
TOSHIBA TA2131FN

TOSHIBA BIPOLAR LINEAR IC SILICON MONOLITHIC

T A 2 1 3 1 F N

LOW CURRENT CONSUMPTION HEADPHONE AMPLIFIER FOR PORTABLE MD PLAYER (WITH BASS BOOST FUNCTION)

The TA2131FN is a low current consumption headphone amplifier developed for portable digital audio. It is particularly well suited to portable MD players that are driven by a single dry cell. It also features a built-in bass boost function with AGC, and is capable of bass amplification of DAC output and analog signals such as tuner.

Weight: 0.14 g (Typ.)

FEATURES

 Low current consumption : $I_{CCO}(V_{CC1}) = 0.55 \,\text{mA} \,(\text{Typ.})$

 I_{CCO} (V_{CC2}) = 0.20 mA (Typ.)

: $P_0 = 8 \text{ mW (Typ.)}$ Output power

 $(V_{CC1} = 2.8 \text{ V}, V_{CC2} = 1.2 \text{ V}, f = 1 \text{ kHz}, THD = 10\%, R_L = 16 \Omega)$

Low noise : $V_{no} = -102 \, dBV \, (Typ.)$

Built-in low-pass boost (with AGC)

I/O pin for beep sound

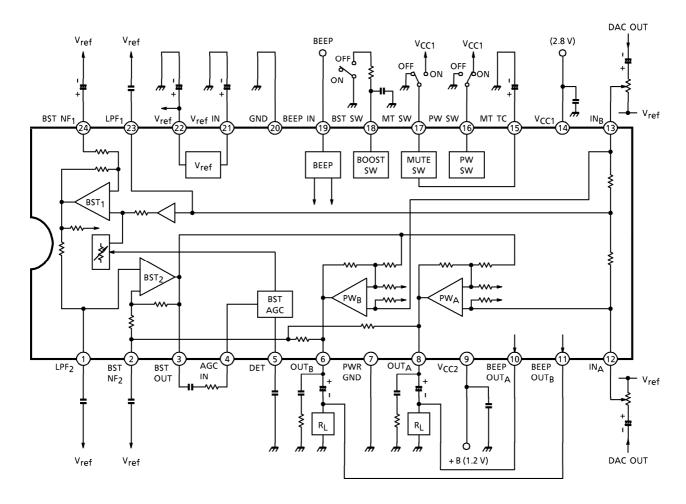
Outstanding ripple rejection ratio

Built-in power mute

Built-in power ON/OFF switch

 Operating supply voltage range (Ta = 25°C): V_{CC1} = 1.8~4.5 V $V_{CC2} = 0.9 \sim 4.5 \text{ V}$

The information contained herein is subject to change without notice.


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

BLOCK DIAGRAM

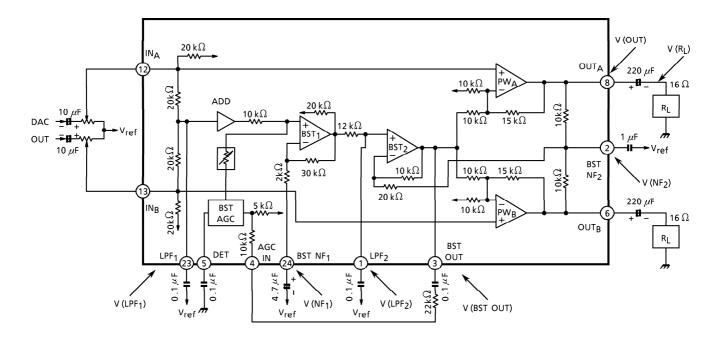
TERMINAL EXPLANATION

(Terminal voltage : Typical terminal voltage at no signal with test circuit, $V_{CC1} = 2.8 \text{ V}$, $V_{CC2} = 1.2 \text{ V}$, $T_{CC2} = 1.$

