1 is active. CPU will be halted and
		transfer data from M2 to M1. This bit will be clear automatically when
		DMA1 transfer is done.

DMA1 transfer bytes Count high byte register

CPU Read/Write

Address: FF81H

Bit	Reset	Description
7:0	8' b0	DMA1 transfer byte count high byte

DMA1 transfer bytes count low byte register

CPU Read/Write

Address: FF82H

Bit	Reset	Description
-----	-------	-------------

7:0 8' b0 DMA1 transfer byte count low byte

Note:

DMA1 transfer bytes count indicates the total bytes that will be transferred from M2 to M1. Before DMA1 is active, set these two registers first.

DMA1 M1 starting address high byte register

CPU Read/Write

Address: FF83H

Bit	Reset	Description
7:0	8' b0	M1 starting address high byte

DMA1 M1 starting address low byte register

CPU Read/Write

Address: FF84H

Bit	Reset	Description
7:0	8' b0	M1 starting address low byte

Note:

DMA1 starting address indicates the initial address when DMA1 is on going. Address is automatically increment by one when one byte transfer is done.

DMA M2 starting address high byte register

CPU Read/Write

Address: FF85H

Bit	Reset	Description
7:0	8' b0	M2 starting address high byte

DMA M2 starting address high byte register

CPU Read/Write

Address: FF86H

Bit	Reset	Description
7:0	8' b0	M2 starting address low byte

Note:

These two registers define the M2 starting address when DMA1 or DMA2 transfer are enable. Note that these two registers are changed on the fly during DMA1 and DMA2. Be careful to set the real initial address before DMA1 or DMA2 is enable.

DMA2 valid byte count high register

CPU Read/Write

Bit	Reset	Description
7:0	8' b0	DMA2 valid byte count high byte

DMA2 valid byte count low register

CPU Read/Write

Address: FF89H

Bit	Reset	Description
7:0	8' b0	DMA2 valid byte count low byte

Note:

These two registers record the valid byte count left in M2. This counter will be increment when DMA2 transfer occurs, and decrement when DMA3 transfer has been issued. Before starting scan first line, CPU has to write '0' to clear contents of these two registers. In normal scanning image process, CPU writes to these two registers are not recommended.

DMA configuration register

CPU Read/Write

Address: FF8AH

Bit	Reset	Description
		AFE data valid phase
		This phase defines the AFE data valid phase referenced to 6-bit dot clock
7:2	6' b0	counter of Timing Generator. This phase can be modified to fit the
		optimized quality of AFE output data .
		Reset DMA2 FIFO
1	1' b0	0 = normal operation
1	1 00	1 = reset DMA2 FIFO.
		Always return '0' when CPU read this bit.
		Select external memory
	1' b0	The external memory is now supported to 64K bytes SRAM.
0		** Entering suspend mode:
U		1. Writing expected output data to M2. (CPU cycle)
		2. Suspend M2
		3. Pin PMDx will output the previous write data to avoid floating output.

DMA2 transfer count high byte register

CPU Read/Write

Address: FF8BH

Bit	Reset	Description
7:0	8' b0	DMA2 transfer count high byte

DMA2 transfer count low byte register

CPU Read/Write

Address: FF8CH

Bit	Reset	Description
7:0	8' b0	DMA2 transfer count low byte

Note:

When DMA2 begins to transfer, these two registers defines the pixel count per line, i.e., when transfer reaches the count defined in these two register, transfer will stop and interrupt will occurs. Also DMA2 enable bit will be cleared. To enable the next line scan, set DMA2 enable again.

DMA2 bypass count high byte register

CPU Read/Write

Address: FF8DH

Bit	Reset	Description
7:0	8' b0	DMA2 bypass count high byte

DMA2 bypass count low byte register

CPU Read/Write

Address: FF8EH

E	Bit	Reset	Description
7	' :0	8' b0	DMA2 bypass count low byte
H			71

Note:

These two registers define the dummy pixel count when DMA2 is enable. Note that DMA2 will be synchronized with TG signal (falling edge) and bypass the dummy pixels count defined here, the following data will be really image data and writes to M2.

DPI setting high byte register

CPU Read/Write

Address: FF8FH

Bit	Reset	Description
7:2	8' b0	Reserved
1:0	2' h2	Dpi setting high byte

DPI setting low byte register

CPU Read/Write

Address: FF90H

Bit R	Reset	Description
7:0 8'	3' h58	Dpi setting low byte

Note:

DPI = (optical sensor dpi) x (dpi setting)/600

For example, if optical sensor is 600 dpi, to get 300 dpi output we set:

 $DPI = (600) \times (300/600) = 300 \text{ dpi}$

Dpi setting must be set to 300 (12c:heximal).

Data type configuration register

CPU Read/Write

Address: FF91H

Bit	Reset	Description	
7	1' b0	Reserved	
6	1' b0	Inverse AFE data	
		When this bit is set the AFE output data will be inverted.	
5	1' b0	CCR[5]	
4	1' b0	Scan mode	
		0 = line mode	
		1 = pixel mode	
3:0	4' b01	CCR[3:0]	

	_			
TSTR.0	CCR[5]	CCR[1:0]	CCR[3:2]	Description
1' bx	1' b1	2' bxx	2' bx0	7 bits compression
1' bx	1' b1	2' bxx	2' bx1	6 bits compression
1' b0	1' b0	2' bx1	2' bxx	8 bits optimize
1' b0	1' b0	2' b10	2' bxx	10 bits non-optimize
1' b0	1' b0	2' b00	2' bxx	12 bits non-optimize
1' b1	1' b0	2' b10	2' bxx	10 bits optimize
1' b1	1' b0	2' b00	2' bxx	12 bits optimize
1' b1	1' b0	2' b01	2' bxx	14 bits non-optimize
1'b1	1' b0	2' b11	2' bxx	16 bits optimize

TSTR.0 = test register bit 0

DMA3 minimum buffer length high byte register

CPU Read/Write

Address: FF92H

Bit	Reset	Description
		*

7:0	8' h0	DMA3 minimum buffer length high byte
-----	-------	--------------------------------------

DMA3 minimum buffer length low byte register

CPU Read/Write

Address: FF93H

Bit	Reset	Description
7:0	8' h40	DMA3 minimum buffer length low byte

Note:

These registers define the minimum buffer length when DMA3 transfer is enabled. If the size of images stored in image buffer is less than defined values, controller will decode not ready signal to USB or EPP, or ECP controller. In the last line scan process, when DMA2 is completed, the not ready signal will be cleared no matter image buffer bytes count are larger or less than these registers.

General-purpose I/O pin control register

CPU Read/Write

Address: FF94H

Bit	Reset	Description
7:0	8' h00	GPIO_en[7:0]
		0 = set PGPIOx to input mode
		1 = set PGPIOx to output mode

GPIO Data Register

CPU Read/Write

Address: FF95H

Bit	Reset	Description	
7:0	8' h00	GPIO_data[7:0]	
		In input mode, read will return corresponding pin status. While in output	
		mode, writing data to this register will simultaneously output to	
		corresponding pin.	