<u>Ta</u>	= 25°C)			
	RMINAL No.	TERMINAL EXPLANATION	INTERNAL CIRCUIT	TERMINAL VOLTAGE (V)
1	LPF ₂	BST amplifier 1 output (filter terminal)	$\begin{array}{c c} & AGC \\ \hline 12 & PWA \\ \hline 20 & k\Omega \\ \hline \end{array}$	0.61
23	LPF ₁	ADD amplifier output (filter terminal)	10 kΩ 12 NΩ	0.61
24	BST NF ₁	BST amplifier 1 NF	Z2A + Vref Vref	0.61
2	BST NF ₂	BST amplifier 2 NF terminal (low-pass compensation condenser connection terminal)	C WA PWA	0.61
3	BST OUT	BST amplifier 2 output terminal	3 ADD 88 C 3 δ C	0.61
6	OUTB	Power amplifier output	BST ₁ OUT BST ₂	0.61
8	OUTA	Tower ampirier output	10 kΩ 15 kΩ	
12	INA	Power amplifier input	C PWB	0.61
13	IN _B		2	

TE	RMINAL No.	TERMINAL EXPLANATION	INTERNAL CIRCUIT	TERMINAL VOLTAGE (V)
4	AGC IN	Signal input level to BST amplifier is varied according to the input level to the boost AGC input terminal. Input impedance : $15~\mathrm{k}\Omega$ (typ.)	4 10 kΩ Vref	0.61
5	DET	Smoothing of boost AGC level detection	S S S S S S S S S S S S S S S S S S S	
7	PWR GND	GND of power amplifier output stage	_	0
9	V _{CC2}	V _{CC} (+B) at power amplifier output stage	_	1.2
10	BEEP OUT _A BEEP OUT _B	Beep sound output terminal		_
	BEEP IN	Beep sound input terminal Receives beep sound signals from microcomputer.	10 kΩ 10 kΩ 10 mm	0
14	V _{CC1}	Main V _{CC}	_	2.8
15	МТ ТС	Mute smoothing Power mute switch Reduces the shock noise during switching		1.2

TE	RMINAL No.	TERMINAL EXPLANATION	INTERNAL CIRCUIT	TERMINAL VOLTAGE (V)
16	PW SW	Power ON/OFF switch "H" level : IC operation "L" level : IC OFF Refer to function explanation 5	V _{CC1} 47 kΩ	
17	MT SW	Mute switch "L" level : mute reset "H" level : mute ON Refer to function explanation 5	V _{CC1} 47 kΩ 47 k	_
18	BST SW	Bass boost ON/OFF switch "H" level/OPEN : BST ON "L" level : BST OFF Refer to function explanation 5	13 20 kΩ Y	
20	GND	GND of input stage in power amplifier	ÿ 	0
21	V _{ref} IN	Reference voltage circuit filter terminal	14 T T T T T T T T T T T T T T T T T T T	0.61
22	V _{ref}	Reference voltage circuit	10 kΩ	0.61


FUNCTION EXPLANATION

1. Bass Boost Function

a. Description of Operation

TA2131FN has a bass boost function for bass sound reproduction built-in to the power amplifier. With the bass boost function, at medium levels and lower, channel A and channel B are added for the low frequency component, and output to BST amplifier 2 (BST₂) in negative phase. That signal is inverted and added before being subjected to bass boost. If the signal of the low-frequency component reaches a high level, the boost gain is controlled to main a low distortion (see Fig.1).

Fig.1 System Diagram of Bass Boost

b. AGC Circuit

The AGC circuit of the bass boost function detects with "AGC DET" the voltage component created by "BST₂," and as the input level increases, the variable impedance circuit is changed, and the bass boost signal is controlled so that it is not assigned to BST amplifier 1. In this way, the bass signal to "BST₂" input is shut-off, and that boost gain is controlled.

c. Bass Boost System

As shown in Fig.1, the flow of the bass boost signal is that the signal received from power amplifier input goes through LPF₁, ADD amplifier, ATT (variable impedance circuit), BPF₁ (BST amplifier 1) and LPF₂, and the negative phase signal to the power amplifier input signal is output from BST amplifier 2. The reason why it becomes the negative phase of the BST amplifier 2 signal is that the phase is inverted by 180° in the audible bandwidth by the secondary characteristics of LPF₁ and LPF₂ in Fig.1.