Watch Dog Timer Reset port

CPU Write

Address: FF96H

Bit	Reset	Description
7:0		Writing values to this register with 68h, then 01h will cause resetting of watch-dog-timer. If CPU exceeds 500ms not reset this register, hardware reset will occurs.

AFE suspend register

CPU Write

Address: FF87H

Bit	Reset	Description
7	1' b0	Status of DEV_WAKEUP (Read)
6	1' b0	Reserved
5	1' b1	BIAS_PD2
4	1' b1	CDS_PD2
3	1' b1	CDS_PD1
2	1' b1	CDS_PD0
1	1' b1	PGA_PD
0	1' b1	ADC_PD

AFE configuration register

CPU Write

Address: FF97H

Bit	Reset	Description
7:4	2' b00	Vref sel2[3:0]
3	1' b0	Reserved
2	1' b0	AFE CDS_CTL signal
1:0	2' b0	AFE Switch select

AFE configuration 2 register

CPU Write

Address: FF98H

Bit	Reset	Description
7:4	4' b0	Vref sel1[3:0]
3:0	4' b0	Vref_sel0[3:0]

AFE CDS Offset 0 register

CPU Write

Address: FF99H

Bit	Reset	Description
7:6	2' b00	Reserved
5:0	6' b0	AFE CDS OFFSET for channel 0

AFE CDS PGA 0 register

CPU Write

Address: FF9AH

Dit Neset Description	Bit	Reset Description	
--------------------------	-----	-------------------	--

7:6	2' b00	Reserved
5	1' b0	AFE CDS gain for channel 0

4:0 6' b0 AFE CDS PGA for channel 0	4:0	6' b0	AFE CDS PGA for channel 0
-------------------------------------	-----	-------	---------------------------

AFE CDS Offset 1 register

CPU Write

Address: FF9BH

Bit	Reset	Description
7:6	2' b00	Reserved
5:0	6' b0	AFE CDS OFFSET for channel 1

AFE CDS PGA 1 register

CPU Write

Address: FF9CH

Bit	Reset	Description
7:6	2' b00	Reserved
5	1' b0	AFE CDS gain for channel 1
4:0	6' b0	AFE CDS PGA for channel 1

AFE CDS Offset 2 register

CPU Write

Address: FF9DH

Bit	Reset	Description
7:6	2' b00	Reserved
5:0	6' b0	AFE CDS OFFSET for channel 2

AFE CDS PGA 2 register

CPU Write

Address: FF9EH

Bit	Reset	Description
7:6	2' b00	Reserved
5	1' b0	AFE CDS gain for channel 2
4:0	6' b0	AFE CDS PGA for channel 2

Suspend control register

CPU Read/Write

Address: FF9FH

Bit Reset Description		Description
7	1' b0	cpu_suspend
6	1' b0	Suspend X1

5	1' b0	Suspend 6803

4	1' b0	Select low speed
3	1' b0	Disable PLL reference clock input
2	1' b0	Suspend PLL
1	1' b0	Suspend 6802
0	1'b0	Suspend M2

TEST register

CPU Read/Write

Address: FFFFH

	Bit	Reset	Description
Ī	7:1	1' b0	Always write '0' to these bits
	0	1' b0	AFE select optimize mode

EPP Host Read/Write (EPP access only)

Address: FFH

Bit Reset Description		Description
7 – 6	2' b00	Load program time-out control. Time-out for loading program is controlled by the
		most significant two bits of this 29-bit counter.
		Bit7 Bit6
		0 0 : Don't care bit 28/27
		0 1 : Don't care bit 28, care bit 27
		1 0 : Don't care bit 27, care bit 28
		1 1 : Care bit 28/27
5 – 4	2' b00	Reserved
3	0	Disable time-out counter to self-clear Parallel Port Interface Pass control.
		0:enable counter; 1: disable counter
2	0	Data Access Request: This bit is set when S/W starts to access data, and will be
		cleared automatically after finishing the data access.
1	0	Data Access Acknowledge: This bit is set whenever the data access request from bit
		2 is finished. This bit will be cleared automatically when Data Access Request (bit 2)
		is set by software.
0	1	Read/Write: This bit indicates the direction of EPP host access program RAM.
		1: Write 0: Read (for M1_enable)

Parallel Port High Address Register

EPP Host Read/Write (EPP access only)

Address: FEH

Bit	Reset	Description
7 – 0	-	Address bit 15-8 of program RAM. This register defines the high address of EPP
		host access program RAM.

Parallel Port Low Address Register

EPP Host Read/Write (EPP access only)

Address: FDH

Bit	Reset	Description
7 – 0	-	Address bit 7-0 of program RAM. This register defines the low address of EPP host
		access program RAM.

Parallel Port Data Register

EPP Host Read/Write (EPP access only)

Address: FCH

Bit	Reset	Description
7 – 0	-	8-bit data for EPP host access GT6816.

Image Data Valid High Pointer Register

EPP Host Read/Write (EPP access only)

Address: FBH

Bit	Reset	Description
7 – (8' h00	This byte reflects the high address bit 15-8 of valid image data in buffer.

Image Data Valid High Pointer Register

EPP Host Read/Write (EPP access only)

Address: FAH

Bit	Reset	Description
7 - 0	8' h00	This byte reflects the low address bit 7-0 of valid image data in buffer.

Image Valid Indication Register

EPP Host Read/Write (EPP access only)

Address: F9H

Bit	Reset	Description
7 – 1	-	Reserved.
0	0	Indication of image data. 0/1: invalid/valid

Host Access Device Flag Register

EPP Host Read/Write (EPP access only)

Address: E4H

Bit	Reset	Description
7 – 0	0	When read, the data reflects Device Flag Register which has CPU
		address FFB1h.
		When write, the data is used to handshake with device, default value is
		8' h00.

Note: EPP host access this port must issue ASTROBE# with address E4h first.

During DMA3 transfer, EPP host must issue another ASTROBE# with new address.

Parallel Port Mode Control Register

CPU Read/Write

Address: FFA0H

Bit	Reset	Description
7	0	This bit is used to select HOST or PRINTER bus to be read from
	Ů.	address FFA1h and address FFA3h. (RD PRINTER). 0/1: HOST /
6	0	GT6816 will be forced to scanner mode if this bit is high "1".
5	_	This is read only bit to reflect scanner mode or pass-through mode.
J		0/1 : pass-through mode / scanner mode
4		Clear scanner mode and changes to pass-through mode. 1/0: clear / no
4	U	action
3	0	Printer chain control selection. After loading the program, this bit must
<i>3</i>	Ů.	be set, in order to control the chain printer by bit 4.
		Parallel Port Mode selection.
		Bit2 Bit1 Bit0
2 - 0	000	1 0 0 Controlled by S/W
		0 0 EPP mode, controlled by H/W automatically
		0 0 1 ECP mode, controlled by H/W automatically

Notes: 1. There are three methods to enter scanner mode:

- (a) After protect / release sequence
- (b) After scanner mode data sequence
- (c) After setting bit 6 of address FFA0h
- 2. Only one way to return pass-through mode: Set bit 4 of address FFA0h

Parallel Port Host Status Register

CPU Read/Write

Address: FFA1H

Bit	Reset	Description
7	1	IN / OUT selection of bit 3 of data bus of host parallel port. When output is
	1	selected bit 7 of FFA3h must be set to high 0 / 1 · Output / Input
6	1	IN / OUT selection of bit 2 of data bus of host parallel port. When output is
0	1	selected, bit 7 of FFA3h must be set to high. 0 / 1 : Output / Input
5	1	IN / OUT selection of bit 1 of data bus of host parallel port. When output is
3	1	selected, bit 7 of FFA3h must be set to high, 0 / 1 : Output / Input
4	1	IN / OUT selection of bit 0 of data bus of host parallel port. When output is
	1	selected, bit 7 of FFA3h must be set to high, 0 / 1 : Output / Input
3	-	Status bit for HostClk (ECP) / nWrite (EPP) / nStrobe (SPP)
2	-	Status bit for HostAck (ECP) / nDStrb (EPP) / nAutoFd (SPP)
1	_	Status bit for Active1284 (ECP) / Nastrb (EPP) / nSelectIn (SPP)
0	_	Status bit for nReverseRequest (ECP) / nInit (EPP.SPP)

Notes: 1. Data written to bit 3-0 will be put on printer control bus if this device is in scanner mode.

2. When RD_PRINTER is low, reading bit 3-0 to reflect EPP HOST control signals.

When RD_PRINTER is high, reading bit 3-0 to reflect the written data.

3. RD_PRINTER is bit 7 of address FFA0h.

Parallel Port Host Data Register

CPU Read/Write

Address: FFA2H

Bit	Reset	Description
7 – 0	8' h00	When write, data will be put on parallel port data bus if DATA_OE = 1
		(bit 7 of address FFA3h).
		When read, it reflects the data status in parallel port.

Parallel Port Device Status Register

CPU Read/Write

Address: FFA3H

Bit	Reset	Description
7	0	Enable Parallel Port Reverse transfer. Data bus will be driven from
		Parallel Port Output Data register (address=FFA4h) to bus.
		(DATA_OE)
		0: disable ; 1: enable
		Note: It is a necessary condition to output data before setting this bit to
		high, however, bit 3-0 of parallel port is also controlled by bit 7-4 of
		address FFA1h.
6	0	Disable image_data_not_ready signal on UsrDf1 in hardware EPP
		mode.
		0/1: enable / disable
5	0	Reserved
4	0	Device status : nPeripRqst (ECP) / UsrDf2 (EPP) / nFault (SPP)
3	0	Device status: Xflag (ECP) / UsrDf3 (EPP) / Select (SPP)
2	0	Device status : nAckReverse (ECP) / UsrDf1 (EPP) / Perror (SPP)
1	0	Device status: PeripAck (ECP) / nWait (EPP) / Busy (SPP)
0	0	Device status : PeripClk (ECP) / Intr (EPP) / nAck (SPP)

Notes: 1. Data written to bit 4-0 will be put on host parallel port (Excluding hardware control signals)

- 2. When RD_PRINTER is low, reading bit 4-0 to reflect written data. When RD_PRINTER is high, reading bit 4-0 to reflect PRINTER status signals.
 - 3. RD_PRINTER is bit 7 of address FFA0h.

EPP/USB DMA3 Start High Address Register

CPU Read/Write

Address: FFA5H

Bit	Reset	Description
7 – 0	00h	For write, it is bit 15-8 of EPP DMA3 starting address.
		For read, it reflects the data of bit 15-8 of current counting address

EPP/USB DMA3 Start Low Address Register

CPU Read/Write

Address: FFA6H

Bit	Reset	Description
7 – 0	00h	For write, it is bit 7-0 of EPP DMA3 starting address.
		For read, it reflects the data of bit 7-0 of counting address

Note: It is up counter for DMA address.

EPP DMA3 Byte Count High Register

CPU Read/Write

Address: FFA7H

Bit	Reset	Description
7 – 0	00h	The bit 15-8 of byte count for DMA3 transfer. (EPP only)

EPP DMA3 Byte Count Low Register

CPU Read/Write

Address: FFA8H

Bit	Reset	Description
7 - 0	00h	The bit 7-0 of byte count for DMA3 transfer. (EPP only)

Note: There will transfer n byte if byte count is programmed n

USB/EPP DMA3 Control Register

CPU Read/Write

Address: FFA9H

Bit	Reset	Description
7 – 5	111	Setup time to be added after receiving M22IP_ACK.
		Tsetup = Tcpu period * bit[7:5] + Tnwait to dstrobe
4	0	USB transmit/receive target selection. 0: SRAM(M2), 1:internal 8
		bytes
		For internal 8 bytes RX/TX, index 0 register is first.
3	0	DMA3 read or write. 0: read; 1:write
2	1	EPP/USB selection for DMA3 transfer. 1: EPP mode: 0:USB mode
1	0	DMA3 byte-count load. This bit will be self-cleared after loading byte
		count.
		For EPP mode, byte count will be loaded when writing "1" to this bit.
		For USB mode, byte count and packet count will be loaded when

		bit. After loading byte count, USB TX is enabled automatically.
0	0	Enable EPP DMA3 transfer. 0: disable; 1:enable.
		This bit will be cleared after finishing the DMA3 transfer. This bit is
		for EPP mode only.

Top Interrupt Status Register (1A -- with bit 7 of address FFB0h= 0)

CPU Read/Write

Address: FFAAH

Bits	Reset	Description
7	0	Reserved
6	0	ECP send command event. 0:clear. Writing "1", the state is not
		changed
5	0	EPP read address E4h event. 0:clear. Writing "1", the state is not
		changed
4	0	EPP write address E4h event. 0:clear. Writing "1", the state is not
		changed.
3	0	DMA3 transmit done. 0: clear. Writing "1", the state is not changed.
2	0	DMA2 transmit done. 0:clear: Writing "1". the state is not changed.
1	0	Memory data overrun. 0:clear: Writing "1". the state is not changed.
0	0	Global USB interrupt event. 0 : clear ; 1 : set (read only)
		This bit reflects all the USB events.

Note: These bits are set by event, and cleared by writing "0" to this bit

Top Interrupt Status Register (1B -- with bit 7 of address FFB0h= 1)

CPU Read/Write

Address: FFAAH

Bits	Reset	Description
7 - 1	0	Reserved
0	0	TG event, 0:clear; Writing "1", the state is not changed.