Ultimately the main signal and the bass boost signal formed before BST_2 are added. Fig.2 shows the frequency characteristics to each terminal.

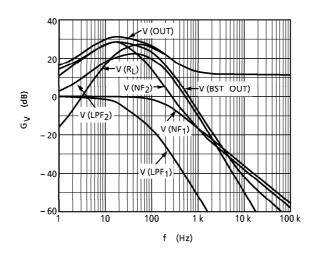


Fig.2 During Bass Boost (Frequency Characteristics to Each Terminal)

2-1. Low-Pass Compensation Function

In C-couple type power amplifiers, it is necessary to give the output condenser C a large capacity to flatten out the frequency characteristics to the low frequency band (this is because the loss in the low frequency bandwidth becomes larger due to the effect of the high-pass filter comprising C and R_L). Particularly when the headphone load is approximately 16 Ω and an attempt is being made to achieve frequency characteristics of ± 3 dB at 20 Hz, a large capacity condenser of C = 470 μ F is required.

Bearing this situation in mind, a low-pass compensation function was built in to the TA2131FN, and while reducing the capacity of the output coupling condenser, almost flat (± 3 dB) frequency characteristics in all audible bandwidths (20 Hz to 20 kHz) have been achieved.

Fig.3 shows the low-pass system diagram, and Fig.4 shows the frequency characteristics at each point. In Fig.4, (a) represents the status lost by the low-pass as a result of the high-pass filter comprising the headphone load ($R_L = 16~\Omega$) and the output coupling condenser (220 μ F) in the C-coupling system.

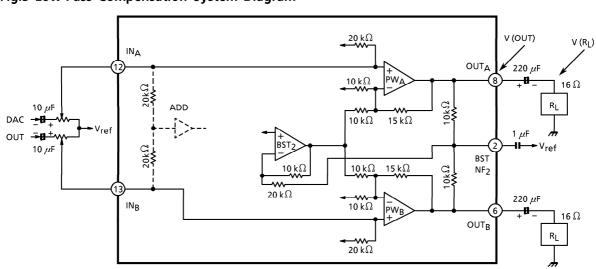
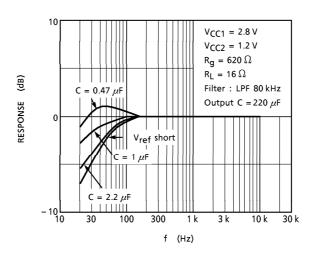


Fig.3 Low-Pass Compensation System Diagram

20 (b) 10 (c) (c) (a) -20 1 10 100 1 k 10 k 100 k

Fig.4 Power Amplifier Frequency Characteristics

<Principle of Low-Pass Compensation>


The low-pass component alone is extracted from the composite signal of PW_A/PW_B output, and that frequency signal is fed back to PW_A/PW_B once more via the inversion amplifier, thereby making it possible to increase the gain only of the low-pass component. The frequency characteristics of the power amplifier output V (OUT) in this state are shown in Fig.4 (b). In practice they are the frequency characteristics (c) viewed from load terminal V (R_L), and the low-pass is compensated relative to the state in (a).

2-2. Low-Pass Compensation Condenser and Crosstalk

In this low-pass compensation condenser circuit, processing is carried out using the composite signal of power amplifier output, so this affects crosstalk, according to the amount of compensation.

f characteristics and crosstalk generated by the capacity of the condenser for compensation (2-pin) are shown below.