Note: These bits are set by event, and cleared by writing "0" to this bit

USB Interrupt Status 2 Register

CPU Read/Write

Address: FFABH

Bits	Reset	Description
7	0	NAK flag after USB EP2 RX done. 0: clear; Writing "1", the state is not changed.
6	0	NAK flag after USB EP1 RX done. 0: clear; Writing "1", the state is not changed.
5	0	NAK flag after USB EP0 RX done. 0: clear; Writing "1", the state is not changed.
4	0	Detect USB Bus reset event. 0: clear; Writing "1", the state is not changed.
3	0	This read-only bit reflects USB remote wake-up event (from device).
2	0	Detect USB bus suspend event. 0: clear; Writing "1", the state is not changed.
1	0	This read-only bit reflects USB bus resume event.
0	0	Detect USB Start of Frame (SOF). 0: clear; Writing "1", the state is not changed.

Note: These bits are set by event, and cleared by writing "0" to this bit

USB Interrupt Status Register (1A -- with bit 7 of address FFB0h= 0)

CPU Read/Write

Address: FFACH

Bits	Reset	Description
7	0	Reserved
6	0	RX byte-count match event. 0: clear; Writing "1", the state is not changed.
5	0	USB EP2 RX Done. 0: clear; Writing "1", the state is not changed.
4	0	USB EP2 TX Done. 0: clear; Writing "1", the state is not changed.
3	0	USB EP1 RX Done. 0: clear; Writing "1", the state is not changed.
2	0	USB EP1 TX Done. 0: clear; Writing "1", the state is not changed.
1	0	USB EP0 RX Done (SETUP & OUT). 0: clear; Writing "1", the state is not changed.
0	0	USB EP0 TX Done. 0: clear; Writing "1", the state is not changed.

USB Interrupt Status Register (1B -- with bit 7 of address FFB0h= 1)

CPU Read/Write

Address: FFACH

Bits	Reset	Description
7 – 6	-	Reserved
5	0	USB TX under-run error. 0: clear; Writing "1", the state is not changed.
4	0	OUT data toggle bit error for EP2. 0: clear; Writing "1", the state is not changed.
		(OUT-DATAx-ACK//OUT-DATAx-ACK, HUB doesn't receive ACK)
3	0	TX data toggle bit error for EP1. 0: clear; Writing "1", the state is not changed.
		(IN-DATA-no ACK from HUB)
2	0	TX data toggle bit error for EP0. 0: clear; Writing "1", the state is not changed.
		(IN-DATA-no ACK from HUB)
1	0	USB EP0 RX Done for OUT. 0: clear; Writing "1", the state is not changed.
0	0	USB EP0 RX Done for SETUP. 0: clear; Writing "1", the state is not changed.

Top Interrupt Enable Register (1A -- with bit 7 of address FFB0h= 0)

CPU Read/Write

Address: FFADH

Rits	Reset	Description
7	0	Global Enable Interrupt for peripheral module. 0: disable ; 1:enable
6	0	Enable interrupt for ECP host send-command. 0:disable: 1:enable
5	0	Enable interrupt for EPP read address E4h event. 0:disable. 1:enable
4	0	Enable interrupt for EPP write address E4h event. 0:disable. 1:enable
3	0	Enable Interrupt for detecting DMA3 TX done. 0: disable : 1: enable
2	0	Enable Interrupt for detecting DMA2 TX done. 0:disable : 1:enable
1	0	Enable Interrupt for detecting memory overrun. 0:disable ; 1:enable
0	0	Enable Interrupt for global USB event. 0 : disable ; 1 : enable

Top Interrupt Enable Register (1B -- with bit 7 of address FFB0h= 1)

CPU Read/Write

Address: FFADH

Bits	Reset	Description
7 - 1	0	Reserved
1	0	Select TG event. 0: /INT0 1: /INT1
0	0	Enable TG event. 0 : disable : 1 : enable

USB Interrupt Enable 2 Register

CPU Read/Write

Address: FFAEH

Rite	Reset	Description
7	0	Enable NAK for detecting USB EP2 RX done. 0:disable : 1:enable
6	0	Enable NAK for detecting USB EP1 RX done. 0:disable : 1:enable
5	0	Enable NAK for detecting USB EP0 RX done. 0:disable : 1:enable
4	0	Enable Interrupt for detecting USB bus reset event. 0 : disable : 1 : enable
3	0	Enable Interrupt for detecting USB remote wake-up event. 0 : disable : 1 : enable
2	0	Enable Interrupt for detecting USB bus suspend event. 0 : disable : 1 : enable
1	0	Enable Interrupt for detecting USB bus resume event. 0 : disable : 1 : enable
0	0	Enable Interrupt for detecting USB Start of Frame (SOF). 0 : disable : 1 : enable

USB Interrupt Enable Register (1A -- with bit 7 of FFB0h= 0)

CPU Read/Write

Address: FFAFH

Rits	Reset	Description
7	0	Reserved
6	0	Enable RX byte-count match event. 0:disable: 1: enable
5	0	Enable Interrupt for USB EP2 RX Done. 0 : disable : 1 : enable
4	0	Enable Interrupt for USB EP2 TX Done. 0 : disable : 1 : enable
3	0	Enable Interrupt for USB EP1 RX Done. 0 : disable : 1 : enable
2	0	Enable Interrupt for USB EP1 TX Done. 0 : disable : 1 : enable
1	0	Enable Interrupt for USB EP0 RX Done. 0 : disable : 1 : enable
0	0	Enable Interrupt for USB EP0 TX Done. 0 : disable : 1 : enable

USB Interrupt Enable Register (1B -- with bit 7 of FFB0h= 1)

CPU Read/Write

Address: FFAFH

Rite	Reset	Description
7	0	Enable NAK for USB EP2 RX data-toggle error. 0: disable; 1:enable
6	0	Enable NAK for USB EP1/EP0 TX data-toggle error. 0: disable: 1:enable
5	0	Enable Interrupt for USB TX under-run error. 0:disable; 1:enable
4	0	Enable Interrupt for USB EP2 OUT data-toggle error. 0: disable: 1:enable
3	0	Enable Interrupt for USB EP1 TX data-toggle error. 0: disable: 1:enable
2	0	Enable Interrupt for USB EP0 TX data-toggle error. 0: disable: 1:enable
1	0	Enable Interrupt for USB EP0 RX Done for OUT. 0: disable; 1:enable
0	0	Enable Interrupt for USB EP0 RX Done for SETUP. 0: disable: 1:enable

Interrupt Select Register

CPU Read/Write

Address: FFB0H

Bits	Reset	Description
7	0	Select USB interrupt enable register or USB interrupt status register to read or write.
		0: USB interrupt status register 1A and USB interrupt enable register 1A
		0: USB interrupt status register 1B and USB interrupt enable register 1B
6	0	Select ECP-host send-command event. 0: /INT0 1: /INT1
5	0	Select EPP read address E4h event. 0: /INT0. 1: /INT1
4	0	Select EPP write address E4h event. 0: /INT0. 1: /INT1
3	0	Select Interrupt for detecting DMA3 TX done. 0: /INT0: 1: /INT1
2	0	Select Interrupt for detecting DMA2 TX done. 0: /INT0 ; 1: /INT1
1	0	Select Interrupt for detecting memory overrun. 0: /INT0 : 1: /INT1
0	0	Select Interrupt for all USB events. 0: /INT0; 1: /INT1

Device Flag Register

CPU Read/Write

Address: FFB1H

Bit	Reset	Description
7 – 0	-	When write: The CPU written data will be latched in buffer, and can be read from
		EPP Host with E4h address. The default value is 8' h00
		When read: The data comes from EPP Host port E4h (Host Access Device Flag
		Register)

DMA3 Byte Count Auto-Reload Control Register

CPU Read/Write

Address: FFB2H

Bit	Reset	Description
7 – 5	-	Reserved
4	0	Enable DMA counting value to be read. 0/1: disable/enable
3	0	Flush USB TX prefetch-buffer. 0/1: disable/enable
2	0	Force USB TX to be stopped. 0/1: normal / stop
1	0	Load TX packet count automatically when packet counter reaches zero (for USB)
		When this bit is set, USB TX data is always enabled until this bit is cleared by CPU.
		0/1:disable /enable
0	0	Load DMA3 byte count automatically when counter reaches zero (for EPP)
		When this bit is enabled, DMA3 is not disabled by hardware, it must be cleared by
		firmware. 0/1:disable /enable

USB Received Byte Count Low Register

CPU Read/Write

Address: FFB3H

Bits Reset Description	I	Bits	Reset	Description
----------------------------	---	------	-------	-------------

7-0 8' b0 The bit 7-0 of byte count of received date	ta
--	----

USB Received Byte Count High Register

CPU Read/Write

Address: FFB4H

	Rits	Reset	Description
	7 – 5	1	Reserved
I	4 – 0	5' b0	The bit 12-8 of byte count of received data

USB Received Byte Count Low Register to Generate Interrupt

CPU Read/Write

Address: FFB5H

	Rits	Reset	Description
,	7 – 0	8' b0	The bit 7-0 of byte count of USB RX data to generate interrupt

USB Received Byte Count High Register to Generate Interrupt

CPU Read/Write

Address: FFB6H

Rits	Reset	Description
7 – 5	3' b0	Reserved
4 – 0	5' b0	The bit 12-8 of byte count of USB RX data to generate interrupt

USB Request Type Register (USB setup command)

CPU Read Only

Address: FFB8H

Bit	Reset	Description
7 - 0	0	BmRequestType (offset=0 in SETUP command). Write from USB,
		Read from CPU

USB Request Code Register (USB setup command)

CPU Read Only

Address: FFB9H

Bit	Reset	Description
7 - 0	0	Brequest (offset=1 in SETUP command). Write from USB, Read
		from CPU

USB Request Value Low Byte Register (USB setup command)

CPU Read Only

Address: FFBAH

	Bit	Reset	Description
--	-----	-------	-------------

7 - 0	0	Wvalue (low byte, offset=2 in SETUP command). Write from USB,
		Read from CPU

USB Request Value High Byte Register (USB setup command)

CPU Read Only

Address: FFBBH

Bit	Reset	Description
7 - 0	0	Wvalue (high byte, offset=3 in SETUP command). Write from USB,
		Read from CPU

USB Request Index Low Byte Register (USB setup command)

CPU Read Only

Address: FFBCH

Bit	Reset	Description
7 - 0	0	Windex (low byte, offset=4 in SETUP command). Write from USB,
		Read from CPU

USB Request Index High Byte Register (USB setup command)

CPU Read Only

Address: FFBDH

Bit	Reset	Description
7 - 0	0	Windex (high byte, offset=5 in SETUP command). Write from USB,
		Read from CPU

USB Request Length Low Byte Register (USB setup command)

CPU Read Only

Address: FFBEH

В	it	Reset	Description
7 -	- 0	0	Wlength (low byte, offset=6 in SETUP command). Write from USB,
			Read from CPU

USB Request Length High Byte Register (USB setup command)

CPU Read Only

Address: FFBFH

Bit	Reset	Description
7 – 0	0	Wlength (high byte, offset=7 in SETUP command). Write from
		USB, Read from CPU

USB Endpoint Index Register (USB setup command)

CPU Read Only

Address: FFC0H

Bits	Reset	Description		
7 - 2	0	Reserved		
	2' b0	Endpoint Bit[1:0		
1 0		00	Endpoint 0	
1 - 0		01	Endpoint 1	
		10	Endpoint 2	
		11	Reserved	

DMA3 USB Status Register

CPU Read Only

Address: FFC1H

Bits	Reset	Description	
7 - 2	-	Reserved. Read as "0"	
1	-	This read-only bit reflects Image_not_rdy status	
0	_	This read-only bit reflects TX_NOT_RDY status	

DMA3 USB TX Byte Count for Internal 8-byte Register

CPU Read/Write

Address: FFC2H

Bits	Reset	Description	
7	-	Reserved	
6-0	0	Byte_Cnt8[6:0]. This byte count value is used when bit 4 of address	
		FFA9h is high.	

DMA3 USB TX Packet Size 2 Register (1A -- with bit 7 of FFB0h= 0)

CPU Read/Write

Address: FFC3H

Bits	Reset	Description	
7 - 2	0	Reserved	
1 - 0	0	USB_pkt_size[9:8]. Bit 9-8 of USB TX packet size	

DMA3 USB TX Packet Size 1 Register (1A -- with bit 7 of FFB0h= 0)

CPU Read/Write

Address: FFC4H

Bits	Reset	Description
7 - 0	0	USB_pkt_size[7:0]. Bit 7-0 of USB TX packet size

DMA3 Disable Counting Register 2 (1B -- with bit 7 of FFB0h= 1)

CPU Read/Write

Address: FFC3H

Bits	Reset	Description	
7	0	Enable to stop counting for DMA3 transfer. 0/1: disable/enable	
6	0	Enable hardware to solve IN-DATA-time-out recover (packet size 64 only).	
		/1: disable / enable	
5	0	Enable 8-byte registers USB TX request. 0/1: disable / enable	
4	-	Reserved	
3	0	Disable M2 USB TX request. 0/1: enable / disable	
2	ı	Reserved	
1 - 0	0	Stop DMA3 Count[9:8]. Bit 9-8 of stop DMA3 transfer count.	

DMA3 Disable Counting Register 1 (1B -- with bit 7 of FFB0h= 1)

CPU Read/Write

Address: FFC4H

Bits	Reset	Description
7 – 0	0	Stop DMA3 Count[7:0]. Bit 7-0 of stop DMA3 transfer count.