Fig.5 Condenser and f Characteristics for Low-Pass Compensation

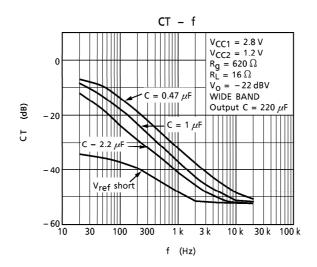
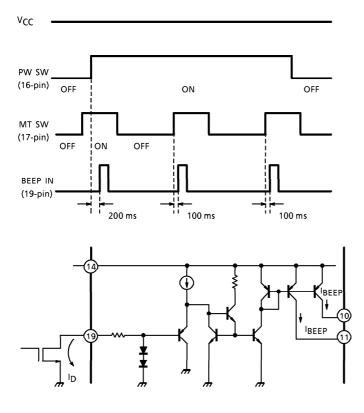
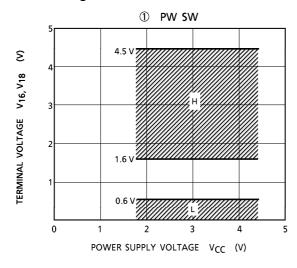



Fig.6 Low-Pass Compensation Condenser and Crosstalk

3. Beep

Beep sound signals from microcomputer can be received by the beep input terminal (19-pin). The PW_A and PW_B of the power amplifier during power mute are turned OFF, and the beep signal input from BEEP-IN (19-pin) is output from the BEEP-OUT terminal (10 / 11-pin) as fixed current, after passing through the converter and current amplification stage. Connecting this terminal to the headphone load outputs the beep sound.


If the beep sound is not input, fix the BEEP-IN (19-pin) terminal to GND level.

4. Power Switch

As long as the power switch is not connected to "H" level, the IC does not operate. If it malfunctions due to external noise, however, it is recommended to connect a pull-down resistor externally (the power switch is set to be highly sensitive).

5. Threshold Voltages of Switches

5					
İ		4.5 V			
4					
				H	
3					
2					
'[0.8 V			
		0.3 V		- <i>///////</i>	
0	1	2	3	3	4

	PW SW (V ₁₆)
"H" level	IC operation
"L" level	IC OFF

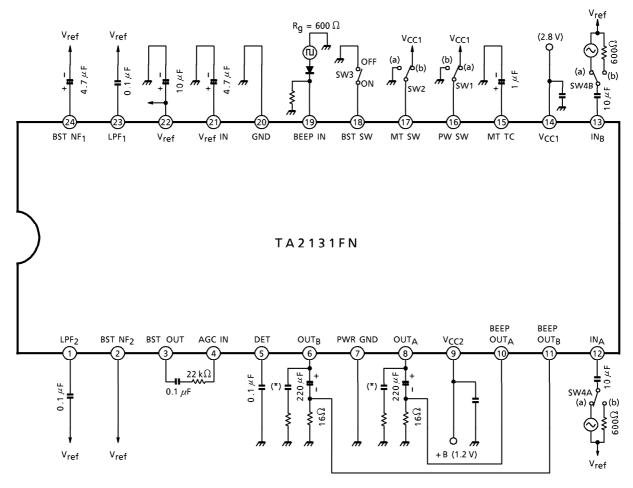
	MT SW (V ₁₇)
"H" level	Mute ON
"L" level	Mute reset

	BST SW (V ₁₈)
"H" level/OPEN	BST ON
"L" level	BST OFF

6. These capacitors which prevent oscillation of the power amplifier, and are between the V_{ref} and V_{CC} -GND must have a small temperature coefficient and outstanding frequency characteristics.

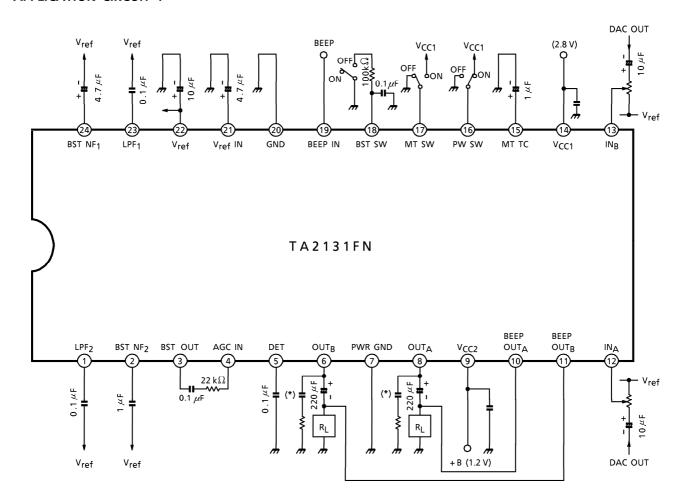
MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	Vcc	4.5	V	
Output Current	l _{o (peak)}	100	mA	
Power Dissipation	P _D (Note)	500	mW	
Operating Temperature	T _{opr}	- 25∼75	°C	
Storage Temperature	T _{stg}	- 55∼150		