DMA3 USB TX Packet Count 2 Register

CPU Read/Write

Address: FFC5H

Bits	Reset	Description
7 – 0	0	For write: USB_pkt_count[15:8]. Bit 15-8 of USB TX packet count
		For read: When bit 4 of FFB2h is low, it reflects the written data of register
		When bit 4 of FFB2h is high, it reflects bit 15-8 of counting byte

DMA3 USB TX Packet Count 1 Register

CPU Read/Write

Address: FFC6H

Bits	Reset	Description
7 – 0	0	For write: USB_pkt_count[7:0]. Bit 7-0 of USB TX packet count
		For read: When bit 4 of FFB2h is low, it reflects the written data of
		register
		When bit 4 of FFB2h is high, it reflects bit 7-0 of counting
		byte

Note: The total TX byte count is Usb_pkt_count * USB_pkt_size.

Interrupt will be generated after total TX Byte Count is reached.

DMA3 USB Receive Packet Size Register 1 (1A -- with bit 7 of FFB0h= 0)

CPU Read/Write

Address: FFC7H

DMA3 USB Receive packet size Register 1A (with bit 7 of FFB0h= 0): Address =

FFC7

Bits	Reset	Description
7 – 0	8' b0	Packet size of current received packet

USB Debug Register 1 (1B -- with bit 7 of FFB0h= 1)

CPU Read/Write

Address: FFC7H

Bits	Reset	Description
7	0	Enable to detect OUT error protocol. 0/1: disable/enable
6	0	Enable to detect EP0 IN error protocol. 0/1: disable/enable
5	0	Enable to detect EP1 IN error protocol. 0/1: disable/enable
4 - 0	0	Reserved

USB Endpoint Control Register

CPU Read/Write

Address: FFC8H

EPIDX	EPIDX[1:0]=2`b00,EPCON0; EPIDX[1:0]=2`b01,EPCON1			
EPIDX	[1:0]=2`b	10,EPCON2 (selected by FFC0h)		
Bits	Reset	Description		
7	0	Stall Receive Endpoint (SRE): If this bit is set, this endpoint will stall OUT token.		
6	0	Stall Transmit Endpoint (STE): If this bit is set, this endpoint will stall IN token.		
5	1	Control Endpoint (CE): This bit is set for EP0 only.		
4	0	ISO: Isochronous transfer		
	1	Receive Input Enable (RIE):		
3		When disabled, this endpoint returns a NAK to OUT token.		
		Endpoint Receive Enable (RE):		
2	1	When disabled, the endpoint does not respond to OUT token.		
		Transmit Output Enable (TOE):		
1	1	When disabled, the endpoint returns a NAK to IN token.		
0	1	Endpoint Transmit Enable (TE):		
0	1	When disabled, the endpoint does not respond to IN token.		

USB Endpoint Transmit Status Register

CPU Read/Write

Address: FFC9H

EPIDX[1	EPIDX[1:0]=2`b00,EP_TXST0 ; EPIDX[1:0]=2`b01,EP_TXST1		
EPIDX[1	1:0]=2`b	10,EP_TXST2 (selected by FFC0h)	
Bits	Reset	Description	
7	0	Transmit Sequence (TSEQ):	
		This bit will be transmitted in the next PID and toggled on a valid ACK handshake.	
6 – 3	3' b0	Reserved. "0" when read	
2	0	Transmit Time-out (TOUT):	
		This bit is set when time-out occurred. (no ACK after DATA phase)	
1	0	Transmit Error (TERR):	
		This bit is set when error occurred, or this endpoint responds NAK to IN token.	
0	0	Transmit Acknowledge (TACK): When this bit is set, means the data	
		transmission is completed and acknowledge successfully.	

USB Endpoint Receive Status Register

CPU Read/Write

Address: FFCAH

EPIDX[EPIDX[1:0]=2`b00,EP_RXST0; EPIDX[1:0]=2`b01,EP_RXST1		
EPIDX	[1:0]=2`b	10,EP_RXST2 (selected by FFC0h)	
Bits	Reset	Description	
7	0	Receive Sequence Bit (RSEQ): When receiving endpoint sequence, this bit is set.	
6	0	Receive Setup Token (RSETUP): When receiving the SETUP token, this bit is set.	
5 - 3	0	Reserved	
2	0	Receive Time-out (ROUT):	
2		This bit is set when time-out occurred. (No DATA after OUT token)	
1	0	Receive Error (RERR):	
1		This bit is set when error occurred, or this endpoint responds NAK to OUT token.	
0	0	Receive Acknowledge (RACK): When this bit is set, means the data reception is	
0		completed and acknowledge successfully.	

USB Device Address Register

CPU Read/Write

Address: FFCBH

Bits	Reset	Description
7	0	Reserved
6-0	7′ b0	Device Address[6:0]. Address is programmed through the command
		received from EP0 during the enumeration stage.

USB Device Control Register

CPU Read/Write

Address: FFCCH

Bits	Reset	Description
7	0	USB bus will be forced to SE0 state if this bit and bit 5 are high.
6	0	This state of this bit will be put on USB data bus when bit 5 is enabled.
		USB transceiver output enable. When this bit is set, transceiver output is forced to
5	0	enable and bit 6 will be put on D+. This function is used to enumerate device
		insertion or remove .0 / 1: disable / enable
4 - 3	0	Reserved
2	0	Enable suspend/resume timer to detect suspend/resume event in USB bus
2	0	0 : disable ; 1 : enable
1	1	Enable reset timer to detect reset event in USB bus. 0 : disable ; 1 : enable
0	0	Put transceiver in power down mode. 0 : normal mode ; 1 : power down mode

USB Device Status Transmit Register 0 (DSTR0)

CPU Read/Write

Address: FFD0H

Bits	Reset	Description
	110000	2 00011011011

		-
7 0		DCTD017.01
1/ - ()	I()	IDS 1 ROL/'01
, ,	0	DSTRO[7.0]

USB Device Status Transmit Register 1 (DSTR1)

CPU Read/Write

Address: FFD1H

Bits	Reset	Description
7 - 0	0	DSTR1[7:0]

USB Device Status Transmit Register 2 (DSTR2)

CPU Read/Write

Address: FFD2H

Bits	Reset	Description
7 - 0	0	DSTR2[7:0]

USB Device Status Transmit Register 3 (DSTR3)

CPU Read/Write

Address: FFD3H

Bits	Reset	Description
7 - 0	0	DSTR4[7:0]

USB Device Status Transmit Register 5 (DSTR5)

CPU Read/Write

Address: FFD5H

Bits	Reset	Description
7 - 0	0	DSTR5[7:0]

USB Device Status Transmit Register 6 (DSTR6)

CPU Read/Write

Address: FFD6H

Bits	Reset	Description
7 - 0	0	DSTR6[7:0]

CPU Read/Write

Address: FFD7H

Bits	Reset	Description
7 - 0	0	DSTR7[7:0]

Note: TX sequence is DSTR0 -> DSTR1 -> ... > DSTR7

USB Device Command Receive Register 0 (DCRR0)

CPU Read Only

Address: FFD8H

Bits	Reset	Description
7 – 0	0	DCRR0[7:0]

USB Device Command Receive Register 1 (DCRR1)

CPU Read Only

Address: FFD9H

Bits	Reset	Description
7 – 0	0	DCRR1[7:0]

USB Device Command Receive Register 2 (DCRR2)

CPU Read Only

Address: FFDAH

Bits	Reset	Description
7 – 0	0	DCRR2[7:0]

USB Device Command Receive Register 3 (DCRR3)

CPU Read Only

Address: FFDBH

Bits	Reset	Description
7 - 0	0	DCRR3[7:0]

USB Device Command Receive Register 4 (DCRR4)

CPU Read Only

Address: FFDCH

Bits	Reset	Description
7 - 0	0	DCRR4[7:0]

USB Device Command Receive Register 5 (DCRR5)

CPU Read Only

Address: FFDDH

Bits	Reset	Description
7 - 0	0	DCRR5[7:0]

USB Device Command Receive Register 6 (DCRR6)

CPU Read Only

Address: FFDEH

Bits	Reset	Description
7 - 0	0	DCRR6[7:0]

USB Device Command Receive Register 7 (DCRR7)

CPU Read Only

Address: FFDFH

Bits	Reset	Description
7 - 0	0	DCRR7[7:0]

Note: Receive sequence is DCRR0 -> DCRR1 -> ... -> DCRR7

The program memory can be read or written through EPP host, however, the procedure must be followed. The summary is listed as below.

1. Write Procedure:

- (a) Writing high address index by software (nAStrb, high address index)
- (b) Writing high address data by software (nDStrb, high address data)
- (c) Writing low address index by software (nAStrb, low address index)
- (d) Writing low address data by software (nDStrb, low address data)
- (e) Writing data index by software (nAStrb, data index)
- (f) Writing data by software (nDStrb, data)
- (g) Writing control register to request transfer, and ACK is cleared by hardware
- (h) Writing data to program memory by hardware
- (i) ACK bit is set by hardware, REQUEST is cleared by hardware

2. Read Procedure:

- (a) Writing high address index by software (nAStrb, high address index)
- (b) Writing high address data by software (nDStrb , high address data)
- (c) Writing low address index by software (nAStrb, low address index)
- (d) Writing low address data by software (nDStrb , low address data)
- (e) Writing control register to request transfer by software, and ACK is cleared by hardware
- (f) Reading data from program memory by hardware
- (g) ACK bit is set by hardware, REQUEST is cleared by hardware
- (h) Writing data index by software (nAStrb, data index)
- (i) Reading data by software (nDStrb, data)

There are three special modes defined in GT6816. The first one is protect mode, it defines the mode which program can be read or written by EPP host. The second one is release mode, it defines the end of program memory can be accessed by EPP host. The protect mode and release modes are used to start and end of accessing program memory. The last one is scanner mode, it defines the signals from EPP host will be passed to printer chain or not?

By sampling the data on the EPP host data bus, these three modes will be detected. These special sequences are defined in 32 bytes consecutive data. The detail codes for these three modes are listed as below.

PROTECT	RELEASE	SCANNER MODE
1. 01010101 (55H)	01010101 (55H)	01010101 (55H)
2. 01011101 (5DH)	01011101 (5DH)	01011101 (5DH)
3. 01111101 (7DH)	01111101 (7DH)	01111101 (7DH)
4. 01111111 (7FH)	01111111 (7FH)	01111111 (7FH)
5. 11111111 (FFH)	11111111 (FFH)	11111111 (FFH)
6. 11111110 (FEH)	11111110 (FEH)	11111110 (FEH)
7. 11101110 (EEH)	11101110 (EEH)	11101110 (EEH)
8. 11100110 (E6H)	11100110 (E6H)	11100110 (E6H)
9. 10100110 (A6H)	10100110 (A6H)	10100110 (A6H)
10. 10100010 (A2H)	10100010 (A2H)	10100010 (A2H)
11. 00100010 (22H)	00100010 (22H)	00100010 (22H)
12. 00100000 (20H)	00100000 (20H)	00100000 (20H)
13. 00000000 (00H)	00000000 (00H)	00000000 (00H)
14. 00000001 (01H)	00000001 (01H)	00000001 (01H)
15. 10000001 (81H)	10000001 (81H)	10000001 (81H)
16. 10000011 (83H)	10000011 (83H)	10000011 (83H)
17. 11000011 (C3H)	11000011 (C3H)	11000011 (C3H)
18. 11001011 (CBH)	11001011 (CBH)	11001011 (CBH)
19. 01001011 (4BH)	01001011 (4BH)	01001011 (4BH)
20. 01001010 (4AH)	01001010 (4AH)	01001010 (4AH)
21. 01101010 (6AH)	01101010 (6AH)	01101010 (6AH)
22. 01101000 (68H)	01101000 (68H)	01101000 (68H)
23. 01111000 (78H)	01111000 (78H)	01111000 (78H)
24. 01111001 (79H)	01111001 (79H)	01111001 (79H)
25. 11111001 (F9H)	11111001 (F9H)	11111001 (F9H)
26. 11111101 (FDH)	11111101 (FDH)	11111101 (FDH)
27. 11011101 (DDH)	11011101 (DDH)	11011101 (DDH)
28. 11010101 (D5H)	11010101 (D5H)	11010101 (D5H)
29. 10010101 (95H)	10010101 (95H)	10010101 (95H)

30. 10010100 (94H)	10010100 (94H)	10010100 (94H)
31. 00010100 (14H)	00010100 (14H)	00010100 (14H)
32. 00011100 (1CH)	00010101 (15H)	00111100 (3CH)

1. USB Overview

The USB hardware includes a USB function with one upstream port. The USB port interfaces to the micro-controller through a high-speed serial interface engine (SIE). This micro-controller provides the functionality of standard USB commands and scanner commands.

1-1 USB Serial Interface Engine (SIE)

In order to allow the micro-controller to communicate with the USB host. The SIE handles the following USB bus activity:

- (a) NRZI decode / encode
- (b) Bit stuffing / un-stuffing
- (c) Checksum generation and checking
- (d) Address checking
- (e) Token type identification
- (f) Time-out check

Firmware is required to handle the rest of USB interface:

- (a) Flow of USB bus enumeration
- (b) Function of USB standard commands
- (c) Function of scanner commands
- (d) Data transfer from buffer to USB host
- (e) Down-load program code from USB host

1-2 USB Enumeration

The enumeration sequence is the process that the USB host uses to identify and manage the state of device when a USB device is attached to or removed from the USB. When a USB device is attached, the following actions are undertaken from device side:

- (a) USB host sends RESET command
- (b) USB host sends SETUP command with address 0 to get device descriptor
- (c) After receiving device descriptor, USB host sends SETUP command with new address to device
 - (d) Device must store the new address after receiving the SETUP command
 - (e) The host sends SETUP command with new address to get device descriptor
 - (f) The host sends SETUP command to get configuration descriptor or other descriptor
 - (g) Enumeration is complete after the host has received all the descriptor

1-3. Control pipe (Endpoint 0)

Endpoint 0 is a bi-direction USB control endpoint. The USB host sends SETUP command to device through endpoint 0, this 8-byte command will be stored at GT6816 internal buffers which can be read by micro-controller from address FFB8H to FFBFH. The micro-controller must read command and interpret

command, and then handle the request from USB host. Both the USB standard commands and vendor-specific commands are through endpoint 0.