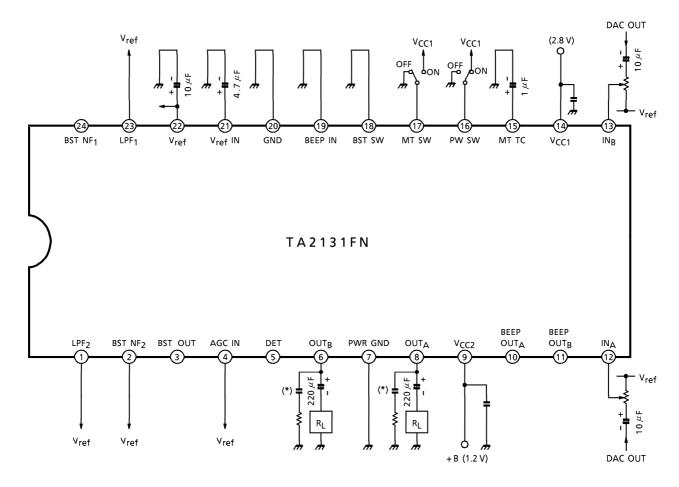

(Note) : Derated above $Ta = 25^{\circ}C$ in the proportion of $4 \text{ mW}/^{\circ}C$.

ELECTRICAL CHARACTERISTICS

(Unless specified otherwise, V_{CC1} = 2.8 V, V_{CC2} = 1.2 V, R_g = 600 Ω , R_L = 16 Ω , f = 1 kHz, Ta = 25°C)

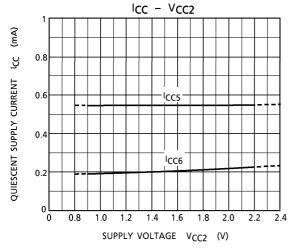

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Quiescent Supply		^I CC1	IC OFF (V _{CC1}), SW1 : b, SW2 : b	ı	0.1	5		
		I _{CC2}	IC OFF (V _{CC2}), SW1 : b, SW2 : b	1	0.1	5	μA	
		ICC3	MUTE ON (V _{CC1}), SW1 : a, SW2 : b		0.35	0.50	mΑ	
Cui	rent	I _{CC4}	MUTE ON (V _{CC2}), SW1 : a, SW2 : b	1	5	10	μ A	
		I _{CC5}	No signal (V _{CC1}), SW1 : a, SW2 : a		0.55	0.75		
		lcc6	No signal (V _{CC2}), SW1 : a, SW2 : a	1	0.20	0.40	mA	
Pον	wer Supply Current	ICC7	$P_0 = 0.5 \text{ mW} + 0.5 \text{ mW output } (V_{CC1})$	1	0.6	1	111/4	
Du	ring Drive	lCC8	$P_0 = 0.5 \text{ mW} + 0.5 \text{ mW output } (V_{CC2})$	_	5.3	_		
	Gain	GV	$V_0 = -22 dBV$	10	12	14	40	
	Channel Balance	СВ	$V_0 = -22 dBV$	- 1.5	0	1.5	dB	
	Output Power	Pomax	THD = 10%	5	8	_	mW	
	Total Harmonic Distortion	THD	$P_0 = 1 \text{ mW}$	_	0.1	0.3	%	
Section	Output Noise Voltage	V _{no}	R_g = 600 Ω , Filter : IHF-A, SW4 : b	-	- 102	- 96	dBV	
ec	Crosstalk	СТ	$V_0 = -22 dBV$	- 42	- 48			
Power S	Ripple Rejection Ratio	RR1	$f_r = 100 \text{ Hz}, V_r = -20 \text{ dBV}$ inflow to V_{CC2}	- 71	- 77	_		
Po		RR2	$f_r = 100 \text{ Hz}, V_r = -20 \text{ dBV}$ inflow to V_{CC1}	- 54	- 64	_	dB	
	Mute Attenuation	ATT	$V_0 = -12 dBV, SW2 : a \rightarrow b$	- 90	- 100			
	Beep Sound Output Voltage	VBEEP	V Beep IN = $2 V_{p-o}$, SW2: b	- 53	- 48	- 43	dBV	
Boost Gain		BST1	$V_O = -20 \text{ dBV}, f = 100 \text{ Hz},$ SW3 : ON \rightarrow OPEN	1	4	7		
		BST2	$V_O = -30 \text{ dBV}, f = 100 \text{ Hz},$ SW3 : ON \rightarrow OPEN	10	13	16	dB	
		BST3	$V_O = -50 \text{ dBV}, f = 100 \text{ Hz},$ SW3 : ON \rightarrow OPEN	13.5	16.5	19.5		