1-4. Image Line Buffer Read Pipe (Endpoint 1)

Endpoint 1 is a USB BULK-IN pipe that transmits each packet of 64 bytes. This endpoint is used to send image data from buffer to USB host. The total packet count to be transmitted is depended on the DMA3 USB TX Packet Count 2 Register (FFC5H), DMA3 USB TX Packet Count 1 Register (FFC6H) and DMA3 Byte Count Auto-Reload Control Register (FFB2H).

1-5. Host Data Write Pipe (Endpoint 2)

Endpoint 2 is a USB BULK-OUT pipe that receives packet up to 64 bytes in length. The received data can be written to image line buffer, the beginning address is specified in the EPP/USB DMA3 Start High Address Register (FFA5H) and EPP/USB DMA3 Start Low Address Register (FFA6H). The interrupt can be generated for each OUT transaction or last OUT transaction, it is easier for firmware to handle large data transfer.

VII. System Block Diagram

1. 16-bits Analog Front End(AFE)

The Gain through each channel can be set between 0.8x and 7.8x. The Offset provides up to +/-1.5V of offset correction. The gain and offset stages should be adjusted during coarse calibration so that input signal is a maximum of ? at the ADC input.

The digital data comes from a 6 MHz 16-bit pipelined ADC. The output data is formatted as a 16 bit word.

2. Clock source

GT6816 uses 6MHz external crystal as the input clock. Typically when **PPLL_EN_** is pull to low, internal built-in PLL is enable and output 48MHz as the master clock to eliminate EMI effects. As PPLL_EN_ is pull to high, PLL is disabled and external crystal output is directly sent to internal as the master clock. In this mode, always use 48MHz crystal as the input clock source.

3. External Serial EEPROM interface

GT6816 support I2C serial EEPROM interface for updating program code on the power-on state. GT6816 searches the external serial EEPROM on the power-on state. If no serial EEPROM is present, embedded program code will be used. This is helpful when system is on the developing state. Note that always pull high on SCL and SDA pin.

4. DMA transfer

There are 3 DMA transfers on GT6816.

(i) DMA1:

DMA1 is defined for transferring data from M2 (image buffer) to M1 (program memory). When DMA1 is active, CPU enters the suspend-state and waits for the end of DMA1. The total bytes of DMA1 transfer and the target address of M1 can be programmed. After DMA1 is complete, CPU leaves suspend-state and operates with newly updated program code. It is helpful for updating firmware stored in M1 and implement different function. PC can load the new code to M2 via DMA3 write operation and request CPU to do DMA1 transfer. On this concept, any changes of firmware version can be easily updated via Internet.

(ii) DMA2

The sensor analog input is sent to 16-bits AFE and output digital pixel data to M2. This process is called DMA2. Each DMA2 is synchronized with TG signal and generates end of DMA2 event to CPU. While end of DMA event occurs, CPU checks the image buffer status to determine whether to continue DMA2 or not.

(iii) DMA3:

PC interface read/write M2 is the process of DMA3

5. Built-in 16K image buffer

GT6816 uses internal 16K SRAM as the image buffer to store the pixel data via DMA2 process and send it to PC interface via DMA3. The purpose of image buffer is used as the buffer between DMA2 and DMA3. For the fast DMA3 (PC interface read from buffer), image buffer is never full and has a best performance on the pixel data transfer. If DMA3 is slower, as the buffer is near full, DMA2 (pixel data write to buffer) will be halted and wait for enough buffer size to continue. Built-in image buffer ,therefore, can save the external memory requirement.

6. Watch dog timer

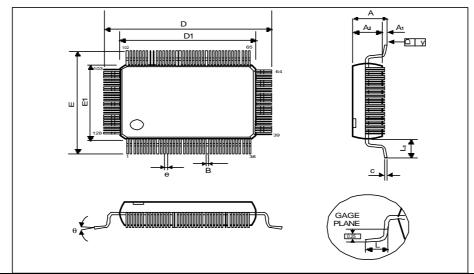
GT6816 has built-in watch-dog-timer to avoid uncertain conditions that make CPU reach unknown state. CPU has to reset the watch-dog-timer every 500ms. If CPU does not reset watch-dog-timer more than 500ms, GT6816 will return initial state and reset all the hardware settings.

7.Remote-wake up function

Change states on pin WAKEUP will force GT6816 leave suspend state and do the corresponding service.

8. Programmable timing generator

All sensor and AFE control signals can be fully programmable by timing generator module. This provides the highly compatibility to the different system requirements.


9. Suspend management

Each module include AFE, CPU, program memory, image buffer, DMA controller, etc, has its corresponding suspend control bit. Entering suspend state is determined by CPU setting these bits. That makes bus-powered of USB solution can be easily implemented.

10. General-purpose I/O

There are up to 42 pin GPIO in 128-pin package.

VIII. APPENDIX: PACKAGE MECHANICAL DATA- 128-pin QFP

Symbol	Dimensions in inch			Dimensions in mm		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	-	-	0.134	-	-	3.40
A1	0.010	-	-	0.25	-	-
A2	0.107	0.112	0.117	2.73	2.85	2.97
В	0.007	0.009	0.011	0.17	0.22	0.27
C	0.004	-	0.008	0.09	-	0.20
D	0.906	0.913	0.921	23.00	23.20	23.40
D1	0.783	0.787	0.791	19.90	20.20	20.10
Е	0.669	0.677	0.685	17.00	17.20	17.40
E1	0.547	0.551	0.555	13.90	14.00	14.10
e	0.020 BSC			0.5 BSC		
L	0.029	0.035	0.041	0.73	0.88	1.03
L1	0.063 BSC			1.60 BSC		
у	_	-	0.004	-	-	0.10
θ	0°	-	7°	0°	-	7°

Notes:

- 1. Dimensions D1 and E1 do not include mold protrusion. But mold mismatch is included. Allowable protrusion is .25mm/.010" per side.
- 2. Dimensions B does not include dambar protrusion. Allowable dambar protrusion is .08mm/.003"" per side. Total in excess of the B dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.

GT-6816

This publication contains the design target or goal specifications for product development. Specifications and information herein are subject to change without prior notice.
All Copyrights are reserved: No part of this publication may be reproduced or duplicate in any form or by any means without the prior written permission of Grandtech Semiconductor Corp.
All applications and circuit parameters herein are for illustrative purposes only. Grandtech Semiconductor makes no warranty that such applications will be suitable for volume production without further testing or modification.
Grandtech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life.