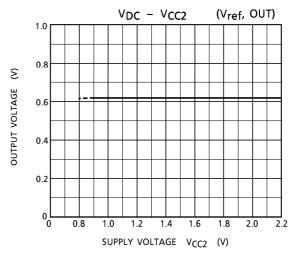
TEST CIRCUIT

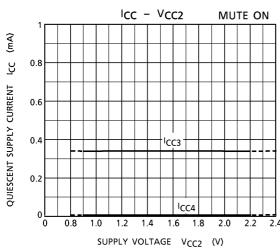

(*) : 0.22 $\mu{\rm F}$ + 10 Ω Monolithic ceramic capacitor

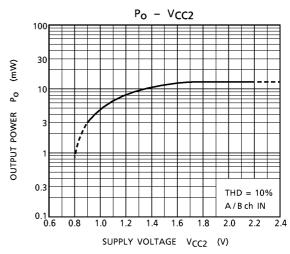
APPLICATION CIRCUIT 1

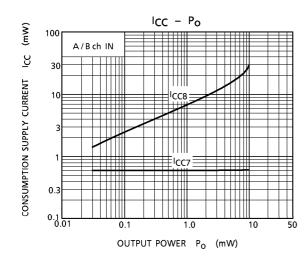
(*) : 0.22 $\mu{\rm F}$ + 10 Ω Monolithic ceramic capacitor

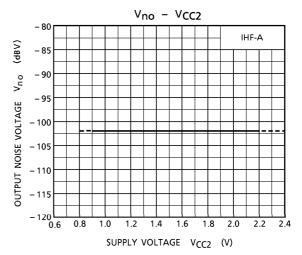

APPLICATION CIRCUIT 2 (Low-Pass Compensation / Bass Boost Function / Beep Not Used)



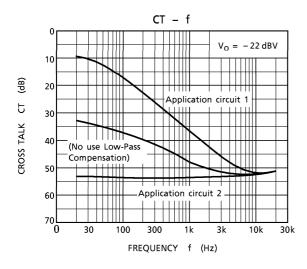

(*) : 0.22 $\mu{\rm F}$ + 10 Ω Monolithic ceramic capacitor

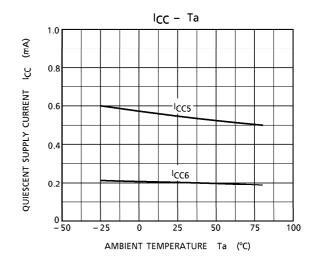

CHARACTERISTICS

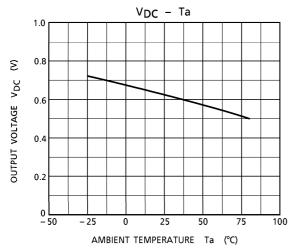

(Unless otherwise specified V_{CC1} = 2.8 V, V_{CC2} = 1.2 V, Rg = 600 Ω , R_L = 16 Ω , f = 1 kHz, Ta = 25°C)











Weight: 0.14 g (Typ.)

0.45±0.2